An epigenomic signature of postprandial hyperglycemia in peripheral blood leukocytes

Article metrics


Postprandial hyperglycemia is known to be one of the earliest signs of abnormal glucose homeostasis associated with type 2 diabetes. This study aimed to assess clinical significance of a 1-h postprandial glucose level for the development of diabetes, and identify epigenetic biomarkers of postprandial hyperglycemia. We analyzed clinical data from the oral glucose tolerance tests for healthy subjects (n=4502). The ratio (Glu60/Glu0) of 1-h glucose levels to fasting glucose levels was significantly associated with an insulin sensitive index (QUICKI, quantitative insulin sensitivity check index) (β=0.055, P=1.25E−04) as well as a risk of future pre-diabetic and diabetic conversion. Next, DNA methylation profile analyses of 24 matched pairs of the high and low Glu60/Glu0 ratio subjects showed that specific DNA methylation levels in the promoter region of an olfactory receptor gene (olfactory receptor gene family10 member A4, OR10A4) were associated with the Glu60/Glu0 ratios (β=0.337, P=0.03). Moreover, acute oral glucose challenges decreased the DNA methylation levels of OR10A4 but not the global DNA methylation in peripheral leukocytes of healthy subjects (n=7), indicating that OR10A4 is a specific epigenomic target of postprandial hyperglycemia. This work suggests possible relevance of olfactory receptor genes to an earlier molecular biomarker of peripheral hyperglycemia and diabetic conversion.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1
Figure 2


  1. 1

    Lam, T. K. Neuronal regulation of homeostasis by nutrient sensing. Nat. Med. 16, 392–395 (2012).

  2. 2

    Cobbold, S. P. The mTOR pathway and integrating immune regulation. Immunology 140, 391–398 (2013).

  3. 3

    Seyer, P., Vallois, D., Poitry-Yamate, C., Schutz, F., Metref, S., Tarussio, D. et al. Hepatic glucose sensing is required to preserve β cell glucose competence. J. Clin. Invest. 123, 1662–1676 (2013).

  4. 4

    Dotson, C. D., Zhang, L., Xu, H., Shin, Y. K., Vigues, S., Ott, S. H. et al. Bitter taste receptors influence glucose homeostasis. PLoS ONE 3, e3974 (2008).

  5. 5

    Mace, O. J. & Affleck, J. P. N. Sweet taste receptors in rat small intestine stimulate glucose absorption through apical GLUT2. J. Physiol. 582 (Pt 1), 379–392 (2007).

  6. 6

    Parton, L. E., Ye, C. P., Coppari, R., Enriori, P. J, Choi, B., Zhang, C. Y. et al. Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity. Nature 449, 228–232 (2007).

  7. 7

    Thorens, B. Glucose sensing and the pathogenesis of obesity and type 2 diabetes. Int. J. Obes. (Lond.) 32 (Suppl 6), 62–71 (2008).

  8. 8

    Bae, J. S., Kim, T. H., Kim, M. Y., Park, J. M. & Ahn, Y. H. Transcriptional regulation of glucose sensors in pancreatic β-cells and liver: an update. Sensors (Basel) 10, 5031–5053 (2010).

  9. 9

    Gerriets, V. A. & MacIver, N. J. Role of T cells in malnutrition and obesity. Front. Immunol. 5, 379 (2014).

  10. 10

    McNelis, J. C. & Olefsky, J. M. Macrophages and metabolic disease. Immunity 41, 36–48 (2014).

  11. 11

    Alberti, K. G. & Zimmet, P. Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet. Med. 15, 539–553 (1998).

  12. 12

    Bloomgarden, Z. T. American Diabetes Association 60th Scientific Sessions, 2000: diabetes and pregnancy. Diabetes Care 23, 1699–1702 (2000).

  13. 13

    Bartoli, E., Fra, G. P. & Carnevale Schianca, G. P. The oral glucose tolerance test (OGTT) revisited. Eur. J. Intern. Med. 22, 8–12 (2011).

  14. 14

    Laird, P. W. The power and the promise of DNA methylation markers. Nat. Rev. Cancer 3, 253–266 (2003).

