Associations of human leukocyte antigens with autoimmune diseases: challenges in identifying the mechanism

Article metrics



The mechanism of genetic associations between human leukocyte antigen (HLA) and susceptibility to autoimmune disorders has remained elusive for most of the diseases, including rheumatoid arthritis (RA) and type 1 diabetes (T1D), for which both the genetic associations and pathogenic mechanisms have been extensively analyzed. In this review, we summarize what are currently known about the mechanisms of HLA associations with RA and T1D, and elucidate the potential mechanistic basis of the HLA–autoimmunity associations. In RA, the established association between the shared epitope (SE) and RA risk has been explained, at least in part, by the involvement of SE in the presentation of citrullinated peptides, as confirmed by the structural analysis of DR4-citrullinated peptide complex. Self-peptide(s) that might explain the predispositions of variants at 11β and 13β in DRB1 to RA risk have not currently been identified. Regarding the mechanism of T1D, pancreatic self-peptides that are presented weakly on the susceptible HLA allele products are recognized by self-reactive T cells. Other studies have revealed that DQ proteins encoded by the T1D susceptible DQ haplotypes are intrinsically unstable. These findings indicate that the T1D susceptible DQ haplotypes might confer risk for T1D by facilitating the formation of unstable HLA–self-peptide complex. The studies of RA and T1D reveal the two distinct mechanistic basis that might operate in the HLA–autoimmunity associations. Combination of these mechanisms, together with other functional variations among the DR and DQ alleles, may generate the complex patterns of DR–DQ haplotype associations with autoimmunity.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4


  1. 1

    Robinson, J., Halliwell, J. A., Hayhurst, J. D., Flicek, P., Parham, P. & Marsh, Steven, G. E. The IPD and IMGT/HLA database: allele variant databases. Nucleic Acids Res. 43, D423–D431 (2015).

  2. 2

    McDevitt, H. O. & Bodmer, W. F. HL-A, immune-response genes, and disease. Lancet 1, 1269–1275 (1974).

  3. 3

    Gregersen, P. K., Silver, J. & Winchester, R. J. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum. 30, 1205–1213 (1987).

  4. 4

    Mackie, S. L., Taylor, J. C., Martin, S. G ., Consortium, Y., Consortium, U. Wordsworth, P. et al. A spectrum of susceptibility to rheumatoid arthritis within HLA-DRB1: stratification by autoantibody status in a large UK population. Genes Immun. 13, 120–128 (2012).

  5. 5

    Morgan, A. W., Thomson, W., Martin, S. G . Yorkshire Early Arthritis Register, C., Carter, A. M ., Consortium, U. K. R. A. G. et al. Reevaluation of the interaction between HLA-DRB1 shared epitope alleles, PTPN22, and smoking in determining susceptibility to autoantibody-positive and autoantibody-negative rheumatoid arthritis in a large UK Caucasian population. Arthritis Rheum. 60, 2565–2576 (2009).

  6. 6

    Raychaudhuri, S., Sandor, C., Stahl, E. A., Freudenberg, J., Lee, H. S., Jia, X. et al. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat. Genet. 44, 291–296 (2012).

  7. 7

    van der Woude, D., Lie, B. A., Lundstrom, E., Balsa, A., Feitsma, A. L., Houwing-Duistermaat, J. J. et al. Protection against anti-citrullinated protein antibody-positive rheumatoid arthritis is predominantly associated with HLA-DRB1*1301: a meta-analysis of HLA-DRB1 associations with anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis in four European populations. Arthritis Rheum. 62, 1236–1245 (2010).

  8. 8

    Jun, K. R., Choi, S. E., Cha, C. H., Oh, H. B., Heo, Y. S., Ahn, H. Y. et al. Meta-analysis of the association between HLA-DRB1 allele and rheumatoid arthritis susceptibility in Asian populations. J. Korean Med. Sci. 22, 973–980 (2007).

  9. 9

    Lee, H. S., Lee, K. W., Song, G. G., Kim, H. A., Kim, S. Y. & Bae, S. C. Increased susceptibility to rheumatoid arthritis in Koreans heterozygous for HLA-DRB1*0405 and *0901. Arthritis Rheum. 50, 3468–3475 (2004).

