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Role of miRNAs in the pathogenesis and susceptibility
of diabetes mellitus

Naoko Hashimoto1,2,3 and Tomoaki Tanaka2,3,4

MicroRNAs (miRNAs) are noncoding RNAs of ~22 nucleotides that regulate gene expression post-transcriptionally by binding to

the 3′ untranslated region of messenger RNA (mRNAs), resulting in inhibition of translation or mRNA degradation. miRNAs

have a key role in fine-tuning cellular functions such as proliferation, differentiation and apoptosis, and they are involved in

carcinogenesis, glucose homeostasis, inflammation and other biological processes. In this review, we focus on the role of

miRNAs in the pathophysiology of the metabolic disease and diabetes mellitus, the hallmark of which is hyperglycemia caused

by defective insulin secretion and/or action. A growing number of studies have revealed the association between miRNAs and the

processes of insulin production and secretion in pancreatic β cells. In addition, aberrant expression of miRNAs in skeletal

muscle, adipose tissue and liver has also been reported. Intriguingly, the tumor suppressor p53 has been implicated in the

pathogenesis of diabetes in association with a number of miRNAs, suggesting that a p53/miRNA pathway might be a therapeutic

target. Moreover, data from genome-wide association studies have revealed that several miRNA target sequences overlap type 2

diabetes susceptibility loci. Finally, the recent discovery of circulating miRNAs associated with diabetes onset/progression

suggests the potential use of miRNAs as biomarkers.
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INTRODUCTION

Diabetes mellitus is a group of diseases characterized by chronic
hyperglycemia owing to deficiency of insulin action. It is a multi-
factorial disorder stemming from a complex combination of factors
including genetic background, aging and environment that cause an
increase in blood glucose, resulting in a deficiency of insulin secretion
from pancreatic β cells and decreased insulin sensitivity in skeletal
muscle, liver and adipose tissue. In type 1 diabetes, insulin deficiency is
caused primarily by loss of the insulin-producing pancreatic β cells
from the islets of langerhans. Type 2 diabetes develops dependent on
genetic and environmental/dietary factors, including those that cause
insulin resistance and reduced insulin secretion.1

The number of people with diabetes is increasing explosively
worldwide. In fact, in 2015, the International Diabetes Federation
reported that 415 million adults globally have diabetes, with a
prevalence of 8.8%.2 Accordingly, ~ 5 million people between the
ages of 20 and 79 years died from diabetes and its complications in
2015.2 Aside from administering insulin, several different types of
diabetes medications have been developed such as biguanide,
sulfonylureas, α-glucosidase inhibitor, prandial glucose regulators,
thiazolidinediones, incretin mimetics, DPP-4 inhibitors and SGLT2
inhibitors. They have remarkably improved length and quality of life
for diabetes patients. Although additional new medicines have been
developed in recent years, microvascular complications such as

neuropathy, retinopathy, and nephropathy and diabetes-related
atherosclerotic diseases such as ischemic heart disease, cerebrovascular
disease and arteriosclerosis obliterans are becoming a greater problem.
Diabetes and its complications are a major cause of disability, reduced
quality of life and premature death.
Glucose is a strong regulator of insulin secretion. Insulin is

synthesized and secreted by pancreatic β cells. Following oral glucose
administration, the associated increase in blood glucose triggers
glucose uptake by the β cells through glucose transporters, expression
of which is increased by chronic exposure to high glucose levels.
Electrical excitation of β-cell membranes stimulates insulin release
from the cells. Insulin secretion, which in turn mediates subsequent
metabolism of glucose, leads to production of cellular ATP, increases
the ATP:ADP ratio and closes ATP-dependent potassium channels in
the β-cell membrane, resulting in membrane depolarization and
calcium influx into the cell. With the increase in intracellular-free
calcium, secretory granules become marginated, fuse with the plasma
membrane and release their contents extracellularly.3

Approximately 90% of the mammalian genome comprises
noncoding sequence, and 70% of this sequence is transcribed.4,5

Actually, high-throughput RNA sequencing technologies have
identified many noncoding transcripts.4,5 Among these, microRNAs
(miRNAs) are small noncoding RNAs that range in length from 19 to
23 nucleotides. miRNAs bind to the 3′ untranslated region of target
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messenger RNA (mRNAs) and guide mRNA degradation or
repression of translation. miRNAs typically target mRNAs transcribed
from gene clusters rather than single genes,6 a property that facilitates
the critical roles of miRNAs in diverse biological processes, including
cell proliferation, differentiation, apoptosis and carcinogenesis.7

miRNAs are important regulators of multiple processes in develop-
ment, physiology and pathology, including a recently identified role in
metabolic homeostasis. It was recently revealed that miRNAs partici-
pate in insulin signaling and glucose homeostasis and that aberrant
miRNA expression has a potential pathological role in diabetes.8

Following the notion that the miRNA-375 (miR-375) directly
regulates insulin secretion,9 multiple miRNAs that regulate insulin
secretion or resistance have been reported. Because miRNAs act at
several points in the distinct pathways that lead to insulin secretion or
resistance,10 they could be potential therapeutic targets. Hence,
understanding the role of miRNAs in the molecular pathogenesis of
diabetes will provide insights to guide the development of targeted
therapeutics.
There is growing evidence that miRNAs are secreted in body fluids,

such as blood and urine, and that concentrations of specific miRNAs
might serve as biomarkers of pathophysiological conditions.11

Recent advances in genome-wide association studies (GWAS) have
contributed to the identification of more than 80 susceptibility loci for
type 2 diabetes.12 Several loci are reported to be targets of
islet-expressed miRNAs, suggesting the involvement of miRNAs in
the pathophysiology of diabetes.13 In this review, we summarize the
current knowledge of miRNAs associated with diabetes.

ROLE OF miRNAs IN β CELLS

In 2004, miR-375 became the first miRNA reported to directly
regulate insulin secretion.9 Although recent studies have demonstrated
that dysfunction or misexpression of this miRNA is involved in
various cancers,14 miR-375 was originally reported as a pancreatic
islet-specific miRNA.9 Recently, however, miR-375 was shown to
suppress glucose-induced insulin secretion by targeting myotrophin
mRNA (Mtpn), which participates in fusion of secretory granules with
the plasma membrane through actin depolymerization.9 Glucose
activates the insulin gene promoter, and subsequent upregulated
insulin expression modulates the downstream phosphatidylinositol
3-kinase (PI3K) pathway.15 miR-375 decreases insulin secretion by
directly targeting 3′-phosphoinositide-dependent kinase 1 mRNA,15

which is a key molecule in the PI3-kinase pathway; a reduction in
miR-375 level promotes insulin secretion by abolishing the
suppression of its target genes. Elevated glucose level decreases
miR-375 expression.15 Notably, the transcription factors pancreatic
and duodenal homeobox 1 and neuronal differentiation 1 bind to the
miR-375 gene promoter and regulate its expression.16 Intriguingly,
miR-375 knockout mice exhibit hyperglycemia accompanied by
reduced β-cell mass.17 In contrast, elevated miR-375 expression is
observed in the diabetic ob/ob mice17 and in pancreatic islets of
patients with type 2 diabetes.18 These findings indicate that miR-375
increases compensatory β-cell proliferation. Moreover, experiments
using miRNA knockdown strategies as well as β-pancreatic differentia-
tion in human-induced pluripotent stem cells revealed that miR-375 is
essential for the formation of insulin-secreting pancreatic islets.19,20

Together, these data show that miR-375 regulates not only glucose
homeostasis (for example, insulin gene expression) and insulin
secretion (through its effect on exocytosis) but also the development,
maintenance and survival of pancreatic β-cell mass.
miR-9 negatively regulates insulin secretion by targeting one cut

homeobox 2 (Onecut2), thereby increasing the level of granuphilin,21

which is the Rab3/Rab27 GTPase effector that docks β-cell secretory
granules at the plasma membrane and suppresses insulin secretion.22

The nuclear deacetylase Sirt1 was identified as an miR-9 target in the
β-cell line β-TC-6.23 Sirt1 deacetylates multiple proteins, including
transcription factors and histones, in an NAD-dependent manner.
Sirt1 also represses expression of the gene encoding mitochondrial
uncoupling protein UCP2,24 which has the effect of enhancing
glucose-stimulated insulin secretion.25

miR-124a negatively regulates glucose-induced insulin secretion.
The expression of miR-124a is upregulated in human type 2 diabetic
pancreatic islets,26 and among its three isoforms, the level of
miR-124a2 is increased during pancreatic development in mouse
embryos.27 Like miR-375, miR-124a2 decreases insulin secretion by
targeting Mtpn.28 miR-124a2 also directly targets Foxa2 mRNA,26

a master regulator of pancreatic development, and thereby affects its
downstream targets pancreatic and duodenal homeobox 1 and genes
related to insulin secretion and glucose metabolism, including two
ATP-dependent potassium channel subunits (Sur-1 and Kir6.2), in the
pancreatic β-cell line MIN6.27 In addition, Rab27A, which is associated
with insulin exocytosis, was identified as another target of miR-124a in
MIN6 cells.29 Studies concerning the upstream regulation of miR-124a

Figure 1 Model for the regulation of insulin secretion by micro RNA (miRNAs) in pancreatic β cells.
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in β cells have reported that thioredoxin-interacting protein (TXNIP),
a proapoptotic factor induced by glucose,30,31 decreases miR-124a
expression. TXNIP has a critical role in inflammation, glucotoxicity
and β-cell apoptosis. TXNIP induces islet amyloid polypeptide
expression, and the consequent elevated level of islet amyloid
polypeptide mediates β-cell apoptosis, resulting in diabetes. Given
that miR-124a inhibits islet amyloid polypeptide transcription by
targeting Foxa2 mRNA, TXNIP regulates islet amyloid polypeptide-
associated glucose homeostasis in an miR-124a-dependent manner.32