  15. 15

    Bouchard, L., Thibault, S., Guay, S. P., Santure, M., Monpetit, A., St-Pierre, J. et al. Leptin gene epigenetic adaptation to impaired glucose metabolism during pregnancy. Diabetes Care 33, 2436–2441 (2010).

  16. 16

    Bouchard, L., Hivert, M. F., Guay, S. P., St-Pierre, J., Perron, P. & Brisson, D. Placental adiponectin gene DNA methylation levels are associated with mothers' blood glucose concentration. Diabetes 61, 1272–1280 (2012).

  17. 17

    Wittenberger, T., Sleigh, S., Reisel, D., Zikan, M., Wahl, B., Alunni-Fabbroni, M. et al. DNA methylation markers for early detection of women's cancer: promise and challenges. Epigenomics 6, 311–327 (2014).

  18. 18

    Shin, C., Abbott, R. D., Lee, H., Kim, J. & Kimm, K. Prevalence and correlates of orthostatic hypotension in middle-aged men and women in Korea: the Korean Health and Genome Study. J. Hum. Hypertens. 18, 717–723 (2004).

  19. 19

    Lim, S., Jang, H. C., Lee, H. K., Kimm, K. C., Park, C. & Cho, N. H. The relationship between body fat and C-reactive protein in middle-aged Korea population. Atherosclerosis 184, 171–177 (2006).

  20. 20

    Kanauchi, M., Kimura, K., Kanauchi, K. & Saito, Y. Beta-cell function and insulin sensitivity contribute to the shape of plasma glucose curve during an oral glucose tolerance test in non-diabetic individuals. Int. J. Clin. Pract. 59, 427–432 (2005).

  21. 21

    Abdul-Ghani, M. A., Lyssenko, V., Tuomi, T., Defronzo, R. A. & Groop, L. The shape of plasma glucose concentration curve during OGTT predicts future risk of type 2 diabetes. Diabetes Metab. Res. Rev. 26, 280–286 (2010).

  22. 22

    Kim, J. Y., Mandarino, L. J., Coletta, D. K. & Shaibi, G. Q. Glucose response curve and type 2 diabetes risk in Latino adolescents. Diabetes Care 35, 1925–1930 (2012).

  23. 23

    Succurro, E., Marini, M. A., Arturi, F., Grembiale, A., Lugarà, M., Andreozzi, F. et al. Elevated one-hour post-load plasma glucose levels identifies subjects with normal glucose tolerance but early carotid atherosclerosis. Atherosclerosis 207, 245–249 (2009).

  24. 24

    Sciacqua, A., Miceli, S., Carullo, G., Greco, L., Succurro, E., Arturi, F. et al. One-hour postload plasma glucose levels and left ventricular mass in hypertensive patients. Diabetes Care 34, 1406–1411 (2011).

  25. 25

    Malnic, B., Godfrey, P. A. & Buck, L. B. The human olfactory receptor gene family. Proc. Natl Acad. Sci. USA 101, 2584–2589 (2004).

  26. 26

    Chandrashekar, J., Hoon, M. A., Ryba, N. J. & Zuker, C. S. The receptors and cells for mammalian taste. Nature 444, 288–294 (2006).

  27. 27

    Nakagawa, Y., Nagasawa, M., Mogami, H., Lohse, M., Ninomiya, Y. & Kojima, I. Multimodal function of the sweet taste receptor expressed in pancreatic β-cells: generation of diverse patterns of intracellular signals by sweet agonists. Endocr. J. 60, 1191–1206 (2013).

  28. 28

    Malaisse, W. J. Insulin release: the receptor hypothesis. Diabetologia 57, 1287–1290 (2014).

  29. 29

    Spehr, M., Gisselmann, G., Poplawski, A., Riffell, J. A., Wetzel, C. H., Zimmer, R. K. et al. Identification of a testicular odorant receptor mediating human sperm chemotaxis. Science 299, 2054–2058 (2003).

  30. 30

    Pluznick, J. L., Zou, D. J., Zhang, X., Yan, Q., Rodriguez-Gil, D. J., Eisner, C. et al. Functional expression of the olfactory signaling system in the kidney. Proc. Natl Acad. Sci. USA 106, 2059–2064 (2009).

  31. 31

    Guthoff, M., Tschritter, O., Berg, D., Liepelt, I., Schulte, C., Machicao, F. et al. Effect of genetic variation in Kv1.3 on olfactory function. Diabetes Metab. Res. Rev. 25, 523–527 (2009).

  32. 32

    Kanaya, A. M., Grady, D. & Barrett-Connor, E. Explaining the sex difference in coronary heart disease mortality among patients with type 2 diabetes mellitus: a meta-analysis. Arch. Intern. Med. 162, 1737–1745 (2002).

  33. 33

    Gregg, E. W., Gu, Q., Cheng, Y. J., Narayan, K. M. & Cowie, C. C. Mortality trends in men and women with diabetes, 1971 to 2000. Ann. Intern. Med. 147, 149–155 (2007).

  34. 34

    Lipscombe, L. L. & Hux, J. E. Trends in diabetes prevalence, incidence, and mortality in Ontario, Canada 1995-2005: a population-based study. Lancet 369, 750–756 (2007).

  35. 35

    Logue, J., Walker, J. J., Colhoun, H. M., Leese, G. P., Lindsay, R. S., McKnight, J.A. et al. Do men develop type 2 diabetes at lower body mass indices than women? Diabetologia 54, 3003–3006 (2011).

  36. 36

    Hayashi, Y., Iida, S., Sato, Y., Nakaya, A., Sawada, A., Kaji, N. et al. DNA microarray analysis of type 2 diabetes-related genes co-regulated between white blood cells and livers of diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Biol. Pharm. Bull 30, 763–771 (2007).

  37. 37

    Manoel-Caetano, F. S., Xavier, D. J., Evangelista, A. F., Takahashi, P., Collares, C. V., Puthier, D. et al. Gene expression profiles displayed by peripheral blood mononuclear cells from patients with type 2 diabetes mellitus focusing on biological processes implicated on the pathogenesis of the disease. Gene 511, 151–160 (2012).

  38. 38

    Das, S. K. Integrating transcriptome and epigenome: putting together the pieces of the type 2 diabetes pathogenesis puzzle. Diabetes 63, 2901–2903 (2014).

  39. 39

    Nilsson, E., Jansson., P. A., Perfilyev, A., Volkov, P., Pedersen, M., Svensson, M. K. et al. Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes. Diabetes 63, 2962–2976 (2014).

  40. 40

    Gregor, M. F. & Hotamisligil, G. S. Inflammatory mechanisms in obesity. Annu. Rev. Immunol. 29, 415–445 (2011).

  41. 41

    McNelis, J. C. & Olefsky, J. M. Macrophages, immunity, and metabolic disease. Immunity 41, 36–48 (2014).

  42. 42

    Kotas, M. E. & Medzhitov, R. Homeostasis, inflammation, and disease susceptibility. Cell 160, 816–827 (2015).

  43. 43

    Heyn, H. & Esteller, M. DNA methylation profiling in the clinic: applications and challenges. Nat. Rev. Genet. 13, 679–692 (2012).

  44. 44

    Toperoff, G., Aran, D., Kark, J. D., Rosenberg, M., Dubnikov, T., Nissan, B. et al. Genome-wide survey reveals predisposing diabetes type 2-related DNA methylation variations in human peripheral blood. Hum. Mol. Genet. 21, 371–383 (2012).

  45. 45

    Rönn, T. & Ling, C. DNA methylation as a diagnostic and therapeutic target in the battle against type 2 diabetes. Epigenomics 7, 451–460 (2015).

Download references


This work was supported by intramural grants (2009-N00435-00 and 2013-NG74001-00) of the Korea National Institute of Health. The biospecimens for this study were provided by National Biobank of Korea.

Author information

Correspondence to Jae-Pil Jeon.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Journal of Human Genetics website

Supplementary information

Supplementary Information (DOCX 34 kb)

Supplementary Figure S1 (PPT 191 kb)

Supplementary Figure S2 (PPT 231 kb)

Supplementary Figure S3 (PPT 125 kb)

Supplementary Table S1 (XLSX 14 kb)

Supplementary Table S2 (XLSX 16 kb)

Supplementary Table S3 (XLSX 16 kb)

Supplementary Table S4 (XLSX 13 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading