Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mitochondrial DNA diversity of present-day Aboriginal Australians and implications for human evolution in Oceania


Aboriginal Australians are one of the more poorly studied populations from the standpoint of human evolution and genetic diversity. Thus, to investigate their genetic diversity, the possible date of their ancestors’ arrival and their relationships with neighboring populations, we analyzed mitochondrial DNA (mtDNA) diversity in a large sample of Aboriginal Australians. Selected mtDNA single-nucleotide polymorphisms and the hypervariable segment haplotypes were analyzed in 594 Aboriginal Australians drawn from locations across the continent, chiefly from regions not previously sampled. Most (~78%) samples could be assigned to mtDNA haplogroups indigenous to Australia. The indigenous haplogroups were all ancient (with estimated ages >40 000 years) and geographically widespread across the continent. The most common haplogroup was P (44%) followed by S (23%) and M42a (9%). There was some geographic structure at the haplotype level. The estimated ages of the indigenous haplogroups range from 39 000 to 55 000 years, dates that fit well with the estimated date of colonization of Australia based on archeological evidence (~47 000 years ago). The distribution of mtDNA haplogroups in Australia and New Guinea supports the hypothesis that the ancestors of Aboriginal Australians entered Sahul through at least two entry points. The mtDNA data give no support to the hypothesis of secondary gene flow into Australia during the Holocene, but instead suggest long-term isolation of the continent.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6


  1. 1

    Macaulay, V., Hill, C., Achilli, A., Rengo, C., Clarke, D., Meehan, W. et al. Single, rapid coastal settlement of Asia revealed by analysis of complete mitochondrial genomes. Science 308, 1034–1036 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Oppenheimer, S. A single southern exit of modern humans from Africa: before or after Toba? Quat. Int. 258, 88–99 (2012).

    Google Scholar 

  3. 3

    Stringer, C. Palaeoanthropology. Coasting out of Africa. Nature 405, 24–25 27 (2000).

    CAS  Google Scholar 

  4. 4

    O'Connell, J. F. & Allen, J. The process, biotic impact, and global implications of the human colonization of Sahul about 47,000 years ago. J. Archaeol. Sci. 56, 73–84 (2015).

    Google Scholar 

  5. 5

    Williams, A. N. A new population curve for prehistoric Australia. Proc. Biol. Sci. 280, 20130486 (2013).

    PubMed  PubMed Central  Google Scholar 

  6. 6

    Hudjashov, G., Kivisild, T., Underhill, P. A., Endicott, P., Sanchez, J. J., Lin, A. A. et al. Revealing the prehistoric settlement of Australia by Y chromosome and mtDNA analysis. Proc. Natl Acad. Sci. USA 104, 8726–8730 (2007).

    CAS  Google Scholar 

  7. 7

    Kayser, M., Brauer, S., Weiss, G., Schiefenhovel, W., Underhill, P. A. & Stoneking, M. Independent histories of human Y chromosomes from Melanesia and Australia. Am. J. Hum. Genet. 68, 173–190 (2001).

    CAS  Google Scholar 

  8. 8

    Pugach, I., Delfin, F., Gunnarsdottir, E., Kayser, M. & Stoneking, M. Genome-wide data substantiate Holocene gene flow from India to Australia. Proc. Natl Acad. Sci. USA 110, 1803–1808 (2013).

    CAS  PubMed  Google Scholar 

  9. 9

    Huxley, T. H. On the geographical distribution of the chief modifications of mankind. J. Ethnol. Soc. Lond. 2, 404–412 (1870).

    Google Scholar 

  10. 10

    Bellwood, P. Man's Conquest of the Pacific: The Prehistory of Southeast Asia and Oceania, (Collins, Auckland, New Zealand, 1978).

    Google Scholar 

  11. 11

    Birdsell, J in Sunda and Sahul: Prehistoric Studies in Southeast Asia, Melanesia and Australia (eds Allen, J., Golson, J. & Jones, R.) 113–167 (Academic Press, London, UK, 1977).

  12. 12

    O'Connell, J. F. & Allen, J. The restaurant at the end of the universe: mthe colonisation of Sahul. Aust. Archaeol. 74, 5–17 (2012).

    Google Scholar 

  13. 13

    Malaspinas, A. S., Westaway, M. C., Muller, C., Sousa, V. C., Lao, O., Alves, I. et al. A genomic history of Aboriginal Australia. Nature 538, 207–214 (2016).

    CAS  PubMed  Google Scholar 

  14. 14

    van Holst Pellekaan, S. Genetic evidence for the colonization of Australia. Quat. Int. 285, 44–56 (2013).

    Google Scholar 

  15. 15

    Rasmussen, M., Guo, X., Wang, Y., Lohmueller, K. E., Rasmussen, S., Albrechtsen, A. et al. An Aboriginal Australian genome reveals separate human dispersals into Asia. Science 334, 94–98 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Reich, D., Patterson, N., Kircher, M., Delfin, F., Nandineni, M. R., Pugach, I. et al. Denisova admixture and the first modern human dispersals into Southeast Asia and Oceania. Am. J. Hum. Genet. 89, 516–528 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    McEvoy, B. P., Lind, J. M., Wang, E. T., Moyzis, R. K., Visscher, P. M., van Holst Pellekaan, S. M. et al. Whole-genome genetic diversity in a sample of Australians with deep Aboriginal ancestry. Am. J. Hum. Genet. 87, 297–305 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Vandenberg, N., van Oorschot, R. A., Tyler-Smith, C. & Mitchell, R. J. Y-chromosome-specific microsatellite variation in Australian aboriginals. Hum. Biol. 71, 915–931 (1999).

    CAS  PubMed  Google Scholar 

  19. 19

    Redd, A. J., Roberts-Thomson, J., Karafet, T., Bamshad, M., Jorde, L. B., Naidu, J. M. et al. Gene flow from the Indian subcontinent to Australia: evidence from the Y chromosome. Curr. Biol. 12, 673–677 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Karafet, T. M., Mendez, F. L., Sudoyo, H., Lansing, J. S. & Hammer, M. F. Improved phylogenetic resolution and rapid diversification of Y-chromosome haplogroup K-M526 in Southeast Asia. Eur. J. Hum. Genet. 23, 369–373 (2015).

    CAS  PubMed  Google Scholar 

  21. 21

    van Holst Pellekaan, S., Frommer, M., Sved, J. & Boettcher, B. Mitochondrial control-region sequence variation in aboriginal Australians. Am. J. Hum. Genet. 62, 435–449 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    van Holst Pellekaan, S. M., Ingman, M., Roberts-Thomson, J. & Harding, R. M. Mitochondrial genomics identifies major haplogroups in Aboriginal Australians. Am. J. Phys. Anthropol. 131, 282–294 (2006).

    PubMed  Google Scholar 

  23. 23

    Redd, A. J. & Stoneking, M. Peopling of Sahul: mtDNA variation in aboriginal Australian and Papua New Guinean populations. Am. J. Hum. Genet. 65, 808–828 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Cann, R. L., Stoneking, M. & Wilson, A. C. Mitochondrial DNA and human evolution. Nature 325, 31–36 (1987).

    CAS  PubMed  Google Scholar 

  25. 25

    Stoneking, M., Jorde, L. B., Bhatia, K. & Wilson, A. C. Geographic variation in human mitochondrial DNA from Papua New Guinea. Genetics 124, 717–733 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Vigilant, L., Stoneking, M., Harpending, H., Hawkes, K. & Wilson, A. C. African populations and the evolution of human mitochondrial DNA. Science 253, 1503–1507 (1991).

    CAS  Google Scholar 

  27. 27

    Lum, J. K., Rickards, O., Ching, C. & Cann, R. L. Polynesian mitochondrial DNAs reveal three deep maternal lineage clusters. Hum. Biol. 66, 567–590 (1994).

    CAS  PubMed  Google Scholar 

  28. 28

    Betty, D. J., Chin-Atkins, A. N., Croft, L., Sraml, M. & Easteal, S. Multiple independent origins of the COII/tRNA(Lys) intergenic 9- bp mtDNA deletion in aboriginal Australians. Am. J. Hum. Genet. 58, 428–433 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Lum, J. K. & Cann, R. L. mtDNA lineage analyses: origins and migrations of Micronesians and Polynesians. Am. J. Phys. Anthropol. 113, 151–168 (2000).

    CAS  PubMed  Google Scholar 

  30. 30

    Tommaseo-Ponzetta, M., Attimonelli, M., De Robertis, M., Tanzariello, F. & Saccone, C. Mitochondrial DNA variability of West New Guinea populations. Am. J. Phys. Anthropol. 117, 49–67 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Ingman, M. & Gyllensten, U. Mitochondrial genome variation and evolutionary history of Australian and New Guinean aborigines. Genome Res. 13, 1600–1606 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Ingman, M., Kaessmann, H., Paabo, S. & Gyllensten, U. Mitochondrial genome variation and the origin of modern humans. Nature 408, 708–713 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Huoponen, K., Schurr, T. G., Chen, Y. & Wallace, D. C. Mitochondrial DNA variation in an aboriginal Australian population: evidence for genetic isolation and regional differentiation. Hum. Immunol. 62, 954–969 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Underhill, P. A., Passarino, G., Lin, A. A., Shen, P., Mirazon Lahr, M., Foley, R. A. et al. The phylogeography of Y chromosome binary haplotypes and the origins of modern human populations. Ann. Hum. Genet. 65, 43–62 (2001).

    CAS  Google Scholar 

  35. 35

    Kivisild, T., Shen, P., Wall, D. P., Do, B., Sung, R., Davis, K. et al. The role of selection in the evolution of human mitochondrial genomes. Genetics 172, 373–387 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Friedlaender, J. S., Friedlaender, F. R., Hodgson, J. A., Stoltz, M., Koki, G., Horvat, G. et al. Melanesian mtDNA complexity. PLoS ONE 2, e248 (2007).

    PubMed  PubMed Central  Google Scholar 

  37. 37

    Taylor, D., Nagle, N., Ballantyne, K. N., van Oorschot, R. A., Wilcox, S., Henry, J. et al. An investigation of admixture in an Australian Aboriginal Y-chromosome STR database. Forensic Sci. Int. Genet. 6, 532–538 (2012).

    CAS  PubMed  Google Scholar 

  38. 38

    Presser, J. C., Stoneking, M. & Redd, A. J. Tasmanian aborigines and DNA. Pap. Proc. R. Soc. Tasmania 136, 35–38 (2002).

    Google Scholar 

  39. 39

    Nagle, N., Ballantyne, K. N., van Oven, M., Tyler-Smith, C., Xue, Y., Taylor, D. et al. Antiquity and diversity of aboriginal Australian Y-chromosomes. Am. J. Phys. Anthropol. 159, 367–381 (2016).

    PubMed  Google Scholar 

  40. 40

    Bergstrom, A., Nagle, N., Chen, Y., McCarthy, S., Pollard, M. O., Ayub, Q. et al. Deep roots for Aboriginal Australian Y chromosomes. Curr. Biol. 26, 809–813 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Ballantyne, K. N., van Oven, M., Ralf, A., Stoneking, M., Mitchell, R. J., van Oorschot, R. A. et al. MtDNA SNP multiplexes for efficient inference of matrilineal genetic ancestry within Oceania. Forensic Sci. Int. Genet. 6, 425–436 (2012).

    CAS  PubMed  Google Scholar 

  42. 42

    ABS. ABoS 2011 Estimates of Aboriginal and Torres Strait Islander Australians (Australian Bureau of Statistics (ABS), Canberra, 2011).

  43. 43

    van Holst Pellekaan, S. M. Origins of the Australian and New Guinean Aborigines. Encyclopedia of Life Sciences, (John Wiley and Sons, Chichester, UK, 2008).

    Google Scholar 

  44. 44

    Behar, D. M., van Oven, M., Rosset, S., Metspalu, M., Loogvali, E. L., Silva, N. M. et al. A 'Copernican' reassessment of the human mitochondrial DNA tree from its root. Am. J. Hum. Genet. 90, 675–684 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Hiscock, P. The Archaeology of Ancient Australia, (Routledge, Sydney, NSW, Australia, 2008).

    Google Scholar 

  46. 46

    Horton, D. R. Cartographer Aboriginal Australia Wall Map (Aboriginal Studies Press, Canberra, ACT, Australia, 1996).

  47. 47

    Gomes, S. M., Bodner, M., Souto, L., Zimmermann, B., Huber, G., Strobl, C. et al. Human settlement history between Sunda and Sahul: a focus on East Timor (Timor-Leste) and the Pleistocenic mtDNA diversity. BMC Genomics. 16, 70 (2015).

    PubMed  PubMed Central  Google Scholar 

  48. 48

    de Vries, H. G., Collee, J. M., van Veldhuizen, M. H., Achterhof, L., Smit Sibinga, C. T., Scheffer, H. et al. Validation of the determination of deltaF508 mutations of the cystic fibrosis gene in over 11 000 mouthwashes. Hum. Genet. 97, 334–336 (1996).

    CAS  PubMed  Google Scholar 

  49. 49

    Andrews, R. M., Kubacka, I., Chinnery, P. F., Lightowlers, R. N., Turnbull, D. M. & Howell, N. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat. Genet. 23, 147 (1999).

    CAS  Google Scholar 

  50. 50

    Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H., Coulson, A. R., Drouin, J. et al. Sequence and organization of the human mitochondrial genome. Nature 290, 457–465 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Kloss-Brandstatter, A., Pacher, D., Schonherr, S., Weissensteiner, H., Binna, R., Specht, G. et al. HaploGrep: a fast and reliable algorithm for automatic classification of mitochondrial DNA haplogroups. Hum. Mutat. 32, 25–32 (2011).

    Google Scholar 

  53. 53

    van Oven, M. & Kayser, M. Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum. Mutat. 30, E386–E394 (2009).

    Google Scholar 

  54. 54

    Bandelt, H. J., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol 16, 37–48 (1999).

    CAS  Google Scholar 

  55. 55

    Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).

    PubMed  PubMed Central  Google Scholar 

  56. 56

    Nei, M. Molecular Evolutionary Genetics (Columbia Univ. Press, New York, NY, USA, 1987).

  57. 57

    IBM. SPSS v.21.0 for Windows (IBM, Chicago IL, 2012).

  58. 58

    Hill, C., Soares, P., Mormina, M., Macaulay, V., Clarke, D., Blumbach, P. B. et al. A mitochondrial stratigraphy for island southeast Asia. Am. J. Hum. Genet. 80, 29–43 (2007).

    CAS  Google Scholar 

  59. 59

    van Oven, M., Brauer, S., Choi, Y., Ensing, J., Schiefenhovel, W., Stoneking, M. et al. Human genetics of the Kula Ring: Y-chromosome and mitochondrial DNA variation in the Massim of Papua New Guinea. Eur. J. Hum. Genet. 22, 1393–1403 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Chen, Y.-S., Olckers, A., Schurr, T. G., Kogelnik, A. M., Huoponen, K. & Wallace, D. C. mtDNA variation in the South African Kung and Khwe and their genetic relationships to other African populations. Am. J. Hum. Genet. 66, 1362–1383 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Helgason, A., Hickey, E., Goodacre, S., Bosnes, V., Stefansson, K., Ward, R. et al. mtDNA and the islands of the North Atlantic: estimating the proportions of Norse and Gaelic ancestry. Am. J. Hum. Genet. 68, 723–737 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Forster, P., Harding, R., Torroni, A. & Bandelt, H. J. Origin and evolution of Native American mtDNA variation: a reappraisal. Am. J. Hum. Genet. 59, 935–945 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Soares, P., Ermini, L., Thomson, N., Mormina, M., Rito, T., Rohl, A. et al. Correcting for purifying selection: an improved human mitochondrial molecular clock. Am. J. Hum. Genet. 84, 740–759 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Merriwether, D. A., Hodgson, J. A., Friedlaender, F. R., Allaby, R., Cerchio, S., Koki, G. et al. Ancient mitochondrial M haplogroups identified in the Southwest Pacific. Proc. Natl Acad. Sci. USA 102, 13034–13039 (2005).

    CAS  PubMed  Google Scholar 

  65. 65

    Pierson, M. J., Martinez-Arias, R., Holland, B. R., Gemmell, N. J., Hurles, M. E. & Penny, D. Deciphering past human population movements in Oceania: provably optimal trees of 127 mtDNA genomes. Mol. Biol. Evol. 23, 1966–1975 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Tennant-Kelly, C. Tribes on Cherbourg settlement, Queensland. Oceania 5, 461–473 (1935).

    Google Scholar 

  67. 67

    Radcliffe-Brown, A. R. Former numbers and distribution of Australian Aborigines. Off. Yearbook 23, 687–696 (1930).

    Google Scholar 

  68. 68

    Mishmar, D., Ruiz-Pesini, E., Golik, P., Macaulay, V., Clark, A. G., Hosseini, S. et al. Natural selection shaped regional mtDNA variation in humans. Proc. Natl Acad. Sci. USA 100, 171–176 (2003).

    CAS  Google Scholar 

  69. 69

    Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

    CAS  PubMed  Google Scholar 

  70. 70

    Fu, Q., Mittnik, A., Johnson, P. L., Bos, K., Lari, M., Bollongino, R. et al. A revised timescale for human evolution based on ancient mitochondrial genomes. Curr. Biol. 23, 553–559 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Barker, G., Barton, H., Bird, M., Daly, P., Datan, I., Dykes, A. et al. The 'human revolution' in lowland tropical Southeast Asia: the antiquity and behavior of anatomically modern humans at Niah Cave (Sarawak, Borneo). J. Hum. Evol. 52, 243–261 (2007).

    Google Scholar 

  72. 72

    Demeter, F., Shackelford, L. L., Bacon, A. M., Duringer, P., Westaway, K., Sayavongkhamdy, T. et al. Anatomically modern human in Southeast Asia (Laos) by 46 ka. Proc. Natl Acad. Sci. USA 109, 14375–14380 (2012).

    CAS  PubMed  Google Scholar 

  73. 73

    Kayser, M., Choi, Y., van Oven, M., Mona, S., Brauer, S., Trent, R. J. et al. The impact of the Austronesian expansion: evidence from mtDNA and Y chromosome diversity in the Admiralty Islands of Melanesia. Mol. Biol. Evol. 25, 1362–1374 (2008).

    CAS  Google Scholar 

  74. 74

    Chandrasekar, A., Kumar, S., Sreenath, J., Sarkar, B. N., Urade, B. P., Mallick, S. et al. Updating phylogeny of mitochondrial DNA macrohaplogroup m in India: dispersal of modern human in South Asian corridor. PLoS ONE 4, e7447 (2009).

    PubMed  PubMed Central  Google Scholar 

  75. 75

    Kumar, S., Ravuri, R. R., Koneru, P., Urade, B. P., Sarkar, B. N., Chandrasekar, A. et al. Reconstructing Indian-Australian phylogenetic link. BMC Evol. Biol. 9, 173 (2009).

    PubMed  PubMed Central  Google Scholar 

  76. 76

    Greer, S., Henry, R. & McIntyre-Tamwoy, S. Mainland magic: interpreting cultural influences across Cape York–Torres Strait. Quat. Int. 385, 69–78 (2015).

    Google Scholar 

  77. 77

    Tabbada, K. A., Trejaut, J., Loo, J. H., Chen, Y. M., Lin, M., Mirazon-Lahr, M. et al. Philippine mitochondrial DNA diversity: a populated viaduct between Taiwan and Indonesia? Mol. Biol. Evol. 27, 21–31 (2010).

    CAS  Google Scholar 

  78. 78

    Jones, R. Tasmanian archeology: establishing the sequences. Annu. Rev. Anthropol. 24, 423–446 (1995).

    Google Scholar 

  79. 79

    Delfin, F., Min-Shan Ko, A., Li, M., Gunnarsdottir, E. D., Tabbada, K. A., Salvador, J. M. et al. Complete mtDNA genomes of Filipino ethnolinguistic groups: a melting pot of recent and ancient lineages in the Asia-Pacific region. Eur. J. Hum. Genet. 22, 228–237 (2014).

    CAS  PubMed  Google Scholar 

  80. 80

    Heyer, E., Georges, M., Pachner, M. & Endicott, P. Genetic diversity of four Filipino Negrito populations from Luzon: comparison of male and female effective population sizes and differential integration of immigrants into Aeta and Agta communities. Hum. Biol. 85, 189–208 (2013).

    CAS  PubMed  Google Scholar 

  81. 81

    Friedlaender, J., Schurr, T., Gentz, F., Koki, G., Friedlaender, F., Horvat, G. et al. Expanding Southwest Pacific mitochondrial haplogroups P and Q. Mol. Biol. Evol. 22, 1506–1517 (2005).

    CAS  PubMed  Google Scholar 

  82. 82

    Chappell, J. Sea level changes forced ice breakouts in the Last Glacial cycle: new results from coral terraces. Q. Sci. Rev. 21, 1229–1240 (2002).

    Google Scholar 

  83. 83

    Lambeck, K. & Chappell, J. Sea level change through the last glacial cycle. Science 292, 679–686 (2001).

    CAS  PubMed  Google Scholar 

  84. 84

    Kayser, M., Brauer, S., Weiss, G., Schiefenhövel, W., Underhill, P., Shen, P. et al. Reduced Y-chromosome, but not mitochondrial DNA, diversity in human populations from West New Guinea. Am. J. Genet. 72, 281–302 (2003).

    CAS  Google Scholar 

  85. 85

    Glover, I. C. & Presland, G. in Recent Advances in Indo-Pacific Prehistory (eds Misra, V. N. & Bellwood, P.) 185–195 (Oxford and IBH, New Delhi, India, 1985).

  86. 86

    Gollan, K. in Recent Advances in Indo-Pacific Prehistory (eds Misra, V. N. & Bellwoood, P.) 439–443 (Oxford and IBH, New Delhi, India, 1985).

  87. 87

    Dixon, R. M. W. The Languages of Australia, (Cambridge University Press, New York, NY, 1980).

    Google Scholar 

  88. 88

    Brown, P. Palaeoanthropology: of humans, dogs and tiny tools. Nature 494, 316–317 (2013).

    CAS  PubMed  Google Scholar 

  89. 89

    Reesink, G., Singer, R. & Dunn, M. Explaining the linguistic diversity of Sahul using population models. PLoS Biol. 7, e1000241 (2009).

    PubMed  PubMed Central  Google Scholar 

  90. 90

    Ardalan, A., Oskarsson, M., Natanaelsson, C., Wilton, A. N., Ahmadian, A. & Savolainen, P. Narrow genetic basis for the Australian dingo confirmed through analysis of paternal ancestry. Genetica 140, 65–73 (2012).

    PubMed  PubMed Central  Google Scholar 

  91. 91

    Crowther, M. S., Fillios, M., Colman, N. & Letnic, M. An updated description of the Australian dingo (Canis dingo Meyer, 1793). J. Zool. 293, 192–203 (2014).

    Google Scholar 

  92. 92

    Fillios, M. A. & Taçon, P. S. C. Who let the dogs in? A review of the recent genetic evidence for the introduction of the dingo to Australia and implications for the movement of people. J. Archaeol. Sci. 7, 782–792 (2016).

    Google Scholar 

  93. 93

    Oskarsson, M. C., Klutsch, C. F., Boonyaprakob, U., Wilton, A., Tanabe, Y. & Savolainen, P. Mitochondrial DNA data indicate an introduction through Mainland Southeast Asia for Australian dingoes and Polynesian domestic dogs. Proc. Biol. Sci. 279, 967–974 (2012).

    PubMed  Google Scholar 

  94. 94

    Savolainen, P., Leitner, T., Wilton, A. N., Matisoo-Smith, E. & Lundeberg, J. A detailed picture of the origin of the Australian dingo, obtained from the study of mitochondrial DNA. Proc. Natl Acad. Sci. USA 101, 12387–12390 (2004).

    CAS  PubMed  Google Scholar 

  95. 95

    Smith, B. P. & Litchfield, C. A. A review of the relationship between Indigenous Australians, Dingoes (Canis dingo) and domestic dogs (Canis familiaris). Anthrozoos 22, 111–128 (2009).

    Google Scholar 

  96. 96

    Milham, P. & Thompson, P. Relative antiquity of human occupation and extinct fauna at Madura Cave, southeastern Western Australia. Mankind 10, 175–180 (1976).

    Google Scholar 

  97. 97

    McBryde, I. Coast and Estuary: Archaeological Investigations on the North Coast of New South Wales at Wombah and Schnapper Point, (Australian Institute of Aboriginal Studies, Canberra, 1982).

    Google Scholar 

  98. 98

    Mulvaney, D., Lawton, G., Twidaie, C., Macintosh, N., Mahoney, J. & Wakefield, N. Archaeological excavation of rock shelter no. 6 Fromm's Landing, South Australia. Proc. R. Soc. Vic. 77, 479–516 (1964).

    Google Scholar 

Download references


This work was supported by National Geographic Society, IBM, Waitt Family Foundation. We gratefully acknowledge the participation of Aboriginal Australians from Victoria, Queensland, the Northern Territory, South Australia, Western Australia and Tasmania whose collaboration made this study possible. We owe Tammy Williams and Jason Tatipata many thanks for their support throughout this study. We also thank the jurisdictional forensic departments for access to their samples. YLX and CTS were supported by The Wellcome Trust (098051), and MK, MvO and KNB were supported by Erasmus MC.

Author information




Corresponding author

Correspondence to R John Mitchell.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Syama Adhikarla11, Christina J Adler12, Elena Balanovska13, Oleg Balanovsky13, Jaume Bertranpetit14, Andrew C Clarke15, David Comas14, Alan Cooper12, Clio SI Der Sarkissian12, Matthew C Dulik, Jill B Gaieski, ArunKumar GaneshPrasad11, Wolfgang Haak12, Marc Haber14,16, Angela Hobbs17, Asif Javed18, Li Jin19, Matthew E Kaplan20, Shilin Li19, Begoña Martínez-Cruz14, Elizabeth A Matisoo-Smith15, Marta Melé14, Nirav C Merchant20, Amanda C Owings, Laxmi Parida18, Ramasamy Pitchappan11, Daniel E Platt18, Lluis Quintana-Murci21, Colin Renfrew22, Ajay K Royyuru18, Arun Varatharajan Santhakumari11, Fabrício R Santos23, Himla Soodyall17, David F Soria Hernanz24, Pandikumar Swamikrishnan25, Miguel G Vilar24, R Spencer Wells16, Pierre A Zalloua26 and Janet S Ziegle26, 11Madurai Kamaraj University, Madurai, Tamil Nadu, India;12University of Adelaide, South Australia, Australia; 13Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow, Russia; 14Universitat Pompeu Fabra, Barcelona, Spain; 15University of Otago, Dunedin, New Zealand; 16Lebanese American University, Chouran, Beirut, Lebanon; 17National Health Laboratory Service, Johannesburg, South Africa; 18IBM, Yorktown Heights, NY, USA; 19Fudan University, Shanghai, China; 20University of Arizona, Tucson, AZ, USA; 21Institut Pasteur, Paris, France; 22University of Cambridge, Cambridge, United Kingdom; 23Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; 24National Geographic Society, Washington, DC, USA; 25IBM, Somers, NY, USA and 26Applied Biosystems, Foster City, CA, USA.

Supplementary Information accompanies the paper on Journal of Human Genetics website

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nagle, N., Ballantyne, K., van Oven, M. et al. Mitochondrial DNA diversity of present-day Aboriginal Australians and implications for human evolution in Oceania. J Hum Genet 62, 343–353 (2017).

Download citation

Further reading


Quick links