A study of mouse islets showed that miR-29 targets mono-
carboxylate transporter 1, thereby affecting insulin release.33 miR-29
isoforms decrease expression of Onecut2, followed by enhanced
expression of granuphilin, which inhibits insulin release in MIN6
and islet cells.34 Furthermore, miR-29 promotes apoptosis by sup-
pressing the antiapoptotic protein Mcl1.34 Thus, miR-29 negatively

regulates glucose-stimulated insulin secretion (Figure 1). Table 1 lists
miRNAs that are associated with β-cell function.3,8,10,35,36

p53 AND miRNAs

The tumor suppressor p53 is activated in response to various
cellular stresses,37,38 and its role in cellular metabolism is becoming
increasingly apparent. It has been reported that p53 activation in
adipose tissue causes inflammation and insulin resistance.39

The miR-200 family consists of miR-200a, miR-200b, miR-200c,
miR-141 and miR-429. Tissue analysis has shown that miR-200 family
members are highly expressed in pancreatic islets in diabetic ob/ob
mice.40 TXNIP induces expression of miR-200 family members in rat
INS-1 β cells. miR-200 targets zinc-finger E-box-binding homeobox 1
(Zeb1) mRNA and promotes β-cell apoptosis. Suppression of Zeb1
by miR-200 results in inhibition of the epithelial-to-mesenchymal

Table 1 miRNAs associated with β-cell function

miRNA Description References

let-7 Suppresses Irs2 and insulin signaling 103

miR-7 Inhibits endocrine pancreas development by targeting Pax6; also targets mTOR signaling, negatively regulates GSIS 104–106

miR-9 Negatively regulates insulin secretion by targeting Onecut2, which is associated with insulin exocytosis, and Sirt1 21,23

miR-15a/b Targets Ngn3 to induce regeneration, also inhibits Ucp2; increases ATP/ADP ratio by suppressing Ucp2 107,108

miR-16 Targets Ngn3 107

miR-19 Targets Neurod1 and decreases insulin mRNA level 109

miR-21 Negatively regulates insulin exocytosis in response to cytokines 110

miR-24 Targets MEN1, Sox6, Neurod1 and Hnf1a 111–113

miR-26 Increases insulin expression 112

miR-29 Decreases GSIS by targeting Mct1 and Onecut2; overexpression promotes β-cell apoptosis by suppressing Mcl1 33,34,114

miR-30 miR-30a-5p is upregulated in glucotoxicity and suppresses GSIS by targeting Neurod1; miR-30d overexpression increases insulin gene

expression and targets Map4k4

115,116

miR-33a Targets Abca1, resulting in β-cell cholesterol accumulation, thereby decreasing GSIS 117

miR-34a Decreases insulin secretion by targeting Vamp2; also inhibits SIRT1 and promotes β-cell apoptosis by targeting Bcl2 44,47,48

miR-124a Decreases insulin secretion by targeting Mtpn, Foxa2 and Rab27A 27,29,118

miR-130a Positively regulates GSIS 119

miR-132 Enhances GSIS and contributes to compensatory β-cell mass expansion 120

miR-143 Impairs insulin-stimulated Akt activation and glucose homeostasis 65

miR-145 Targets Abca1, resulting in β-cell cholesterol accumulation, thereby decreasing GSIS 121

miR-146a Induced by IL-1β and NFκB; anti-miR-146 treatment prevents the reduction of GSIS 110

miR-148 Targets ABCA1 and Sox6; knockdown downregulates insulin mRNA level 112,121

miR-182 Knockdown downregulates insulin mRNA level 112

miR-184 Inhibits compensatory β-cell expansion by targeting Ago2 122

miR-185 Enhances insulin secretion and promotes β-cell proliferation by targeting SOCS3 123

miR-187 Decreases GSIS by targeting HIPK3 124

miR-195 Targets Ngn3 107

miR-199a-5p Negatively regulates GSIS 120

miR-200 Promotes β-cell apoptosis by targeting Ypel2, Dnajc3, Jazf1, Rps6kb1 and Xiap and activates p53 pathway; also targets Zeb1, cMaf and
Zfpm2

40–42

miR-203 Decreases β-cell apoptosis 120

miR-204 Decreases insulin production by targeting MafA 125

miR-210 Decreases β-cell apoptosis 120

miR-335 Impairs GSIS by targeting Stxbp1 126

miR-338-3p Downregulation contributes to compensatory expansion of β-cell mass 120

miR-375 Negatively regulates insulin secretion by targeting Mtpn and Pdk1; also contributes to development, maintenance and survival of pancreatic

β-cell mass

9,17,15

miR-410 Positively regulates GSIS 119

Abbreviations: Ago2, argonaute-2; Abca1, ATP-binding cassette (ABC) transporters; Bcl2, B-cell lymphoma 2; cMaf, avian musculoaponeurotic fibrosarcoma oncogene homolog; Dnajc3, DnaJ
heat-shock protein family (Hsp40) member C3; Foxa2, forkhead box A2; HIPK3, homeodomain-interacting protein kinase-3; Hnf1a, hepatic nuclear factor 1 homeobox A; Irs2, insulin receptor
substrate 2; Jazf1, JAZF zinc-finger 1; MafA, v-maf musculoaponeurotic fibrosarcoma oncogene family, protein A; Map4k4, Mapkkkk4; Mcl1, myeloid cell leukemia 1; Mct1, monocarboxylate
transporter 1; MEN1, multiple endocrine neoplasia 1; miRNA, microRNA; mTOR, mechanistic target of rapamycin; Mtpn, myotrophin; NFκB, nuclear factor kappa B; Ngn3, neurogenin 3; Onecut2,
one cut homeobox 2; Pax6, paired box 6; Pdk1, phosphoinositide-dependent protein kinase 1; Rab27A, member RAS oncogene family; Rps6kb1, ribosomal protein S6 kinase polypeptide 1; Sirt1,
sirtuin (silent mating type information regulation 2 homolog); SOCS3, suppressor of cytokine signaling 3; Sox6, Sry-related HMG box 6; Stxbp1, syntaxin-binding protein 1; Ucp2, uncoupling protein
2; Vamp2, vesicle-associated membrane protein 2; Xiap, X-linked inhibitor of apoptosis; Ypel2, yippee-like 2; Zeb1, zinc-finger E-box binding homeobox 1; Zfpm2, zinc-finger protein friend of GATA
family member 2.
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transition via upregulation of E-cadherin.40 The avian musculo-
aponeurotic fibrosarcoma oncogene homolog is a transcription factor
that regulates glucagon expression, and the zinc-finger protein,
multitype 2, is a transcription factor that inhibits PI3K signaling.
Both are targets of miR-200c,41 and exclusively expressed in pancreatic
islet α cells. In addition, Belgardt et al.42 demonstrated that miR-200c
enhances the activity of Trp53 (p53), further promoting apoptosis.
miR-200-induced type 2 diabetes is suppressed by interfering with
signaling between Trp53 and its proapoptotic target gene, Bax. Loss of
miR-200 in mice attenuates β-cell apoptosis and improves type 2
diabetes.42 miR-200 targets the mRNAs encoding DnaJ heat-shock
protein family (Hsp40) member C3 as well as JAZF zinc-finger 1
(namely Jazf1), ribosomal protein S6 kinase polypeptide 1 and
X-linked inhibitor of apoptosis, all of which are antiapoptotic.35

miR-200 modulates Trp53 activity by regulating several direct target
genes, particularly Ypel2, which is necessary for full expression of dual-
specificity phosphatase 26 (putative, Dusp26), encoding a phosphatase
that, in turn, controls Trp53 activity.43

The level of miR-34a is elevated in islets of diabetic db/db mice.44

miR-34a is a direct transcriptional target of p53 that induces apoptosis
by both p53-dependent and -independent means.45,46 Inhibition of
miR-34a partially protects palmitate-treated MIN6B1 cells (another
pancreatic β-cell line) from apoptosis.44 miR-34a directly targets B-cell
leukemia/lymphoma 2 (Bcl2); thus, miR-34a-induced suppression of
Bcl2 accounts for the palmitate-induced increase in apoptotic rate in
pancreatic β cells.47 miR-34a negatively regulates insulin secretion by
targeting Vamp2, a protein that has an important role in insulin
exocytosis.44 miR-34a inhibits SIRT1 expression and, because SIRT1
can deacetylate/inactivate p53, miR-34a expression increases p53
acetylation. This further induces miR-34a, creating a positive feedback

loop.48 SIRT1 also deacetylates farnesoid X receptor (Fxr; Nr1h4),
which is also known as nuclear bile acid receptor, and increases its
activity.49 FXR inhibits miR-34a expression in the liver.50 FXR induces
expression of Shp (orphan nuclear receptor and transcriptional
corepressor small heterodimer partner),51,52 which inhibits miR-34a
expression by blocking p53 binding to the miR-34a promoter.50

(Figure 2).
In addition, miR-375 is a negative regulator of p53, downregulating

p53 and hence its target genes in cancer cells.53 miR-29 upregulates
p53 and induces apoptosis in a p53-dependent manner. miR-29
directly targets the p85α regulatory subunit of PI3K and cell division
control protein 42, both of which negatively regulate p53.54

miRNAs AND INSULIN RESISTANCE IN TARGET TISSUES

Several lines of evidence indicate the involvement of miRNAs in
altering gene expression that takes place in adipocytes of obese
subjects. Expression of miR-29 is increased in skeletal muscle, liver
and fat tissues of Goto–Kakizaki rats, an established model of type 2
diabetes.55 Expression of miR-29 is induced with hyperglycemia
or hyperinsulinemia in adipocyte-derived 3T3-L1 cells.56 miR-29
expression is regulated in part by FOXA2, and miR-29 modulates
FOXA2-mediated regulation of lipid-metabolism genes such as
PPARGC1A, HMGCS2 and ABHD5.57 miR-29 overexpression in
3T3-L1 cells impairs insulin-induced glucose uptake, resulting in
insulin resistance.55 miR-29a and miR-29c are important negative
regulators of insulin signaling in the liver through regulation of PI3K
mRNA level.58 miR-29a prevents insulin-mediated inhibition of
the gene encoding phosphoenolpyruvate carboxykinase by directly
targeting the mRNA encoding PI3K p85α subunit.59 Expression of
miR-320 is significantly upregulated in insulin-resistant 3T3-L1
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Figure 2 Signaling molecules that are associated with the microRNA (miRNA)/p53 pathway. (a) When miR-200 is induced by glucose or by diabetes,
it targets Ypel2, which induces Dusp26. Downregulation of Dusp26 results in phosphorylation and activation of p53, which then targets genes and facilitates
β-cell apoptosis. Induced by TXNIP, miR-200 targets Zeb1, subsequently inhibits β-cell expansion via upregulation of E-cadherin. miR-200 also targets
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adipocytes, and insulin resistance is ameliorated by treatment with an
anti-miR-320 oligo.60 miR-320 also contributes to changes in insulin
sensitivity and targets p85, which is involved in the phosphorylation of
the protein kinase Akt.
miR-27 is downregulated during adipocyte differentiation. miR-27a

and miR-27b target peroxisome proliferator-activated receptor γ,
which is a key regulator of adipocyte differentiation and
adipogenesis.61,62 miR-27 might have an important role in inducing
insulin resistance along with hypertrophy of adipocytes or qualitative
and/or quantitative alteration of adipokine expression in obesity.
miR-103 and miR-107 are expressed at high levels in obese mice,

and silencing of these miRNAs improves insulin resistance in adipose
tissue and liver. miR-103/107 expression in either fat or liver causes
insulin resistance by targeting caveolin-1, an essential regulator of the
insulin receptor (Insr).63 miR-143 is upregulated in the mesenteric fat
tissue of high-fat diet-induced obese mice and in the liver of db/db
mice,64,65 which are obese and diabetic as a result of mutations in the
leptin receptor gene.66,67

Oxysterol-binding protein-related protein 8 is involved in AKT
activation and is an miR-143 target regulated at the level of
translation.65 Insulin-stimulated AKT activation and consistent
phosphorylation of the AKT substrate glycogen synthase kinase-3β
were found to be reduced in oxysterol-binding protein-related protein
8 knockdown cells, demonstrating that miR-143 contributes to
reduction of insulin sensitivity.65

In skeletal muscle, molecules in the insulin-PI3K-mTOR signaling
pathways, such as Insr, insulin-like growth factor 1 receptor (Igf1r),
Irs2, Pik3ip1, Akt2, Tsc1 and Rictor, are downregulated by the miRNA
let-7. Mice deficient for the muscle-specific RNA-binding protein

Lin28a and inducible let-7 transgenic mice exhibit glucose
intolerance.68 Moreover, global knockdown of the let-7 family
ameliorates insulin sensitivity in liver and muscle, in part by restoring
Insr and Irs2 expression levels.69,70 miR-1 and miR-133a are expressed
specifically in muscle and regulated by insulin through sterol
regulatory element-binding protein-1c and myocyte enhancer factor
2C.71 In a set of experiments using human skeletal muscle, sterol
regulatory element-binding protein-1c was found to be activated by
insulin, with consequent downregulation of miR-1 and miR-133 by
inhibiting myocyte enhancer factor 2C. Further, the response of miR-1
and miR-133a to insulin is impaired in skeletal muscle in type 2
diabetes, possibly owing to altered activation of sterol regulatory
element-binding protein-1 c.71,72

miR-122 is one of the liver-specific miRNAs.73 Inhibition of
miR-122 with antisense oligonucleotides in mice fed a high-fat diet
resulted in a reduction in hepatic steatosis accompanied by lowered
plasma cholesterol level, increased hepatic fatty acid oxidation and
decreased synthesis of hepatic fatty acids and cholesterol.74,75 Esau
et al.74 demonstrated that miR-122 targets mRNAs encoding Gys1,
Aldoa, Ccng1, P4ha1 and Slc7a1/Cat1. AMP kinase is also activated by
miR-122, possibly through an indirect pathway.74 In contrast,
decreased miR-122 expression was observed in the liver of both
ob/ob mice and streptozotocin-induced diabetic mice.76 Protein
tyrosine phosphatase 1B, which inhibits hepatic insulin signaling via
dephosphorylating tyrosine residues in both Insr and Insr substrate, is
another direct target of miR-122.77 The reduction of miR-122 in
nonalcoholic fatty liver disease and/or diabetic liver may partly
contribute to the self-protection mechanism of liver cells in response
to nutrient overload with lipids or glucose.76 Taken together, these

Table 2 miRNAs associated with insulin resistance

miRNA Organ/tissue Description References

let-7 Adipose/muscle Targets Insr, Igf1r, Irs2, Pik3ip1, Akt2, Tsc1 and Rictor; knockdown ameliorates insulin sensitivity 69

miR-1/133a Muscle Negatively regulated by insulin through SREBP1c and MEF2C 71

miR-21 Adipose Inhibits PTEN, thereby leading to insulin resistance and steatosis 78

miR-27 Adipose miR-27a and miR-27b inhibit adipogenesis by targeting PPARγ 61,62

miR-29 Liver/adipose/muscle Promotes insulin resistance 55,56

miR-33a/b Liver Targets CROT, CPT1a, HADHB, AMPKα, SIRT6 and IRS2 127

miR-34a Liver Contributes to insulin resistance by targeting SIRT1 50

miR-93 Adipose Contributes to insulin resistance by targeting GLUT4 128

miR-96 Liver Targets IRS-1 and impairs insulin signaling 129

miR-103/107 Liver/adipose/muscle Causes insulin resistance by targeting Cav1 63

miR-122 Liver miR-122 inhibition reduces liver steatosis; targets Gys1, Aldoa, Ccng1, P4ha1, Slc7a1/Cat1 and PTP1B 74,77

miR-126 Liver Targets IRS-1 and impairs insulin signaling 130

miR-130 Adipose Represses adipogenesis by targeting PPARγ 131

miR-143 Liver/adipose Reduces insulin sensitivity by targeting Orp8 65

miR-181a Liver Inhibition of miR-181a upregulates SIRT1 and improves insulin sensitivity 132

miR-200 Liver Downregulated by IL-6; impairs the PI3K/AKT/GSK pathway and glycogenesis 133

miR-221 Adipose Develops insulin resistance by affecting PPARα and PPARγ signaling and by targeting ADIPOR1 134

miR-223 Muscle Overexpression increases glucose uptake via inducing Glut4 expression 135

miR-320 Adipose Promotes insulin resistance 60

miR-335 Liver/adipose Induced by leptin, resistin, TNF-α and IL-6; functionally implicated in both fatty acid metabolism and lipogenesis 136

miR-378 Adipose Induced by TNF-α; directly regulates adiponectin 137

miR-494 Muscle Exacerbates insulin resistance by downregulating Slc2A4 138

miR-802 Liver Attenuates insulin sensitivity by targeting Hnf1b 139

Abbreviations: ADIPOR1, adiponectin receptor 1; Aldoa, aldolase A, fructose-bisphosphate; AMPKα, AMP kinase subunit-α; Cav1, caveolin-1; Ccng1, cyclin G1; CPT1a, carnitine palmitoyltransferase
1 A; CROT, carnitine O-octaniltransferase; GLUT4, glucose transporter type 4; GSK, glycogen synthase kinase; Gys1, glycogen synthase 1; HADHB, hydroxyacyl-CoA-dehydrogenase; Hnf1b,
hepatocyte nuclear factor 1β; Igf1r, insulin-like growth factor 1 receptor; IL-6, interleukin-6; Insr, insulin receptor; IRS-1, insulin receptor substrate 1; Irs2, insulin receptor substrate 2; MEF2C,
myocyte enhancer factor 2C; miRNA, microRNA; Orp8, oxysterol-binding protein-related proteins; P4ha1, procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), alpha 1
polypeptide; PI3K, phosphoinositide 3-kinase; Pik3ip1, PI3K-interacting protein 1; PPARγ, peroxisome proliferator-activated receptor γ; PTEN, phosphatase and tensin homolog; PTP1B, protein
tyrosine phosphatase 1B; Rictor, RPTOR independent companion of MTOR complex 2; Slc2A4, solute carrier family 2 member 4; Slc7a1/Cat1, solute carrier family 7 (cationic amino acid
transporter, y+ system), member 1; SIRT1, sirtuin 1; SIRT6, sirtuin 6; SREBP1c, sterol regulatory element-binding protein-1c; TNF-α, tumor necrosis factor α; Tsc1, tuberous sclerosis complex 1.
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data suggest that miR-122 primarily functions in the regulation of
glucose metabolism, possibly through multiple pathways.
miR-21 also has an important role in liver.72 Unsaturated fatty acids

promote nuclear factor-κB-mediated induction of miR-21. miR-21
downregulates phosphatase and tensin homolog, which represses Akt
phosphorylation in hepatocytes. Liver-specific phosphatase and tensin
homolog knockout in mice leads to insulin resistance and steatosis.78

miR-21 is upregulated in liver of rats fed a high-fat diet and in liver
biopsies of obese patients, consistent with downregulation of phos-
phatase and tensin homolog.78 Table 2 lists the miRNAs associated
with insulin resistance.8,10

Thus, considering that many miRNAs are tightly associated with the
regulation of insulin resistance through various organs in a number of
other human conditions that are affected by nutrient, metabolic and
inflammatory status, the clinical development of potential miRNA-
targeting therapeutics such as small molecules to manipulate as well as
specifically inhibit miRNA expression and functions or challenges to
ensure the specificity, efficacy and delivery strategies of therapeutic
oligonucleotides in vivo, would provide novel insights into the
therapeutic modalities and application for many diseases, particularly
type 2 diabetes and obesity.
Many miRNAs are involved in regulating insulin resistance in

various organs in a number of other human conditions that are
affected by nutrient, metabolic and inflammatory status. Hence,
the clinical development of potential therapeutics that target
miRNAs would provide novel insights into therapeutic modalities
and applications for many diseases, particularly type 2 diabetes and
obesity. Such therapeutics could manifest as small molecules that
modulate or specifically inhibit miRNA expression and/or functions.
With respect to potential therapeutic oligonucleotides, studies are
needed to address the challenges involved in ensuring the specificity,
efficacy and delivery strategies of the oligonucleotides in vivo.

CIRCULATING miRNAs AS POTENTIAL BIOMARKERS

In the biogenesis of miRNAs, each primary miRNA is transcribed by
RNA polymerase II and processed by the endonuclease Drosha to yield
a precursor miRNA (pre-miRNA) hairpin of ~ 70 nucleotides.
Subsequently, exportin-5 mediates transport of pre-miRNAs to the
cytoplasm where they are further processed by the endoribonuclease
Dicer to yield 20- to 22-nucleotide mature miRNA duplexes.
Following strand separation, each miRNA is loaded into the RNA-
induced silencing complex and binds to the 3′-untranslated region of a
target mRNA, which guides mRNA degradation or repression of
translation. Circulating miRNAs have been studied primarily as
potential blood biomarkers of cancer.79

In addition to functioning intracellularly, miRNAs are associated
with lipoprotein or bound to Argonaute-2 (the catalytic component
of the RNA-induced silencing complex) and secreted by cells
in exosomes.80 Several circulating miRNAs are protected from
endogenous RNase degradation,79 are relatively stable in blood, and
are taken up by cells. Circulating miRNAs are stable for up to ~ 24 h
when plasma is left at room temperature, whereas miRNAs expressed
exogenously in blood are rapidly degraded.79 Circulating miRNAs are
also stable when plasma is subjected to multiple freeze-thaw cycles.79

Therefore, it has been suggested that miRNAs also function as
intercellular signal transmitters.
Zampetaki et al.81 reported altered expression of plasma miR-15a,

miR-28-3p, miR-29b, miR-126 and miR-223 in patients several years
before manifestation of type 2 diabetes. Plasma samples were obtained
from a prospective population-based survey initially designed to
investigate atherosclerosis in Italy.81 Because circulating miRNAs are

stable to freezing and thawing, expression levels in blood serve as
biomarkers for predicting onset of type 2 diabetes. Another study
analyzed blood samples of 265 individuals that included patients with
metabolic syndrome, type 2 diabetes, hypercholesterolemia and
hypertension, and observed upregulation of miR-150, miR-192,
miR-27a, miR-320a and miR-375 in type 2 diabetes patients. Of
these, levels of miR-27a and miR-320a correlated strongly with fasting
glucose level.82

Nielsen et al.83 reported the first comparison of miRNA levels in
serum samples from children with or without type 1 diabetes. Those
investigators identified 12 miRNAs (miR-152, miR-30a-5p, miR-181a,
miR-24, miR-148a, miR-210, miR-27a, miR-29a, miR-26a, miR-27b,
miR-25 and miR-200a) that were differentially expressed in
patients with type 1 diabetes. Interestingly, some of the miRNAs are
associated with apoptosis (miR-24, miR-25, miR-26a, miR-181a and
miR-210)84–86 and regulation of pancreatic β cells (miR-24, miR-29a,
miR-148a and miR-200a).83

Osipova et al.87 measured miRNA levels in plasma and urine of
patients with type 1 diabetes and observed upregulation of miR-21 and
miR-210 in both fluids. In contrast, miR-126 level was reduced in
urine; notably, miR-21 has been reported to promote kidney
fibrosis.88,89 miR-126 also promotes angiogenesis by targeting
Spred-1 via modulation of MAP kinase signaling.90,91 These circulating
miRNAs may be valuable for identifying patients at high risk
of developing diabetic complications as well as being potential
therapeutic targets.

INVOLVEMENT OF miRNAs IN REGULATING GENES

ASSOCIATED WITH SUSCEPTIBILITY TO TYPE 2 DIABETES

Technology to identify genetic determinants of type 2 diabetes and
other diseases has evolved dramatically in recent years. Precise
information about single-nucleotide polymorphisms (SNPs) is now
available owing to advances in high-throughput genomic sequencing
technology and the International HapMap project (URL https://
hapmap.ncbi.nlm.nih.gov). In recent years, GWAS, which examine
SNPs across the genome, have identified more than 80 genes
associated with susceptibility to type 2 diabetes.12

Many polymorphisms implicated in type 2 diabetes susceptibility
have been reported in the noncoding regions of these susceptibility
genes.92–94 Although many genes or polymorphisms associated with
type 2 diabetes susceptibility have been identified, the mechanism(s)
by which they promote susceptibility remains unknown. Genetic
polymorphisms in the 3′-untranslated regions of mRNAs targeted
by miRNAs may destroy or create miRNA-binding sites, potentially
resulting in susceptibility to type 2 diabetes and disease development.92

On the basis of GWAS, Van de Bunt et al.13 identified miRNAs that
regulate type 2 diabetes susceptibility genes and, therefore, may
constitute part of the genetic basis for type 2 diabetes. The primary
pathophysiological feature of diabetes is insufficient insulin secretion,
and many of the identified susceptibility genes are associated with this
process. miRNAs that are typically expressed in pancreatic β cells have
been identified by RNA sequencing and compared with expression
profiles of pancreas-specific miRNAs in type 2 diabetes.13 Total RNA
was extracted from islets of six donors and analyzed by next-
generation sequencing, and 384 miRNAs were identified. Comparison
of the β-cell miRNA profile with those of other human tissues revealed
40 miRNAs that are expressed at high levels specifically in β cells.
These include miR-375, a direct regulator of insulin secretion,
miR-27b-3p and miR-192-5p, whose association with diabetes had
not been reported. Intriguingly, a large number of the genes that
were identified as potential targets of these β-cell-specific miRNAs
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(based on miRNA target prediction or an algorithm) were among
those previously identified as type 2 diabetes susceptibility genes in
GWAS. Actually, GWAS data have been intensively analysed using
the data of the diabetes genetics replication and meta-analysis
(DIAGRAM) consortium.95 Indeed, several type 2 diabetes suscept-
ibility loci identified through DIAGRAM overlapped with the genomic
region encoding islet-expressed pre-miRNAs. Although maximum
accuracy has not been attained at this point, much effort has been
expended to identify sequences recognized by miRNAs and sequences
to which miRNAs bind using algorithms such as TargetScan,
miRanda, and miRDB to predict binding sites.96–98 Most notably,
pancreatic β-cell-specific miRNA target sites were identified in type 2
diabetes susceptibility genes, such as AP3S2, CNK16, NOTCH2,
SCL30A8, VPS26A and WFS1, whose polymorphisms are associated
with decreased insulin secretion.13

SNPs occur relatively rarely in pre-miRNA sequences, having been
documented in only 10% of human pre-miRNAs, and SNPs in the
functional seed region have been identified in o1% of mature
miRNAs.99 Polymorphisms in primary miRNAs may alter secondary
structure and affect miRNA processing efficiency, which may con-
tribute to pathogenesis of type 2 diabetes.92 Ciccacci et al.100 reported
two polymorphisms in a miRNA associated with type 2 diabetes
susceptibility. The G allele of rs895819 in hsa-mir-27a exhibits a
significant protective effect, whereas the G allele of rs531564 in
hsa-mir-124a appears to be a risk allele100 that alters the secondary
structure of pri-miR-124. The latter polymorphism might alter
primary miRNA stability, efficiency of primary miRNA processing to
pre-miRNA. Furthermore, the G allele is associated with an elevated
level of mature hsa-miR-124. Finally, the rare SNP rs72631823 in
pre-miR-34a is associated with an elevated level of mature miR-34a in
pancreatic β cells, which is associated with β-cell apoptosis.101
These data support the relevance of polymorphisms in miRNAs or

miRNA-binding sites on target mRNAs to diabetes susceptibility.
Moreover, these findings suggest that miRNAs contribute, at least in
part, to the pathophysiology of diabetes. As DIAGRAM previously
focused primarily on samples from persons of European descent,
future research using samples from ethnically diverse populations will
be necessary to demonstrate the reproducibility of these results and
determine whether the findings can be applied across ethnic groups.

FUTURE PERSPECTIVES ON miRNAs IN DIABETES

Although many diagnostic markers for diabetes have been identified
and new medicines developed, the number of diabetes patients is
increasing worldwide. The number of diabetes patients continues to
increase worldwide, and hence many diagnostic markers for diabetes
have been identified and new medicines developed. Still, effective
therapeutic agents are needed for those who do not respond
adequately to current therapies. The basic approach for treatment of
diabetes with a miRNA is to normalize aberrant miRNA expression.
For example, antisense oligonucleotides can be utilized to specifically
bind miRNA sequences to prevent binding to the target; alternatively,
functionally inert miRNA-mimics can also be used that comprise the
same nucleotide sequences as the endogenous miRNA.10 The best
known therapeutic that targets a specific miRNA is miravirsen,
an antisense inhibitor of miR-122 produced to reduce hepatitis C
viral RNA levels in patients with chronic hepatitis C infection.102

Controlling pathological upregulation of miRNAs using antisense
oligonucleotides may also restore metabolic homeostasis. Inhibition
of miR-122 has been associated with improved steatosis in a mouse
model of diet-induced obesity, suggesting that miR-122 antagonism
may be useful in treating nonalcoholic fatty liver disease.74

Conventional drugs can also correct dysregulated miRNA expression.
For example, miR-29 is upregulated in liver of mice with diet-induced
insulin resistance, and the insulin-sensitizing drug pioglitazone
reverses miR-29 upregulation in the Zucker diabetic fatty rat model of
diabetes.57

CONCLUDING REMARKS

Numerous observations have deciphered a wide variety of the
functional roles of miRNAs in the pathophysiology of the metabolic
disease and diabetes mellitus, as well as in the process of establishing
and/or maintaining β-cell identity and its functions. Although
thousands of miRNAs have been identified in both mouse and
humans and a few dozen miRNAs, including even not mentioned in
this review, have been reported to be associated with diabetes, the
information concerning their precise roles is still largely veiled and
thereby should be revealed in the future. Identification of miRNA
targets is one of the most challenging tasks because a single miRNA
has hundreds of potential mRNA targets. Conversely, several different
miRNAs can cooperatively or differentially control a single mRNA
target. To render the situation even more multifaceted, it is now
established that miRNAs can have both positive and negative roles in
the regulation of gene expression and that their area of intervention on
gene expression is not limited to the cytosol, but expands to the
nucleus. Furthermore, circulating miRNAs in vivo have recently
emerged as potential biomarkers for the degree of pathophysiological
conditions such as type 1 and type 2 diabetes, regulation of pancreatic
β cells and severity of complications. These thought-provoking
features of the miRNA world are adding new layers of complexity
to mechanistic insights into the underlying pathogenesis and
susceptibility of diabetes mellitus, particularly roles in β-cell function
and insulin resistance.
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