  10. 10

    Mitsunaga, S., Suzuki, Y., Kuwana, M., Sato, S., Kaneko, Y., Homma, Y. et al. Associations between six classical HLA loci and rheumatoid arthritis: a comprehensive analysis. Tissue Antigens 80, 16–25 (2012).

  11. 11

    Furukawa, H., Oka, S., Shimada, K., Hashimoto, A. & Tohma, S. Human leukocyte antigen polymorphisms and personalized medicine for rheumatoid arthritis. J. Hum. Genet. 60, 691–696 (2015).

  12. 12

    Zanelli, E., Breedveld, F. C. & de Vries, R. R. HLA class II association with rheumatoid arthritis: facts and interpretations. Hum. Immunol. 61, 1254–1261 (2000).

  13. 13

    Seidl, C., Korbitzer, J., Badenhoop, K., Seifried, E., Hoelzer, D., Zanelli, E. et al. Protection against severe disease is conferred by DERAA-bearing HLA-DRB1 alleles among HLA-DQ3 and HLA-DQ5 positive rheumatoid arthritis patients. Hum. Immunol. 62, 523–529 (2001).

  14. 14

    Hammer, J., Gallazzi, F., Bono, E., Karr, R. W., Guenot, J., Valsasnini, P. et al. Peptide binding specificity of HLA-DR4 molecules: correlation with rheumatoid arthritis association. J. Exp. Med. 181, 1847–1855 (1995).

  15. 15

    Auger, I., Toussirot, E. & Roudier, J. Molecular mechanisms involved in the association of HLA-DR4 and rheumatoid arthritis. Immunol. Res. 16, 121–126 (1997).

  16. 16

    Roudier, J. Association of MHC and rheumatoid arthritis. Association of RA with HLA-DR4: the role of repertoire selection. Arthritis Res. 2, 217–220 (2000).

  17. 17

    Hill, J. A., Southwood, S., Sette, A., Jevnikar, A. M., Bell, D. A. & Cairns, E. Cutting edge: the conversion of arginine to citrulline allows for a high-affinity peptide interaction with the rheumatoid arthritis-associated HLA-DRB1*0401 MHC class II molecule. J. Immunol. 171, 538–541 (2003).

  18. 18

    Scally, S. W., Petersen, J., Law, S. C., Dudek, N. L., Nel, H. J., Loh, K. L. et al. A molecular basis for the association of the HLA-DRB1 locus, citrullination, and rheumatoid arthritis. J. Exp. Med. 210, 2569–2582 (2013).

  19. 19

    Okada, Y., Kim, K., Han, B., Pillai, N. E., Ong, R. T., Saw, W. Y. et al. Risk for ACPA-positive rheumatoid arthritis is driven by shared HLA amino acid polymorphisms in Asian and European populations. Hum. Mol. Genet. 23, 6916–6926 (2014).

  20. 20

    van Heemst, J., Jansen, D. T., Polydorides, S., Moustakas, A. K., Bax, M., Feitsma, A. L. et al. Crossreactivity to vinculin and microbes provides a molecular basis for HLA-based protection against rheumatoid arthritis. Nat. Commun. 6, 6681 (2015).

  21. 21

    Ohnishi, Y., Tsutsumi, A., Sakamaki, T. & Sumida, T. T cell epitopes of type II collagen in HLA-DRB1*0101 or DRB1*0405-positive Japanese patients with rheumatoid arthritis. Int. J. Mol. Med. 11, 331–335 (2003).

  22. 22

    Diab, B. Y., Lambert, N. C., L'Faqihi, F. E., Loubet-Lescoulie, P., de Preval, C. & Coppin, H. Human collagen II peptide 256-271 preferentially binds to HLA-DR molecules associated with susceptibility to rheumatoid arthritis. Immunogenetics 49, 36–44 (1999).

  23. 23

    Rosloniec, E. F., Whittington, K. B., Zaller, D. M. & Kang, A. H. HLA-DR1 (DRB1*0101) and DR4 (DRB1*0401) use the same anchor residues for binding an immunodominant peptide derived from human type II collagen. J. Immunol. 168, 253–259 (2002).

  24. 24

    Matsushita, S., Nishi, T., Oiso, M., Yamaoka, K., Yone, K., Kanai, T. et al. HLA-DQ-binding peptide motifs. 1. Comparative binding analysis of type II collagen-derived peptides to DR and DQ molecules of rheumatoid arthritis-susceptible and non-susceptible haplotypes. Int. Immunol. 8, 757–764 (1996).

  25. 25

    Trembleau, S., Hoffmann, M., Meyer, B., Nell, V., Radner, H., Zauner, W. et al. Immunodominant T-cell epitopes of hnRNP-A2 associated with disease activity in patients with rheumatoid arthritis. Eur. J. Immunol. 40, 1795–1808 (2010).

  26. 26

    Patil, N. S., Pashine, A., Belmares, M. P., Liu, W., Kaneshiro, B., Rabinowitz, J. et al. Rheumatoid arthritis (RA)-associated HLA-DR alleles form less stable complexes with class II-associated invariant chain peptide than non-RA-associated HLA-DR alleles. J. Immunol. 167, 7157–7168 (2001).

  27. 27

    Jin, H., Arase, N., Hirayasu, K., Kohyama, M., Suenaga, T., Saito, F. et al. Autoantibodies to IgG/HLA class II complexes are associated with rheumatoid arthritis susceptibility. Proc. Natl Acad. Sci. USA 111, 3787–3792 (2014).

  28. 28

    Koeleman, B. P. C., Lie, B. A., Undlien, D. E., Dudbridge, F., Thorsby, E., de Vries, R. R. P. et al. Genotype effects and epistasis in type 1 diabetes and HLA-DQ trans dimer associations with disease. Genes Immun. 5, 381–388 (2004).

  29. 29

    Thomson, G., Valdes, A. M., Noble, J. A., Kockum, I., Grote, M. N., Najman, J. et al. Relative predispositional effects of HLA class II DRB1-DQB1 haplotypes and genotypes on type 1 diabetes: a meta-analysis. Tissue Antigens 70, 110–127 (2007).

  30. 30

    Erlich, H., Valdes, A. M., Noble, J., Carlson, J. A., Varney, M., Concannon, P. et al. HLA DR-DQ haplotypes and genotypes and type 1 diabetes risk: analysis of the type 1 diabetes genetics consortium families. Diabetes 57, 1084–1092 (2008).

  31. 31

    Kawabata, Y., Ikegami, H., Awata, T., Imagawa, A., Maruyama, T., Kawasaki, E. et al. Differential association of HLA with three subtypes of type 1 diabetes: fulminant, slowly progressive and acute-onset. Diabetologia 52, 2513–2521 (2009).

  32. 32

    Todd, J., Bell, J. & McDevitt, H. HLA-DQβ gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature 329, 599–604 (1987).

  33. 33

    Morel, P. A., Dorman, J. S., Todd, J. A., McDevitt, H. O. & Trucco, M. Aspartic acid at position 57 of the HLA-DQ beta chain protects against type I diabetes: a family study. Proc. Natl Acad. Sci. USA 85, 8111–8115 (1988).

  34. 34

    Noble, J. A., Johnson, J., Lane, J. A. & Valdes, A. M. HLA class II genotyping of African American type 1 diabetic patients reveals associations unique to African haplotypes. Diabetes 62, 3292–3299 (2013).

  35. 35

    Baekkeskov, S., Landin, M., Kristensen, J. K., Srikanta, S., Bruining, G. J., Mandrup-Poulsen, T. et al. Antibodies to a 64,000 Mr human islet cell antigen precede the clinical onset of insulin-dependent diabetes. J. Clin. Invest. 79, 926–934 (1987).

  36. 36

    Payton, M. A., Hawkes, C. J. & Christie, M. R. Relationship of the 37,000- and 40,000-M(r) tryptic fragments of islet antigens in insulin-dependent diabetes to the protein tyrosine phosphatase-like molecule IA-2 (ICA512). J. Clin. Invest. 96, 1506–1511 (1995).

  37. 37

    Wenzlau, J. M., Juhl, K., Yu, L., Moua, O., Sarkar, S. A., Gottlieb, P. et al. The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proc. Natl Acad. Sci. USA 104, 17040–17045 (2007).

  38. 38

    Harfouch-Hammoud, E., Walk, T., Otto, H., Jung, G., Bach, J., van Endert, P. et al. Identification of peptides from autoantigens GAD65 and IA-2 that bind to HLA class II molecules predisposing to or protecting from type 1 diabetes. Diabetes 48, 1937–1947 (1999).

  39. 39

    Geluk, A., van Meijgaarden, K. E., Schloot, N. C., Drijfhout, J. W., Ottenhoff, T. H. & Roep, B. O. HLA-DR binding analysis of peptides from islet antigens in IDDM. Diabetes 47, 1594–1601 (1998).

  40. 40

    Ettinger, R. A. & Kwok, W. W. A peptide binding motif for HLA-DQA1*0102/DQB1*0602, the class II MHC molecule associated with dominant protection in insulin-dependent diabetes mellitus. J. Immunol. 160, 2365–2373 (1998).

  41. 41

    Sidney, J., del Guercio, M.-F., Southwood, S. & Sette, A. The HLA molecules DQA1*0501/B1*0201 and DQA1*0301/B1*0302 share an extensive overlap in peptide binding specificity. J. Immunol. 169, 5098–5108 (2002).

  42. 42

    Sidney, J., Steen, A., Moore, C., Ngo, S., Chung, J., Peters, B. et al. Divergent motifs but overlapping binding repertoires of six HLA-DQ molecules frequently expressed in the worldwide human population. J. Immunol. 185, 4189–4198 (2010).

  43. 43

    Britten, A. C., Mijovic, C. H., Barnett, A. H. & Kelly, M. A. Differential expression of HLA-DQ alleles in peripheral blood mononuclear cells: alleles associated with susceptibility to and protection from autoimmune type 1 diabetes. Int. J. Immunogenet. 36, 47–57 (2009).

  44. 44

    Busch, R., De Riva, A., Hadjinicolaou, A. V., Jiang, W., Hou, T. & Mellins, E. D. On the perils of poor editing: regulation of peptide loading by HLA-DQ and H2-A molecules associated with celiac disease and type 1 diabetes. Expert Rev. Mol. Med. 14, e15 (2012).

  45. 45

    Busch, R., Rinderknecht, C. H., Roh, S., Lee, A. W., Harding, J. J., Burster, T. et al. Achieving stability through editing and chaperoning: regulation of MHC class II peptide binding and expression. Immunol. Rev. 207, 242–260 (2005).

  46. 46

    Zhou, Z. & Jensen, P. E. Structural characteristics of HLA-DQ that may impact DM editing and susceptibility to Type-1 diabetes. Front. Immunol. 4, 262 (2013).

  47. 47

    Corper, A. L., Stratmann, T., Apostolopoulos, V., Scott, C. A., Garcia, K. C., Kang, A. S. et al. A structural framework for deciphering the link between I-Ag7 and autoimmune diabetes. Science 288, 505–511 (2000).

  48. 48

    Latek, R. R., Suri, A., Petzold, S. J., Nelson, C. A., Kanagawa, O., Unanue, E. R. et al. Structural basis of peptide binding and presentation by the type I diabetes-associated MHC class II molecule of NOD mice. Immunity 12, 699–710 (2000).

  49. 49

    Lee, K. H., Wucherpfennig, K. W. & Wiley, D. C. Structure of a human insulin peptide-HLA-DQ8 complex and susceptibility to type 1 diabetes. Nat. Immunol. 2, 501–507 (2001).

  50. 50

    Levisetti, M. G., Suri, A., Petzold, S. J. & Unanue, E. R. The insulin-specific T cells of nonobese diabetic mice recognize a weak MHC-binding segment in more than one form. J. Immunol. 178, 6051–6057 (2007).

  51. 51

    Levisetti, M. G., Lewis, D. M., Suri, A. & Unanue, E. R. Weak proinsulin peptide-major histocompatibility complexes are targeted in autoimmune diabetes in mice. Diabetes 57, 1852–1860 (2008).

  52. 52

    Stadinski, B. D., Delong, T., Reisdorph, N., Reisdorph, R., Powell, R. L., Armstrong, M. et al. Chromogranin A is an autoantigen in type 1 diabetes. Nat. Immunol. 11, 225–231 (2010).

  53. 53

    Stadinski, B. D., Zhang, L., Crawford, F., Marrack, P., Eisenbarth, G. S. & Kappler, J. W. Diabetogenic T cells recognize insulin bound to IAg7 in an unexpected, weakly binding register. Proc. Natl Acad. Sci. USA 107, 10978–10983 (2010).

  54. 54

    Crawford, F., Stadinski, B., Jin, N., Michels, A., Nakayama, M., Pratt, P. et al. Specificity and detection of insulin-reactive CD4+ T cells in type 1 diabetes in the nonobese diabetic (NOD) mouse. Proc. Natl Acad. Sci. USA 108, 16729–16734 (2011).

  55. 55

    Boyton, R. J., Lohmann, T., Londei, M., Kalbacher, H., Halder, T., Frater, A. J. et al. Glutamic acid decarboxylase T lymphocyte responses associated with susceptibility or resistance to type I diabetes: analysis in disease discordant human twins, non-obese diabetic mice and HLA-DQ transgenic mice. Int. Immun. 10, 1765–1776 (1998).

  56. 56

    Yang, J., Chow, I.-T., Sosinowski, T., Torres-Chinn, N., Greenbaum, C. J., James, E. A. et al. Autoreactive T cells specific for insulin B:11-23 recognize a low-affinity peptide register in human subjects with autoimmune diabetes. Proc. Natl Acad. Sci. USA 111, 14840–14845 (2014).

  57. 57

    James, E. A. & Kwok, W. W. Low-affinity major histocompatibility complex-binding peptides in type 1 diabetes. Diabetes 57, 1788–1789 (2008).

  58. 58

    Ettinger, R. A., Liu, A. W., Nepom, G. T. & Kwok, W. W. Exceptional stability of the HLA-DQA1*0102/DQB1*0602 αβ protein dimer, the class II MHC molecule associated with protection from insulin-dependent diabetes mellitus. J. Immunol. 161, 6439–6445 (1998).

  59. 59

    Miyadera, H., Ohashi, J., Lernmark, A., Kitamura, T. & Tokunaga, K. Cell-surface MHC density profiling reveals instability of autoimmunity-associated HLA. J. Clin. Invest. 125, 275–291 (2015).

  60. 60

    Nepom, G. T. A unified hypothesis for the complex genetics of HLA associations with IDDM. Diabetes 39, 1153–1157 (1990).

  61. 61

    Deng, H., Apple, R., Clare-Salzler, M., Trembleau, S., Mathis, D., Adorini, L. et al. Determinant capture as a possible mechanism of protection afforded by major histocompatibility complex class II molecules in autoimmune disease. J. Exp. Med. 178, 1675–1680 (1993).

  62. 62

    Eerligh, P., van Lummel, M., Zaldumbide, A., Moustakas, A. K., Duinkerken, G., Bondinas, G. et al. Functional consequences of HLA-DQ8 homozygosity versus heterozygosity for islet autoimmunity in type 1 diabetes. Genes Immun. 12, 415–427 (2011).

  63. 63

    Uchigata, Y., Kuwata, S., Tokunaga, K., Eguchi, Y., Takayama-Hasumi, S., Miyamoto, M. et al. Strong association of insulin autoimmune syndrome with HLA-DR4. Lancet 339, 393–394 (1992).

  64. 64

    Ito, Y., Nieda, M., Uchigata, Y., Nishimura, M., Tokunaga, K., Kuwata, S. et al. Recognition of human insulin in the context of HLA-DRB1*0406 products by T cells of insulin autoimmune syndrome patients and healthy donors. J. Immunol. 151, 5770–5776 (1993).

  65. 65

    Wall, M., Southwood, S., Sidney, J., Oseroff, C., del Guericio, M.-F., Lamont, A. G. et al. High affinity for class II molecules as a necessary but not sufficient characteristic of encephalitogenic determinants. Int. Immunol. 4, 773–777 (1992).

  66. 66

    Valli, A., Sette, A., Kappos, L., Oseroff, C., Sidney, J., Miescher, G. et al. Binding of myelin basic protein peptides to human histocompatibility leukocyte antigen class II molecules and their recognition by T cells from multiple sclerosis patients. J. Clin. Invest. 91, 616–628 (1993).

  67. 67

    Muraro, P. A., Vergelli, M., Kalbus, M., Banks, D. E., Nagle, J. W., Tranquill, L. R. et al. Immunodominance of a low-affinity major histocompatibility complex-binding myelin basic protein epitope (residues 111-129) in HLA-DR4 (B1*0401) subjects is associated with a restricted T cell receptor repertoire. J. Clin. Invest. 100, 339–349 (1997).

  68. 68

    Weinstock, C., Matheis, N., Barkia, S., Haager, M. C., Janson, A., Markovic, A. et al. Autoimmune polyglandular syndrome type 2 shows the same HLA class II pattern as type 1 diabetes. Tissue Antigens 77, 317–324 (2011).

  69. 69

    Sollid, L. M., Markussen, G., Ek, J., Gjerde, H., Vartdal, F. & Thorsby, E. Evidence for a primary association of celiac disease to a particular HLA-DQ α/β heterodimer. J. Exp. Med. 169, 345–350 (1989).

  70. 70

    Spurkland, A., Sollid, L. M., Polanco, I., Vartdal, F. & Thorsby, E. HLA-DR and -DQ genotypes of celiac disease patients serologically typed to be non-DR3 or non-DR5/7. Hum. Immunol. 35, 188–192 (1992).

  71. 71

    Tsuchiya, N. Genetics of ANCA-associated vasculitis in Japan: a role for HLA-DRB1*09:01 haplotype. Clin. Exp. Nephrol. 17, 628–630 (2013).

  72. 72

    Hashimoto, K., Maruyama, H., Nishiyama, M., Asaba, K., Ikeda, Y., Takao, T. et al. Susceptibility alleles and haplotypes of human leukocyte antigen DRB1, DQA1, and DQB1 in autoimmune polyglandular syndrome type III in Japanese population. Horm. Res. 64, 253–260 (2005).

  73. 73

    Rioux, J. D., Goyette, P., Vyse, T. J., Hammarstrom, L., Fernando, M. M., Green, T. et al. Mapping of multiple susceptibility variants within the MHC region for 7 immune-mediated diseases. Proc. Natl Acad. Sci. USA 106, 18680–18685 (2009).

  74. 74

    Ferreira, R. C., Pan-Hammarström, Q., Graham, R. R., Fontán, G., Lee, A. T., Ortmann, W. et al. High-density SNP mapping of the HLA region identifies multiple independent susceptibility loci associated with selective IgA deficiency. PLoS Genet. 8, e1002476 (2012).

  75. 75

    Dessen, A., Lawrence, C. M., Cupo, S., Zaller, D. M. & Wiley, D. C. X-ray crystal structure of HLA-DR4 (DRA*0101, DRB1*0401) complexed with a peptide from human collagen II. Immunity 7, 473–481 (1997).

  76. 76

    Steenkiste, A., Valdes, A. M., Feolo, M., Hoffman, D., Concannon, P., Noble, J. et al. 14th International HLA and Immunogenetics Workshop: report on the HLA component of type 1 diabetes. Tissue Antigens 69 (Suppl 1), 214–225 (2007).

  77. 77

    Siebold, C., Hansen, B. E., Wyer, J. R., Harlos, K., Esnouf, R. E., Svejgaard, A. et al. Crystal structure of HLA-DQ0602 that protects against type 1 diabetes and confers strong susceptibility to narcolepsy. Proc. Natl Acad. Sci. USA 101, 1999–2004 (2004).

Download references


This work was funded by JSPS KAKENHI grant numbers 22133008 (K Tokunaga) and 22133006 (H Miyadera).

Author information

Correspondence to Hiroko Miyadera.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading