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Gene–environment interactions in obesity: implication
for future applications in preventive medicine

Sho Nakamura1, Hiroto Narimatsu2,3, Hidenori Sato4, Ri Sho2, Katsumi Otani2, Ryo Kawasaki2,
Shigeru Karasawa5, Makoto Daimon6, Hidetoshi Yamashita7, Isao Kubota8, Yoshiyuki Ueno9, Takeo Kato5,
Takashi Yoshioka1, Akira Fukao2 and Takamasa Kayama10

Obesity is associated with environmental factors; however, information about gene–environment interactions is lacking. We aimed

to elucidate the effects of gene–environment interactions on obesity, specifically between genetic predisposition and various

obesity-related lifestyle factors, using data from a population-based prospective cohort study. The genetic risk score (GRS)

calculated from East Asian ancestry single-nucleotide polymorphisms was significantly associated with the body mass index

(BMI) at baseline (Po0.001). Significant gene–environment interactions were observed for six nutritional factors, alcohol intake,

metabolic equivalents-hour per day and the homeostasis model assessment ratio. The GRS altered the effects of lifestyle factors

on BMI. Increases in the BMI at baseline per unit intake for each nutritional factor differed depending on the GRS. However, we

did not observe significant correlations between the GRS and annual changes in BMI during the follow-up period. This study

suggests that the effects of lifestyle factors on obesity differ depending on the genetic risk factors. The approach used to

evaluate gene–environment interaction in this study may be applicable to the practice of preventive medicine.
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INTRODUCTION

The World Health Organization defines overweight and obesity
as a body mass index (BMI) ⩾ 25 and ⩾ 30 kgm− 2, respectively.1

Overweight and obese people have a significantly higher mortality rate
than those with normal weight owing to various health disorders.2–5

Therefore, preventing overweight and obesity will decrease the onset of
these diseases’ associated adverse effects. Furthermore, decreasing the
obese population will lower medical costs. The estimated annual costs
of overweight and obesity are $498 and $1630 per capita, respectively.6

Obesity is associated with environmental factors, such as dietary
intake and physical activity, as well as genetic factors.1,7 Obesity is due
to an increase in total energy intake, although the precise contribu-
tions of nutrients (for example, carbohydrates, fat, protein and fiber)
are not fully understood.8 Low physical activity and a sedentary
lifestyle exacerbate obesity.8 Speliotes et al.9 performed a meta-analysis
of large genome-wide association studies (GWAS) and extracted
genome-wide significant single-nucleotide polymorphisms (SNPs)
representing 32 loci on BMI-related genes.9 The genetic risk score
(GRS) indicates a genetic predisposition to obesity, and is calculated
from these SNPs. Several studies have investigated gene–environment

interactions using the GRS. The GRS and the consumption of sugar-
sweetened beverages and fried foods are reported to be associated with
obesity.10–12 However, associations between the GRS and dietary
factors besides sugar-sweetened beverages and fried foods remain
unclear.13 Several studies have reported an association between the
GRS and physical activity.14–16 Hence, further information about
gene–environment interactions will promote the establishment of an
effective prevention method against obesity.
Elucidating gene–environment interactions with more extensive

environmental factors enables the determination of individualized
and detailed risks for the development of obesity. Such personalized
prevention may reduce the risk of obesity more effectively than
generalized prevention methods. Prospective cohort studies are a
useful way to accurately determine gene–environment interactions,
mainly because of reduced bias.17 Thus, such studies that precisely
evaluate the risks of obesity are anticipated.
As part of the Yamagata Study (Takahata),18–20 the present study

examined the risk of obesity and gene–environment interactions using
the GRS. The GRS was calculated based on known SNPs representing
29 loci associated with BMI at baseline, and longitudinal data on
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changes in BMI, along with dietary intake, physical activity and
smoking status.21

MATERIALS AND METHODS

Study population
Takahata City is 300 km north of Tokyo, Japan; its population over 40 years of
age was 15 244 in 2010. The Yamagata Study (Takahata) is a population-based
cohort study of Japanese people over 40 years that aims to clarify risk factors for
certain lifestyle-related diseases such as diabetes and obesity. The baseline
survey of 3522 participants was conducted from 2004 to 2006.18–20 Among
them, 2124 participants completed the follow-up survey in 2011, 5–7 years after
the baseline survey. This study was approved by the Ethics Committee of the
Yamagata University School of Medicine, and written informed consent was
obtained from all participants.

Assessment of BMI and lifestyle factors
Weight and height were measured by an examiner and used to calculate BMI
(kgm− 2). BMI o18.5, 18.5–24.99 and ⩾ 25 kgm− 2 were classified as under-
weight, normal weight and overweight, respectively.22 The change in BMI
(kg·m− 2·year− 1) of each participant was calculated by subtracting the BMI at
the follow-up survey from that at baseline, and divided by the number of years
of follow-up. Underweight or overweight participants at baseline were excluded
when assessing the change in BMI. Other characteristics of the Yamagata Study
(Takahata) have been described in detail elsewhere.18–20

Characteristics besides BMI, such as the fasting plasma glucose and fasting
serum insulin levels, were also analyzed. The homeostasis model assessment
ratio (HOMA-R) was calculated from fasting plasma glucose and fasting serum
insulin levels. It was only calculated for participants with fasting plasma glucose
levels o140mg dl− 1 to improve precision.23 The Brinkman index was
calculated as the number of cigarettes smoked per day multiplied by the
number of smoking years.24

Daily nutritional intake status was assessed using the brief self-administered
diet history questionnaire, which involves the recollection of dietary habits over
1 month.25 We evaluated the daily nutrition intake in grams. Physical activity
status was assessed using the Japan Arteriosclerosis Longitudinal Study Physical
Activity Questionnaire, which allows total and activity-specific energy to be
quantified in metabolic equivalents-hours per day (METs-h day− 1).26

Genotyping and imputation
A total of 1620 DNA samples were extracted from blood samples. SNP
genotyping was performed using Infinium 660W BeadChip (Illumina, San
Diego, CA, USA). SNPs with a minor allele frequency of o0.5% and a call rate
of o95% were excluded. Genotype imputation was subsequently performed
using the MACH-Admix program27 with 194 ASN (68 CHB, 25 CHS, 84 JPT
and 17 MXL) reference genotyped data from the 1000 Genomes Project
(released August 2010). The final genotyped or imputed set of SNPs known to
be associated with BMI comprised 1620 participants from 10 524 403 imputed
autosomal markers. (Supplementary Figure S1).

Genetic risk score
The GRS was calculated from β coefficients of 29 SNPs reported by Lu et al.21

in an East Asian population using a previously reported weighting method, as
our cohort participants were Japanese.21,28 In brief, the GRS was calculated by
multiplying the number of the effect alleles (0, 1 or 2) at each locus by the
β coefficient of that SNP obtained from the previous GWAS, summing those
values, dividing by 1.78 (the maximum allowable sum of the β coefficients), and
then multiplied by 58 (twice the number of alleles). Each point of this GRS
corresponded to one risk allele.

Statistical analysis
The exact test of the Hardy–Weinberg equilibrium was performed for each SNP
with the ‘hwexact’ function from the ‘hwde’ package in R.29 Multivariate linear
regression models were constructed to estimate the effect of the GRS, and other
lifestyle factors on BMI at baseline, and the change in BMI. The outcomes were
baseline BMI or the change in BMI, and the explanatory variable was GRS, with

the following covariates: model 0: age, age2 and sex; model 1: age, age2, sex,
METs-h day− 1, energy intake and HOMA-R; and model 2: age, age2, sex,
METs-h day− 1, Brinkman index, alcohol intake, carbohydrate intake, animal
and vegetable fat intake, animal and vegetable protein intake, fiber intake and
HOMA-R. Additionally, BMI at baseline was included as a covariate in
regression model 3, which was analyzed only for the change in BMI. We
calculated standardized β coefficients of the GRS, age, sex and lifestyle factors to
compare the relative effects of these factors. Regression model 2 was also used
to estimate the associations between BMI at baseline and lifestyle factors in a
subgroup stratified according to the tertiles of the GRS. In this analysis, the
gene–environment interactions between the GRS and each lifestyle factor were
tested for their effects on BMI by including the respective interaction terms in
the models (for example, GRS (as continuous variable)× energy intake).
Because these models test the hypothesis that the GRS modifies the effects of
the environmental factors, they are not adjusted for GRS per se. This is because
the GRS cannot modify the effect of the environmental factors on its own. For
example, genetic risk itself does not increase BMI; however, each individual’s
intake of energy or nutrition does. All P-values are two-sided; the level of
significance was set at Po0.05. Statistical analyses were performed with
R software version 3.0.2 (R Foundation for Statistical Computing, Vienna,
Austria).

RESULTS

Characteristics of the Yamagata Study (Takahata)
The study profile is shown in Figure 1. A total of 1620 participants
with a median age of 62 years (range, 40–87 years) were analyzed; they
included 726 (44.8%) men and 894 (55.2%) women with median ages
of 63 years (range, 40–87 years) and 61 years (range, 40–83 years),
respectively. The change in BMI was analyzed in 708 participants,
including 324 (45.8%) men and 384 (54.2%) women. The mean (SD)
BMI at baseline was 23.4 (3.1) kgm− 2, and the mean annual change
in BMI was − 0.017 (0.223) kgm−2. Of 708 participants whose change
in BMI was analyzed, 56 (7.9%) became overweight or obese and 23
(3.2%) became underweight. The mean GRS was 26.1 (3.9). The
genotype distributions and allele frequencies of the SNPs are shown in
Supplementary Table 1.

Effect of the GRS on BMI
The effect of the GRS on BMI at baseline per increment of
one risk allele is shown in Table 1. In the regression model adjusted
for age, age2 and sex (model 0 in Table 1), BMI at baseline increased
0.12 kgm−2 per increment of one risk allele. The associations between
the GRS and the BMI at baseline were significant in all models
(Po0.001), indicating a direct association between the GRS and the
BMI at baseline.

Effects of lifestyle factors
Table 2 shows the results of multivariate linear regression models used
to compare the standardized β coefficients of the GRS, age and lifestyle
factors. The multivariate linear regression model evaluating factors,
including nutrition, showed that the GRS, age and HOMA-R were
significantly associated with the BMI at baseline (model fit: adjusted
R2, 0.207, Po0.001).

Lifestyle factors and BMI according to the GRS tertile
Figure 2 shows the BMI at baseline associated with the increments of
lifestyle factors in subgroups stratified according to the GRS tertile.
Significant gene–environment interactions were observed for all six
nutritional factors, METs-h day− 1, HOMA-R (all Po0.001 for inter-
action) and alcohol intake (P= 0.014, details are shown in
Supplementary Table S2). The BMI at baseline was significantly
higher in the highest tertile for the increment of fiber intake
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(0.15 kgm− 2 g− 1; P= 0.01). In contrast, the BMI at baseline was
significantly lower in the highest tertile for the increment of vegetable
fat intake (−0.05 kgm− 2 g− 1; P= 0.04) and animal protein intake
(−0.05 kgm− 2 g− 1; P= 0.005). In particular, the intake of 1 g
of fiber was associated with a BMI at baseline of 0.01 kgm− 2

(95% confidence interval (CI): − 0.08, 0.10), − 0.02 kgm− 2 (95%
CI: − 0.10, 0.07) and 0.15 kgm− 2 (95% CI: 0.04, 0.26) for the first,
second and third GRS tertiles, respectively.

Changes in BMI according to longitudinal observations
The effect of the GRS on the change in BMI per increment of one risk
allele was − 0.001 (model 0 in Table 1). The GRS was not significantly

associated with the change in BMI from baseline in any model
(models 0–3 in Tables 1 and 2). The multivariate linear regression
model evaluating factors, including nutrition (models 2 and 3 in
Table 2), showed that only the BMI at baseline was significantly
associated with a change in BMI (standardized β coefficient, − 0.134,
P= 0.001); the adjusted R2 for the model fit was 0.042 (Po0.001). The
findings regarding the change in BMI did not differ after including
underweight and overweight participants at baseline.

DISCUSSION

Because we corroborated the effect of gene–environment interactions
on the risk of obesity, this study demonstrated the applicability of
applying the previous results of GWAS to preventive medicine. The
GRS of participants of the Yamagata Study (Takahata) was associated
with obesity, which is consistent with the GRS from previous large-
scale GWAS.9,10,30,31

The present study indicates that genomic information from
previous large-scale GWAS can be used to evaluate the genetic risk
of obesity. This approach is inexpensive, as it involves only typing
approximately 20–30 SNPs. Moreover, it also enables the assessment
of gene–environment interactions. As GWAS that utilize case–control
designs and environmental factors are not taken into account,32 it is
difficult to assess the effects of environmental factors on developing
disease.33 Accordingly, gene–environment interactions can be assessed
in the same manner as in the present study. Gene–environment
interactions have an important role in the etiology of common
diseases.8,34 Thus, they would have a substantial role in the develop-
ment of personalized preventive medicine for common diseases.
The results of this study advance the possibility of using the GRS

in the practice of preventive medicine. Incorporating the field of
gene–environment interactions in preventive medicine involves con-
sidering how genetic factors modify the effects of lifestyle factors on

Table 1 Increase in BMI per increment of one risk allele

Increase in BMIa

Regression model BMI at baselineb Change in BMIc

Model 0d 0.115 (0.020) −0.0005 (0.0021)

Model 1e 0.100 (0.019) 0.0006 (0.0022)

Model 2f 0.098 (0.019) 0.0006 (0.0022)

Abbreviation: BMI, body mass index.
aData are β coefficients (standard of error). Data were derived from general linear regression
models. Lifestyle factors were assessed at baseline.
bThe P-value of the genetic risk score (GRS) was o0.001 in all models. The analysis included
1620 participants for model 0, and 1509 participants for models 1 and 2.
cThe annual change in BMI (kg·m−2·year−1) was calculated by subtracting the BMI at baseline
from that at the follow-up survey, and dividing by the number of follow-up years of each
individual. The GRS was not a significant factor in any model. The analysis included 780
participants for model 0, and 670 participants for models 1 and 2.
dData were adjusted for age, age2 and sex.
eData were adjusted for age, age2, sex, metabolic equivalents-hours per day, energy intake and
homeostasis model assessment ratio (HOMA-R).
fData were adjusted for age, age2, sex, metabolic equivalents (hours per day), carbohydrate
intake, animal and vegetable fat intake, animal and vegetable protein intake, fiber intake, the
Brinkman index, alcohol intake and HOMA-R.

Figure 1 Flowchart of participants enrolled in the Yamagata Study (Takahata).1HOMA-R, homeostasis model assessment ratio. 2The change in body mass
index (BMI) (kg·m−2·year−1) was calculated by subtracting the BMI at baseline from that at the follow-up survey, and dividing by the number of years of
follow-up of each individual.
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obesity in interventions.34,35 In the present study, there were
significant interactions between the GRS and several lifestyle factors.
Furthermore, an increase in BMI at baseline in association with
incremental increases in lifestyle factors differed among GRS tertiles;
participants in some of the GRS tertiles exhibited significant differ-
ences in BMI at baseline, indicating differences in the effects of
intervention with respect to the GRS. For example, BMI at baseline
was significantly higher in association with the per gram increase of
fiber intake; however, per gram increases in vegetable fat and animal
protein intake resulted in a lower BMI at baseline in the third GRS
tertile. In the first GRS tertile, a higher amount of smoking was
associated with a lower BMI at baseline, and high carbohydrate intake
and sedentary lifestyle tended to be associated with a higher BMI at
baseline.
The present findings will aid in the development and administration

of personalized preventive medicine because the GRS enables the
selection of optimal lifestyle factors that are expected to strongly
influence obesity as intervention targets. This also improves the
efficiency of the use of health-care resources, as specific lifestyle
factors can be targeted in contrast to generalized comprehensive
interventions. Although our results demonstrate interactions between
genetic and environmental factors, they do not confirm causal
relationships. Notably, lifestyle was only obtained at baseline analysis.
Therefore, we emphasize the need for additional studies before our
results can be put to practical use. In particular, our data regarding
dietary fiber intake are inconsistent with those of previous studies,
which indicate a decrease in weight.36–38 The BMI at baseline was
directly associated with the GRS, suggesting that participants with a
higher GRS had a higher BMI; thus, participants with a higher GRS
may be more likely to receive interventions, resulting in a higher
dietary fiber intake. Another possible reason for this discrepancy is
that dietary fiber intake was insufficient to control weight among
participants with a higher GRS. Furthermore, although there are
several types of fibers, they were not differentiated in the analysis.
Finally, there may be an unknown confounding factor(s) in foods
containing fiber. These findings may also explain other discrepancies
between the present and previous studies, including those with respect
to vegetable fat and animal protein intake. Furthermore, we could not
replicate previous results with respect to physical activity.14,15 Rando-
mized intervention studies according to genetic predisposition must be
conducted to resolve these discrepancies and clarify gene–environment
interactions.
The present study revealed an association between the GRS and the

BMI at baseline as well as the effects of gene–environment interactions
on obesity. In contrast, there was no significant relationship between
the GRS and the changes in BMI according to longitudinal observa-
tions. This can be explained as follows: first, the GRS may be an
insufficient measure of the risk of changes in BMI. In previous GWAS,
the cross-sectional baseline BMI was the dependent variable used to
calculate the GRS; hence, the GRS reflects the genetic risk of cross-
sectional BMI, not changes to BMI. However, the genetic risk of
changes to BMI would be more relevant to the field of preventive
medicine. If the GWAS were conducted to analyze changes in BMI
using longitudinal data, particularly data from adolescents, it may be
possible to detect new loci other than those described herein. The
existence of such loci would indicate a biological pathway responsible
for changes in BMI that is distinct from currently recognized
biological pathways, and is responsible for the cross-sectional or
acquired BMI. This is further supported by the fact that an increase in
BMI induces epigenetic changes.39 Nevertheless, additional research is
required to clarify this aspect. Second, the change in BMI was small, asT
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only adults were included. Increases in BMI and the effects of obesity
susceptibility genes are greater in adolescence than in adulthood;
accordingly, peak BMI occurs at approximately 55 and 60 years in
men and women, respectively.2,40,41 All participants of the Yamagata
Study (Takahata) were older than 40 years (median, 62 years).
Therefore, the change in BMI was negligible; the mean annual change
in BMI among all participants was − 0.017 (0.223). Third, this study
recruited participants who opted to undergo health examinations.
Therefore, the increase in BMI may have been skewed as a result of
health-care interventions prompted by the examination. Nevertheless,
the main limitation of assessing changes in BMI remains the lack of
statistical power due to a small sample size.
The major strength of this study is that we evaluated gene–

environment interactions with respect to the risk of obesity onset
using more environmental factors than previous studies. This also
afforded useful findings for the development of personalized pre-
ventive medicine. However, the statistical power of the analysis was
insufficient owing to the small number of subjects, as only 1620
individuals participated. The 95% CIs in the figures overlapped among
GRS tertiles, whereas some tertiles exhibited significant increases in

BMI (Figure 2). Thus, a larger sample size would provide clearer and
more significant findings, especially regarding factors with significant
P-values for interactions. Limitations with respect to the small sample
size can be overcome by combining several ongoing large-scale
genomic cohort studies in Japan,42–44 including our own,42 which
together comprise of over 100 000 subjects. There are additional issues
that warrant attention. First, although validated methods were used to
assess nutrition and physical activity, they were self-reported.25,26

Therefore, self-reporting bias may have affected the results. Second,
unrecognized variables may have more substantial effects on obesity.
The results indicate that the GRS is unable to explain 42% of the
variation in the BMI at baseline. Even after including age, sex, lifestyle
factors and HOMA-R as covariates, the results only explain approxi-
mately 30% of the observed variation. The residual variation can be
explained by unrecognized factors, specifically unknown rare
variants45 that have large effect sizes as well as geological, climatic
and cultural factors. Cultural factors and socioeconomic status shape
obesogenic environments.46 Other factors of obesogenic environments
include an urban or rural residence, residential or commercial
surroundings, distance to grocery stores, accessibility to public

Figure 2 BMI at baseline associated with each lifestyle factor according to the tertiles of GRS. GRS, genetic risk score. Data are effect sizes (β coefficients
(95% confidence intervals)) of the increments of lifestyle factors on body mass index (BMI) stratified according to the GRS tertile. The median scores in the
first (T1), second (T2) and third (T3) tertiles were 21.8 (range, 14.5–24.3; n=503), 26.0 (range, 24.3–27.7; n=511) and 30.4 (range, 27.8–42.3;
n=495), respectively. Data were adjusted for age; age2; sex; metabolic equivalents (METs)-h day−1; the Brinkman index; the homeostasis model assessment
ratio (HOMA-R); and alcohol, carbohydrate, animal fat, vegetable fat, animal protein, vegetable protein and fiber intake. P-values are for interactions. Bars
indicate 95% confidence intervals. When the analysis was further adjusted for GRS, P-values for each calculation were as follows: carbohydrate intake,
P=0.206; animal protein intake, P=0.265; vegetable protein intake, P=0.108; animal fat intake, P=0.094; vegetable fat intake, P=0.130; fiber intake,
P=0.041; alcohol intake, P=0.536; METs-h day−1, P=0.042; Brinkman index, P=0.608; HOMA-R, P=0.230.
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transportation and frequency of automobile use, among others. These
variables should be explored in future studies.
In conclusion, our study showed that evaluating gene–environment

interactions using known genetic information can be applied to
personalized preventive medicine. Future studies will be aimed at
discovering new obesity susceptibility loci and their SNPs, including
rare variants, and consequently unveiling genetic architecture. Such
investigations will elucidate new biological pathways, especially path-
ways affecting changes in BMI, and increase the accuracy of the GRS.
The findings of these studies, combined, will establish practical
personalized preventive medicine.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

This work was supported by KAKENHI (Grant-in-Aid for Challenging
Exploratory Research, grant no.: 25560363) to HN. We would like to thank
Editage (www.editage.com) for English language editing.

1 World Health Organization: Fact Sheet No. 311 Obesity and overweight (2015).
http://www.who.int/mediacentre/factsheets/fs311/en/. Accessed 25 July 2015.

2 Ng, M., Fleming, T., Robinson, M., Thomson, B., Graetz, N., Margono, C. et al. Global,
regional, and national prevalence of overweight and obesity in children and adults
during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013.
Lancet 384, 766–781 (2014).

3 Taylor, A. E., Ebrahim, S., Ben-Shlomo, Y., Martin, R. M., Whincup, P. H., Yarnell, J.
W. et al. Comparison of the associations of body mass index and measures of central
adiposity and fat mass with coronary heart disease, diabetes, and all-cause mortality: a
study using data from 4 UK cohorts. Am. J. Clin. Nutr. 91, 547–556 (2010).

4 Berrington de Gonzalez, A., Hartge, P., Cerhan, J. R., Flint, A. J., Hannan, L., Maclnnis,
R. J. et al. Body-mass index and mortality among 1.46 million white adults. N. Engl. J.
Med. 363, 2211–2219 (2010).

5 Zheng, W., McLerran, D. F., Rolland, B., Zhang, X., Inoue, M., Matsuo, K. et al.
Association between body-mass index and risk of death in more than 1 million Asians.
N. Engl. J. Med. 364, 719–729 (2011).

6 Tsai, A. G., Williamson, D. F. & Glick, H. A. Direct medical cost of overweight and
obesity in the USA: a quantitative systematic review. Obes. Rev. 12, 50–61 (2011).

7 Kopelman, P. G. Obesity as a medical problem. Nature 404, 635–643 (2000).
8 Qi, L. & Cho, Y. A. Gene-environment interaction and obesity. Nutr. Rev. 66,

684–694 (2008).
9 Speliotes, E. K., Willer, C. J., Berndt, S. I., Monda, K. L., Thorleifsson, G., Jackson, A.

U. et al. Association analyses of 249,796 individuals reveal 18 new loci associated with
body mass index. Nat. Genet. 42, 937–948 (2010).

10 Qi, Q., Chu, A. Y., Kang, J. H., Jenson, M. L., Curhan, G. C., Pasquale, L. R. et al.
Sugar-sweetened beverages and genetic risk of obesity. N. Engl. J. Med. 367,
1387–1396 (2012).

11 Barrio-Lopez, M. T., Martinez-Gonzalez, M. A., Fernandez-Montero, A., Buenza, J. J.,
Zazpe, I. & Bes-Rastrollo, M. Prospective study of changes in sugar-sweetened beverage
consumption and the incidence of the metabolic syndrome and its components: the
SUN cohort. Br. J. Nutr. 110, 1722–1731 (2013).

12 Qi, Q. B., Chu, A. Y., Kang, J. H., Huang, J. Y., Rose, L. M., Jensen, M. K. et al.
Fried food consumption, genetic risk, and body mass index: gene-diet interaction
analysis in three US cohort studies. BMJ 348, g1610 (2014).

13 Rukh, G., Sonestedt, E., Melander, O., Hedblad, B., Wirfalt, E., Ericson, U. et al.
Genetic susceptibility to obesity and diet intakes: association and interaction analyses
in the Malmö Diet and Cancer Study. Genes Nutr. 8, 535–547 (2013).

14 Qi, Q., Li, Y., Chomistek, A. K., Kang, J. H., Curhan, G. C., Pasquale, L. R. et al.
Television watching, leisure time physical activity, and the genetic predisposition in
relation to body mass index in women and men. Circulation 126, 1821–1827 (2012).

15 Li, S., Zhao, J. H., Luan, J., Eklund, U., Luben, R. N., Khaw, K. T. et al. Physical
activity attenuates the genetic predisposition to obesity in 20,000 men and women
from EPIC-Norfolk prospective population study. PLoS Med. 7, e1000332 (2010).

16 Kilpelainen, T. O., Qi, L., Brage, S., Sharp, S. J., Sonestedt, E., Demerath, E. et al.
Physical activity attenuates the influence of FTO variants on obesity risk: a meta-
analysis of 218,166 adults and 19,268 children. PLoS Med. 8, e1001116 (2011).

17 Manolio, T. A., Bailey-Wilson, J. E. & Collins, F. S. Genes, environment and the value of
prospective cohort studies. Nat. Rev. Genet. 7, 812–820 (2006).

18 Karasawa, S., Daimon, M., Sasaki, S., Toriyama, S., Oizumi, T., Susa, S. et al.
Association of the common fat mass and obesity associated (FTO) gene polymorphism
with obesity in a Japanese population. Endocr. J. 57, 293–301 (2010).

19 Kohno, K., Narimatsu, H., Shiono, Y., Suzuki, I., Kato, Y., Fukao, A. et al. Management
of erythropoiesis: cross-sectional study of the relationships between erythropoiesis and
nutrition, physical features, and adiponectin in 3519 Japanese people. Eur. J.
Haematol. 92, 298–307 (2014).

20 Konta, T., Hao, Z., Abiko, H., Ishikawa, M., Takahashi, T., Ikeda, A. et al. Prevalence
and risk factor analysis of microalbuminuria in Japanese general population: the
Takahata study. Kidney Int. 70, 751–756 (2006).

21 Lu, Y. & Loos, R. J. Obesity genomics: assessing the transferability of susceptibility loci
across diverse populations. Genome Med. 5, 55 (2013).

22 WHO Expert Consultation. Appropriate body-mass index for Asian populations and its
implications for policy and intervention strategies. Lancet 363, 157–163 (2004).

23 Okita, K., Iwahashi, H., Kozawa, J., Okauchi, Y., Funahashi, T., Imagawa, A. et al.
Homeostasis model assessment of insulin resistance for evaluating insulin sensitivity in
patients with type 2 diabetes on insulin therapy. Endocr. J. 60, 283–290 (2013).

24 Brinkman, G. L. & Coates, E. O. Jr. The effect of bronchitis, smoking, and occupation
on ventilation. Ann. Rev. Respir. Dis. 87, 684–693 (1963).

25 Sasaki, S., Yanagibori, R. & Amano, K. Self-administered diet history questionnaire
developed for health education: a relative validation of the test-version by comparison
with 3-day diet record in women. J. Epidemiol. 8, 203–215 (1998).

26 Harada, A., Naito, Y., Inoue, S., Kitabatake, Y., Arao, T. & Ohashi, Y. Validity of a
questionnaire for assessment of physical activity in the Japan Arteriosclerosis
Longitudinal Study. Med. Sci. Sports Exerc. 35, S340 (2003).

27 Liu, E. Y., Li, M. Y., Wang, W. & Li, Y. MaCH-admix: genotype imputation for admixed
populations. Genet. Epidemiol. 37, 25–37 (2013).

28 Evans, D. M., Visscher, P. M. & Wray, N. R. Harnessing the information contained
within genome-wide association studies to improve individual prediction of complex
disease risk. Hum. Mol. Genet 18, 3525–3531 (2009).

29 Wigginton, J. E., Cutler, D. J. & Abecasis, G. R. A note on exact tests of Hardy-Weinberg
equilibrium. Am. J. Hum. Genet. 76, 887–893 (2005).

30 Wen, W., Cho, Y. S., Zheng, W., Dorajoo, R., Kato, N., Qi, L. et al. Meta-analysis
identifies common variants associated with body mass index in east Asians. Nat. Genet.
44, 307–311 (2012).

31 Okada, Y., Kubo, M., Ohmiya, H., Takahashi, A., Kumasaka, N., Hosono, N. et al.
Common variants at CDKAL1 and KLF9 are associated with body mass index in east
Asian populations. Nat. Genet. 44, 302–306 (2012).

32 Manolio, T. A. Genomewide association studies and assessment of the risk of disease.
N. Engl. J. Med. 363, 166–176 (2010).

33 Fall, T. & Ingelsson, E. Genome-wide association studies of obesity and metabolic
syndrome. Mol. Cell. Endocrinol. 382, 740–757 (2014).

34 Cooper, R. S. Gene-environment interactions and the etiology of common complex
disease. Ann. Intern. Med. 139, 437–440 (2003).

35 Marti, A., Martinez-Gonzalez, M. A. & Martinez, J. A. Interaction between genes and
lifestyle factors on obesity. Proc. Nutr. Soc. 67, 1–8 (2008).

36 Howarth, N. C., Saltzman, E. & Roberts, S. B. Dietary fiber and weight regulation. Nutr.
Rev. 59, 129–139 (2001).

37 Ludwig, D. S., Pereira, M. A., Kroenke, C. H., Hilner, J. E., Van, Horn, L., Slattery, M. L.
et al. Dietary fiber, weight gain, and cardiovascular disease risk factors in young adults.
JAMA 282, 1539–1546 (1999).

38 Slavin, J. L. Dietary fiber and body weight. Nutrition 21, 411–418 (2005).
39 Dick, K. J., Nelson, C. P., Tsaprouni, L., Snadling, J. K., Aissi, D., Wahl, S. et al.

DNA methylation and body-mass index: a genome-wide analysis. Lancet 383,
1990–1998 (2014).

40 Graff, M., Ngwa, J. S., Workalemahu, T., Homuth, G., Schipf, S., Teumer, A. et al.
Genome-wide analysis of BMI in adolescents and young adults reveals additional
insight into the effects of genetic loci over the life course. Hum. Mol. Genet. 22,
3597–3607 (2013).

41 Funatogawa, I., Funatogawa, T., Nakao, M., Karita, K. & Yano, E. Changes in body mass
index by birth cohort in Japanese adults: results from the National Nutrition Survey of
Japan 1956-2005. Int. J. Epidemiol. 38, 83–92 (2009).

42 Yamagata University Genomic Cohort Consortium & Narimatsu, H. Constructing a
contemporary gene-environmental cohort: study design of the Yamagata Molecular
Epidemiological Cohort Study. J. Hum. Genet. 58, 54–56 (2013).

43 Tohoku University Tohoku Medical Megabank Organization. (2015). http://www.mega-
bank.tohoku.ac.jp/english/. Accessed 9 September 2015.

44 Hamajima, N. Japan Multi-institutional Collaborative Cohort Study Group. The Japan
Multi-Institutional Collaborative Cohort Study (J-MICC Study) to detect gene-
environment interactions for cancer. Asian Pac. J. Cancer Prev. 8, 317–323 (2007).

45 Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindroff, L. A., Hunter, D. J.
et al. Finding the missing heritability of complex diseases. Nature 461,
747–753 (2009).

46 Booth, K. M., Pinkston, M. M. & Poston, W. S. C. Obesity and the built environment.
J. Am. Diet Assoc. 105, S110–S117 (2005).

Supplementary Information accompanies the paper on Journal of Human Genetics website (http://www.nature.com/jhg)

Gene–environment interactions in obesity
S Nakamura et al

322

Journal of Human Genetics

www.editage.com
http://www.who.int/mediacentre/factsheets/fs311/en/
http://www.megabank.tohoku.ac.jp/english/
http://www.megabank.tohoku.ac.jp/english/

	Gene–environment interactions in obesity: implication for future applications in preventive medicine
	Introduction
	Materials and methods
	Study population
	Assessment of BMI and lifestyle factors
	Genotyping and imputation
	Genetic risk score
	Statistical analysis

	Results
	Characteristics of the Yamagata Study (Takahata)
	Effect of the GRS on BMI
	Effects of lifestyle factors
	Lifestyle factors and BMI according to the GRS tertile
	Changes in BMI according to longitudinal observations

	Discussion
	Acknowledgements
	Note
	References




