
ORIGINAL ARTICLE

Nonparametric method for detecting imprinting
effect using all members of general pedigrees
with missing data

Fangyuan Zhang and Shili Lin

Imprinting effects can lead to parent-of-origin patterns in complex human diseases. For a diallelic marker locus, Pedigree

Parental-Asymmetry Test (PPAT) and its extension MCPPAT using pedigrees allowing for missing genotypes are simple and

powerful for detecting imprinting effects. However, these approaches only take affected offspring into consideration, thus not

making full use of the data available. In this paper, we propose Monte Carlo Pedigree Parental-Asymmetry Test using both

affected and unaffected (MCPPATu) offsprings, which allows for missing genotypes through Monte Carlo sampling. Simulation

studies demonstrate that MCPPATu controls the empirical type I error rate well under the null hypotheses of no parent-of-origin

effects. It is also demonstrated that the use of additional information from unaffected offspring and partially observed

genotypes in the analysis can greatly improve the statistical power. Indeed, for common diseases, MCPPATu is much more

powerful than MCPPAT when all genotypes are observed and the power improvement is even greater when there is missing data.

For rarer diseases, there are still substantial power gains with the inclusion of unaffected offspring, although the gains are less

impressive compared with those for more common diseases.
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INTRODUCTION

Genomic imprinting is an epigenetic factor that modulates the effects
of genetic variants. It can lead to parent-of-origin patterns in gene
expressions, and hence has been increasingly explored for its crucial
role in the etiology of complex diseases.1 More specifically, genomic
imprinting is an effect of the epigenetic process involving methylation
and histone modifications to silence the expression of a gene inherited
from a particular parent (mother or father) without altering the
genetic sequence. This process leads to unequal expression of a
heterozygous genotype depending on whether the imprinted variant
is inherited from the mother (maternal imprinting) or from the father
(paternal imprinting), which has a key role in normal mammalian
growth and development. Hence, genomic imprinting is hailed as a
key factor in understanding the interplay between the epigenome and
the genome.2

In addition to its involvement in growth and development,
genomic imprinting also has an important role in a number of
complex human diseases. Beckwith–Wiedemann Syndrome, Silver–
Russell Syndrome, Angelman Syndrome (AS) and Prader–Willi
Syndrome (PWS) are most well-known examples.3–5 It is fascinating
to note that AS and PWS are caused by the same genetic locus, albeit
that one is due to the gene being maternally, and the other being
paternally, imprinted. In fact, about 1% of all mammalian genes are
estimated to be imprinted,6 and thus it is expected that imprinting
may have a role in many other complex human diseases, such as some

cancers and type 2 diabetes.1 However, there are still very few that
have been identified thus far, partly because of insufficient amount of
data and/or lack of sufficient power in existing statistical tests.
With the availability of the next-generation sequencing technology,

scientists are now able to carry out direct studies of imprinting
genomewide in the mouse efficiently.7,8 Nevertheless, the controlled
mating setup that was successful in mouse studies is not feasible in
humans. Hence, powerful statistical methods for detecting and
assessing imprinting effects on complex genetic traits are still
indispensable.
Numerous statistical methods have been proposed to detect

imprinting effect.9–12 For a diallelic genetic marker locus, traditional
tests like parental-asymmetry test (PAT) based on affected child–
parent trio data11 is simple and powerful. A series of generalizations
of PAT widen its capability. CPAT was developed to extend PAT to
nuclear families with an arbitrary number of affected children;12

MCPPAT further extends the capability of PAT to use information
on extended families that may have missing genotypes on some of the
individuals;13 a more recent extension, PATu, is for nuclear families
taking unaffected children into account as well.14 These methods are
valid for testing for imprinting under the assumption of no maternal
genotype effect, another kind of parent-of-origin effect.
Another set of tests that have been proposed for detecting imprinting

effect also considers testing for maternal genotype effect, a simulta-
neous testing strategy.15–18 In both papers by Yang and Lin,17,18
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unaffected children within the same family as the affected ones are also
used in the analysis, which leads to substantial power increase in
simulation studies, a fact motivated the work of Zhou et al.14 It has
been shown that simultaneous detection methods are robust to the
presence of maternal genotype effect compared with PAT-type tests.
However, as expected, they may be less powerful if there is a priori
knowledge of no maternal effect.
The flurry of research in this area recently as summarized above all

aims at increasing statistical power for detecting parents-of-origin
effects by making fuller use of available data or by expanding the
study design to include new data types. In this paper, we propose the
Monte Carlo Pedigree Parental-Asymmetry Test using both affected
and unaffected (MCPPATu) offspring from (extended) families of
arbitrary sizes and structure to test for imprinting effect. When there
is no missing data, the test is referred to as PPATu, which may be
regarded as a generalization of PATu by using data from all
individuals in a pedigree rather than just a nuclear family by ignoring
other available information. A limited simulation study on PPATu was
carried out previously.19 On the other hand, when there is missing
data, MCPPATu is a generalization of MCPPAT by also using
unaffected offspring in addition to the affected ones. When the MC
option is turned on to maximize its capability, MCPPATu uses all the
observed data in a pedigree fully. Results from an extensive simulation
study not only substantiate the validity of the proposed test with well
controlled type I error but also show power gains with MCPPATu
when compared with PPATu or MCPPAT for common diseases as well
as for diseases that are relatively more rare.

MATERIALS AND METHODS

Notation
Suppose a disease susceptibility locus has two alleles, disease allele D and

normal allele d. Denote the probability of an individual being affected with

genotypes D/D, D/d, d/D and d/d by fD/D, fD/d, fd/D and fd/d, respectively,

where the allele before ‘/’ is paternal and that after ‘/’ is maternal. Consider a

marker locus of interest with two alleles, M1 and M2. For convenience, let 0, 1

and 2 represent the marker genotypes M2M2, M1M2 and M1M1, respectively,

which are basically counts of the number of M1 allele, the allele of interest. We

also use F, M and C to denote the marker genotypes of father, mother and

child, respectively, which takes values in {0,1,2} depending on the individual’s

genotype. Throughout this study, we assume mating symmetry and no

maternal effect. In the following, we describe the complete data version of

the proposed test (PPATu) first before launching the full version with MC

sampling to accommodate families with missing genotypes.

PPATu for complete pedigree data
Suppose that we have N pedigrees each with n1j child–parents trios having an

affected heterozygous child and n0j trios having an unaffected heterozygous

child, j¼ 1,y,N. Let Q1j ¼
Pn1j

i¼1 S1ji, where

S1ji ¼IfF1ji4M1ji;C ¼ 1 jchild affectedg
� IfF1jioM1ji;C ¼ 1 jchild affectedg

I{ � } is the indicator function taking value of 1 if the condition within the set of

curly brackets is true and 0 otherwise, and i indexes a trio. Similarly, let

Q0j ¼
Pn0j

i¼1 T0ji, where

T0ji ¼IfF0jioM0ji;C ¼ 1jchild unaffectedg
� IfF0ji4M0ji;C ¼ 1jchild unaffectedg

In words, Q1j looks for information pertaining to excess (deficiency) in

transmission of the M1 allele from the father (mother) to the affected child. In

contrast, Q0j looks for the opposite—deficiency (excess) in transmission of the

M1 allele from the father (mother) to the unaffected child. Then, the PPATu

statistic for the whole data set is constructed as

TPPATu ¼
PN

j¼1½ð1�wÞQ1j þwQ0j�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
j¼1½ð1�wÞQ1j þwQ0j�2

q

¼
PN

j¼1 ð1�wÞ
Pn1j

i¼1 S1ji
� �

þw
Pn0j

i¼1 T0ji

� �� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

j¼1 ð1�wÞ
Pn1j

i¼1 S1ji
� �

þw
Pn0j

i¼1 T0ji

� �� �2q ; ð1Þ

which takes dependencies among the S’s and the T’s within the same pedigree

into account, and also makes use of unaffected offspring. Further, w

(a constant between 0 and 1) is a weight denoting the contribution from

the unaffected offspring. When w¼ 0, the PPATu statistic reduces to the PPAT

statistic in Zhou et al.13 In this article, we use w¼ r, the population prevalence

of the disease, for the results presented in this paper; we also present results

with other weights in the Supplementary Materials.

To study the asymptotic property of TPPATu, we first consider the expectation

of its numerator. In Table 1, the six informative trio genotype configurations

for which the child is a heterozygous and the parents have different number of

the M1 allele are given in the first three columns. The joint probabilities of the

genotypes and the child being affected, {s1, s2,y, s6}, are given in the next

column. Their counter parts, the joint probabilities of the genotypes and the

child being unaffected, {t1,t2,y,t6}, are given in the last column. Then,

E
Xn1j
i¼1

S1ji þ
Xn0j
i¼1

T0ji

 !

¼ n1jðs1 þ s3 þ s5 � s2 � s4 � s6Þ=r� n0jðt1 þ t3 þ t5 � t2 � t4 � t6Þ=ð1�rÞ;

where r is the population prevalence of the disease. Under the null hypothesis

of no-imprinting effect with the assumptions of mating symmetry and no

maternal effect, we can see that s1¼ s2, s3¼ s4, s5¼ s6, t1¼ t2, t3¼ t4 and t5¼ t6.

Let us consider s1 and s2 as an example. Under the assumption of mating

symmetry, the probability of mating type (M, F)¼ (1, 0) is the same as that of

(M, F)¼ (0, 1). Further, if there are no imprinting nor maternal effects, the

probability that a child is affected only depends on his/her own genotype, but

not those of the parents. Therefore, the penetrance probabilities are the same

for phenotype configurations (M, F, C)¼ (1,0,1) and (M, F, C)¼ (0,1,1). This

leads to s1¼ s2 as we can see from the detailed formulas provided in Table 1.

Therefore, the expectation of the numerator is 0 under the null. To estimate

the variance of the numerator under the null hypothesis, we note that

Var(Q1jþQ0j)¼E(Q1jþQ0j)
2 as a consequence of the expectation being 0 as

shown above. Thus,
PN

j¼1ðQ1j þQ0jÞ2 provides an unbiased estimator of the

variance of the numerator. By invoking the Central Limit Theorem, when the

number of families N is sufficiently large, the standardized PPATu statistic in

Equation (1) follows a standard normal distribution approximately.

To understand the potential gain in power from a theoretical perspective, we

note that both Q1 and Q0 are of the same sign if there is indeed imprinting

effect; that is, they are both positive (negative) if there is maternal (paternal)

imprinting. Therefore, using information from unaffected offspring would

make the test statistic to be farther away from zero under the alternative

Table 1 Six possible trio genotype configurations with heterozygous

child genotype and their corresponding joint probabilities with child’s

affection status

F M C P (F, M, C, A¼1) P (F, M, C, A¼0)

1 0 1 s1 ¼ m10 � 1
2 � f101 t1 ¼ m10 � 1

2 � ð1� f101Þ
0 1 1 s2 ¼ m01 � 1

2 � f011 t2 ¼ m01 � 1
2 � ð1� f011Þ

2 0 1 s3¼m20 �1 � f201 t3¼m20 �1 � (1�f201)

0 2 1 s4¼m02 �1 � f021 t4¼m02 �1 � (1�f021)

2 1 1 s5 ¼ m21 � 1
2 � f211 t5 ¼ m21 � 1

2 � ð1� f211Þ
1 2 1 s6 ¼ m12 � 1

2 � f121 t6 ¼ m12 � 1
2 � ð1� f121Þ

M, F and C are the number of variant allele(s) carried by mother, father and child in a trio,
which take values of 0, 1 or 2; the mating type probability for (M, F)¼ (m,f) is denoted by mmf;
A¼1 (A¼0) indicates that the child is affected (unaffected); fmfc denotes the probability
(penetrance) that a child is affected given the trio genotype configuration (M, F, C)¼ (m,f,c).
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hypothesis, and thereby can lead to an increase in power for detecting the effect

if it indeed exists.

MCPPATu when there are missing genotypes
The PPATu as described above only uses trios that have complete genotype

data. Hence, when there are missing genotypes in a trio, PPATu will discard it.

To make full use of all data available, we propose the MCPPATu statistic that

will include all trios in the analysis even when only partial genotypes are

available. We first describe the statistic for a single pedigree. We define Q1 and

Q0 as in PPATu, but with the subscript j suppressed for simpler notation

without causing ambiguity. Further, we write Q1 and Q0 more fully as

Q1(Gm, Go, A) and Q0(Gm), respectively, to show explicitly that they not only

depend on the observed genotypes (G0) but also on the unobserved ones (Gm),

and on the affection status (A) of all offspring. However, as Q1 and Q0 are no

longer computable given the existence of missing data, we consider Q1MC

and Q0MC, the conditional expectations of Q1 and Q0 given the observed

genotypes. That is,

Q1MC ¼ E½Q1 jGo� ¼ E½Q1ðGm;Go;AÞ jGo�;

Q0MC ¼ E½Q0 jGo� ¼ E½Q0ðGm;Go;AÞ jGo�:
Evaluation of the above expectations is usually not computationally feasible

owing to the large number of summations over all sets of possible genotypes

unless there are only a handful of individuals with missing genotypes. Hence,

we propose to estimate Q1MC and Q0MC based on an MC simulation scheme

following the work of Zhou et al.13 Specifically, we draw independent samples

Gmk, k¼ 1,yK, from P (Gm|Go) using a peeling algorithm,20 and the desired

statistics are then estimated as

Q1MC � 1

K

XK
k¼1

Q1ðGmk;Go;AÞ and

Q0MC � 1

K

XK
k¼1

Q0ðGmk;Go;AÞ:

In practice, the number of simulated genotype sets needed to achieve good

estimates depends on the degree of missingness. The more individuals missing

in a pedigree, the larger the K should be. Further, K may be set to be different

for different pedigrees if there is a wide range in the amount of missing data

among the pedigrees. In our simulation study as well as in the real data

analysis, we found that K up to 200 appears to work satisfactorily.

With data from N pedigrees, the MCPPATu statistic TMCPPATu is formed

analogous to TPPATu as defined in Equation (1), but with Q1 and Q0 for each

pedigree replaced by the corresponding Q1MC and Q0MC. We can show

(Supplementary Materials A.1) that the expectations of the Q1MC and Q0MC

statistics are both zero under the null hypothesis of no imprinting effect.

Therefore, TMCPPATu also follows a standard normal distribution asymptoti-

cally, and can be used as a valid test statistic for imprinting.

RESULTS

Settings
An extensive simulation study was carried out to investigate the size
and power of the proposed tests. As tests for imprinting effects are
typically carried out in the presence of association, we assume no
recombination between the disease susceptibility locus and the
marker locus. The numbers in Table 2 shows 27 combinations of
haplotype frequencies and penetrance probabilities of imprinting
models. Specifically, we set nine combinations (referred to as settings)
of three sets of haplotype frequencies and three sets of penetrances
for homozygous genotypes, fD/D and fd/d. For each combination,
we further assign three imprinting effect models: no imprinting
(NI; fD/d¼fd/D), incomplete maternal imprinting (II; fD/D4fD/d4
fd/D4fd/d) and complete maternal imprinting (CI; fD/D¼fD/d4
fd/D¼fd/d). As there is complete symmetry between paternal and
maternal imprinting using the proposed statistics, only models
portraying maternal imprinting effect are considered without loss of
generality. The prevalence is 29.9% for all 27 models (referred to as
the ‘A’ models and the nine settings are referred to as the ‘A’ settings).
Such a prevalence value represents the upper half of prevalence for
common diseases and traits (Supplementary Table S1). To consider
models that represent the lower end, we also consider another set of
models whose penetrances are half of those shown in Table 2, leading
to 9 ‘B’ settings with 27 ‘B’ models, all with a prevalence of 14.95%.
We further consider 18 additional models (‘C’ models with 6 ‘C’
settings) for which the prevalence is generally lower, ranging from 7%
to 15% for all but four models (Supplementary Table S2). In all, we
consider an extensive and thorough simulation study over a total of
72 scenarios. The 24 NI models (9 A’s, 9 B’s and 6 C’s) are used to

Table 2 Simulation study scenarios through combinations of 3 sets of haplotype frequencies and 18 penetrance model

Penetrance of imprinting modelb

Hap frequencies

No

Incomplete Complete

Settinga DM1 dM1 DM2 dM2 fD/D fd/d fD/d fD/d fd/D fD/d fd/D

1A/1B 0.2 0.0 0.1 0.7 0.390 0.260 0.325 0.370 0.280 0.390 0.260

2A/2B 0.3 0.1 0.0 0.6 0.390 0.260 0.325 0.370 0.280 0.390 0.260

3A/3B 0.3 0.0 0.0 0.7 0.390 0.260 0.325 0.370 0.280 0.390 0.260

4A/4B 0.2 0.0 0.1 0.7 0.440 0.240 0.340 0.420 0.260 0.440 0.240

5A/5B 0.3 0.1 0.0 0.6 0.440 0.240 0.340 0.420 0.260 0.440 0.240

6A/6B 0.3 0.0 0.0 0.7 0.440 0.240 0.340 0.420 0.260 0.440 0.240

7A/7B 0.2 0.0 0.1 0.7 0.580 0.180 0.380 0.530 0.230 0.580 0.180

8A/8B 0.3 0.1 0.0 0.6 0.580 0.180 0.380 0.530 0.230 0.580 0.180

9A/9B 0.3 0.0 0.0 0.7 0.580 0.180 0.380 0.530 0.230 0.580 0.180

Abbreviations: CI, complete imprinting; II, incomplete maternal imprinting; NI, no imprinting.
aA penetrance model is specified by (fD/D,fD/d,fd/D,fd/d). When there is NI, fD/d¼fd/D; when there is II, fD/D4fD/d4fd/D4fd/d; when there is CI, fD/D¼fD/d4fd/D¼fd/d. The first set of nine
penetrance models (as shown) is made up by combinations of three sets of (fD/D,fd/d) and three sets of (fD/d,fd/D). The second set of nine penetrance models are obtained by halving all the
penetrances in the first set.
bA setting is referred to the combination of a haplotype distribution (frequencies) and the penetrances of homozygous genotypes (fD/D,fd/d). The 27 models with penetrances as shown are referred
to as the ‘A’ models and the 9 settings are referred to as the ‘A’ settings. The prevalence is 29.9% for all the 27 ‘A’ models. By dividing all penetrance by 2, we obtain 9 ‘B’ setting with 27 ‘B’
models, all having a prevalence of 14.95%.
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study type I error rates of the tests, while the remaining 48 (24 II
models—9 A’s, 9 B’s and 6 C’s and 24 CI models—9 A’s, 9 B’s and 6
C’s) are for the study of power.

Each simulated data set contains 100 three-generation 11-member
pedigrees with the structure shown in Figure 1. We obtain haplotype
data by first generating the founders’ haplotypes according to the
specified haplotype frequencies and then generating the haplotype of
the offspring without allowing for recombination. Next, we assign
each individual’s affection status according to the genotypes and the
imprinting model. Genotypes of some individuals are removed in
several ways as detailed below to assess the influence of incomplete
data on the proposed statistics.
We simulate 1000 replicates under each of the 72 scenarios. We

generate 100 MC samples of missing genotypes for each replicate.
Estimated marker allele frequencies from the genotyped founders in
each replicate are used in the MC sampling. All computations are
based on the R environment, specifically the R package MC-PDT,
which contains the PPATand MCPPAT tests in its earlier version;13 we
have added to the package our implementations of PPATu and
MCPPATu.
To assess the performance of PPATu and MCPPATu and compare

with PPAT and MCPPAT, we considered five missing data scenarios:
complete data without any missing genotype (MS0), incomplete data
with individual 1’s genotype missing (MS1), incomplete data with
individual 3’s genotype missing (MS3), incomplete data with

Figure 1 Pedigree structure used in the simulation study. Individuals 1, 3

and/or 6’s genotypes may be missing in the analysis depending on the five

incomplete data scenarios.

Table 3 Empirical type I error (%) for four testsa based on 1000 replications with a nominal significance levels of 0.5% and five incomplete

data scenarios for the ‘A’ settings

MS0
b MS1 MS3 MS6 MS1,6

Setting T Tu T Tu MCT MCTu T Tu MCT MCTu T Tu MCT MCTu T Tu MCT MCTu

1A 0.5 0.5 0.3 0.7 0.6 0.4 0.2 0.6 0.6 0.5 0.6 0.5 0.5 0.5 0.4 0.3 0.5 0.6

2A 0.7 0.6 0.8 0.5 0.4 0.3 0.7 0.6 0.8 0.4 0.8 0.4 1.0 0.7 1.0 0.6 0.7 0.6

3A 0.3 0.5 0.4 0.3 0.3 0.4 0.2 0.2 0.6 0.5 0.4 0.4 0.2 0.5 0.3 0.2 0.2 0.4

4A 0.8 0.3 0.5 0.2 0.6 0.5 0.5 0.2 0.7 0.3 0.2 0.0 0.4 0.5 0.1 0.5 0.5 0.4

5A 0.5 0.5 0.7 0.8 0.4 0.3 0.1 0.3 0.6 0.3 0.8 0.4 0.7 0.6 0.5 0.2 0.6 0.3

6A 0.8 0.6 0.5 0.5 0.6 0.1 0.5 0.4 0.7 0.4 0.4 0.3 0.9 0.7 0.4 0.6 0.6 0.4

7A 0.7 0.6 0.8 0.5 0.7 0.5 0.8 0.6 0.9 0.7 0.5 0.6 0.7 0.5 0.3 0.0 0.9 0.6

8A 0.3 0.6 0.4 0.5 0.2 0.5 0.4 0.5 0.3 0.4 0.9 0.8 0.6 0.5 0.4 0.7 0.4 0.6

9A 0.6 0.7 0.4 0.3 0.6 0.4 0.5 0.2 0.5 0.6 0.5 0.5 0.6 0.4 0.6 0.3 0.7 0.4

Abbreviations: PPATu, Pedigree Parental-Asymmetry Test unaffected; MCPPATu, Monte Carlo Pedigree Parental-Asymmetry Test using both affected and unaffected.
aThe abbreviations for the four tests are: T¼PPAT, Tu¼PPATu, MCT¼MCPPAT and MCTu¼MCPPATu.
bUnder MS0, there is no missing genotypes and therefore the MC versions are not applicable.

Table 4 Empirical type I error (%) of four testsa based on 1000 replications with a nominal significance level of 1% and five incomplete data

scenarios for the ‘B’ settings

MS0
b MS1 MS3 MS6 MS1,6

Setting T Tu T Tu MCT MCTu T Tu MCT MCTu T Tu MCT MCTu T Tu MCT MCTu

1B 0.7 1.0 0.6 0.7 0.8 1.3 0.8 0.5 1.3 0.8 1.3 0.9 0.8 0.9 0.4 0.9 0.7 1.0

2B 0.6 1.1 1.1 1.1 0.4 1.1 0.8 0.6 0.8 1.0 0.5 1.4 0.8 1.2 0.4 1.2 0.5 1.2

3B 0.8 1.1 1.1 0.9 1.3 0.8 0.6 0.9 0.9 1.0 0.8 0.7 0.9 1.2 0.8 1.4 1.3 1.1

4B 1.1 1.0 0.6 1.2 1.0 0.9 0.8 0.8 0.9 0.8 0.7 0.5 1.2 1.0 0.5 0.4 1.0 0.8

5B 0.6 1.2 0.6 0.6 0.6 1.1 0.8 0.9 0.6 1.2 0.9 1.3 0.8 0.9 0.5 0.6 0.6 0.9

6B 0.8 0.8 0.7 0.9 1.0 1.2 0.7 1.1 0.7 0.9 0.5 1.1 0.5 0.9 1.0 0.9 0.9 1.2

7B 0.6 0.9 0.3 1.0 0.4 1.1 0.4 0.7 0.6 0.8 0.7 1.0 0.8 0.7 0.7 1.1 0.7 0.9

8B 0.5 0.9 0.9 0.6 0.3 0.7 0.9 0.7 0.8 0.7 1.4 0.6 0.7 0.8 0.7 1.0 0.6 0.8

9B 0.8 1.2 0.8 1.7 0.9 1.4 0.5 0.6 0.8 1.1 0.7 1.1 0.6 1.0 0.7 0.8 0.8 1.0

Abbreviations: PPATu, Pedigree Parental-Asymmetry Test unaffected; MCPPATu, Monte Carlo Pedigree Parental-Asymmetry Test using both affected and unaffected.
aThe abbreviations for the four tests are: T¼PPAT; Tu¼PPATu; MCT¼MCPPAT; MCTu¼MCPPATu.
bUnder MS0, there is no missing genotypes and therefore the MC versions are not applicable.
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individual 6’s genotype missing (MS6) and incomplete data with both
individual 1 and 6’s genotypes missing (MS1,6). The reason for
choosing these missing schemes is to assess the effect of missing the
data from the first generation (individual 1) or from the parental
(second) generation who is either a nonfounder (individual 3) or a
founder (individual 6). We also assess the effect of missing data on
two individuals (individuals 1 and 6).

Size of tests
We investigated the empirical type I error rates for the 24 NI models
with three nominal significance levels: 5, 1 and 0.5%. We did not
choose to use even smaller nominal significance levels because

imprinting effect tests are typically applied to only genetic markers
that have been implicated for disease association, and hence the
number of such markers are usually not very large. Thus, a test-wise
level of 0.5% should be sufficiently small even when multiple testing is
taken into account. The results for the ‘A’ settings at the 0.5% nominal
level are given in Table 3, which show that the actual type I error rates
are generally quite close to the corresponding nominal levels,
substantiating the validity of MCPPATu and PPATu empirically. In
addition, as an effort to evaluate whether a large proportion of cases
with missing data would adversely affect the type I error rate, we split
the pedigrees in which individual 3 has missing genotype into two
subsets according to whether 3 is affected or not. The results

Figure 2 Power comparison among four tests (the proposed PPATu and MCPPATu and the existing PPAT and MCPPAT statistics) for the II models of the ‘A’

settings at the 0.5% significance level under five missing data scenarios: (a) MS0, complete data without any missing genotypes; (b) MS1, data missing the

genotype of individual 1; (c) MS3, data missing the genotype of individual 3; (d) MS6, data missing the genotype of individual 6; and (e) MS1,6, data

missing the genotypes of both individuals 1 and 6.
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(Supplementary Table S3) show that the empirical type I error rates
still closely track those of the nominal values for three different levels.
The results for the ‘B’ settings at the 1% nominal significance level are
given in Table 4, which also shows that the type I error rates are well
controlled for models with a smaller prevalence. The results for the
other nominal type I error rates under the ‘A’ and ‘B’ settings and
those under the ‘C’ settings (Supplementary Tables S4–S6) also show
good control of type I error.

Power comparisons
The rest of the 48 scenarios (24 II and 24 CI) are used to study power.
Figure 2 plots the estimated powers of the four statistics against the
nine ‘A’ settings under the five missing data scenarios for the II models

at the 0.5% significance level. When there is no missing data (under
scenario MS0), MCPPAT and MCPPATu are redundant as they give
the same results as PPAT and PPATu, respectively, and thus only two
power curves are given in Figure 2a. As MS0 represents a scenario
having maximally available data, the result from PPATu is treated as
the ‘gold standard’ and plotted in the results for the other scenarios
for ease of comparison. As expected, the gold standard achieves the
highest power in all nine ‘A’ settings, indicating that using information
from unaffected offspring can lead to gain in power with complete
data without inflated type I error (Figure 2a). When missing data
exist, PPATu generally have higher power than PPAT, and MCPPATu
generally have higher power than MCPPAT, further showing the
benefits of including unaffected offspring. It is also encouraging to see

Figure 3 Power comparison among four tests (the proposed PPATu and MCPPATu and the existing PPAT and MCPPAT statistics) for the CI models of the ‘B’

settings at the 1% significance level under five missing data scenarios: (a) MS0, complete data without any missing genotypes; (b) MS1, data missing the

genotype of individual 1; (c) MS3, data missing the genotype of individual 3; (d) MS6, data missing the genotype of individual 6; and (e) MS1,6, data

missing the genotypes of both individuals 1 and 6.
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that, when there are missing genotypes, MCPPATu can recover the
missing information well to achieve power almost reaching the gold
standard (Figures 2b–e). Plots for the other combinations of
imprinting models and significant levels for the ‘A’ settings can be
found in the Supplementary Materials (Supplementary Figures S1–
S5). The observation above for the II models at the 0.5% significance
level applies to these figures as well.
To investigate whether the power gain with including unaffected

individuals can still be realized for models with a much smaller
prevalence, we carry out a power study under the ‘B’ settings. Results
for the CI models at the 1% significance level are plotted in Figure 3.
From these plots, we still see substantial power gains when unaffected
individuals are included for all missing schemes, although the
magnitudes of gains are all smaller compared to the corresponding
‘A’ settings. In general, the properties observed in the ‘A’ settings also
apply to the ‘B’ settings. Most importantly, MCPPATu can recover
almost all the missing information to achieve power close to that of
complete data even when the prevalence is small. These observations
also apply to the ‘B’ settings with the other combinations of
imprinting models and significance levels (Supplementary Figures
S6–S10) and the ‘C’ settings where the prevalence can be even lower
(Supplementary Figures S11–S16).

DISCUSSION

Since epigenetic factors such as genomic imprinting may contribute
to the explanation of missing heritability of complex traits, there is an
increasing interest in factoring in such an effect in the study of
disease-marker association. To contribute to this endeavor, in this
paper, we propose a test for detecting an imprinting effect and show
that it is generally more powerful than existing methods that are
current state of the art. Our proposed MCPPATu test makes use of
data from unaffected offspring in general pedigrees to enrich the
information for testing for imprinting. Further, through MC sam-
pling of unobserved genotypes conditioning on the observed ones,
MCPPATu appears to be able to recover a great deal of the missing
information, leading to even greater gain in power. Extensive
simulation under 72 different scenarios with a wide range of
prevalence shows that MCPPATu is more powerful than existing
methods with well controlled type I error, even when genotypes are
missing for a large proportion of cases. Under certain missing data
scenarios, the gain in power through MC sampling can reach over
100% (Figure 2). To demonstrate practical feasibility of the
method, we applied MCPPATu to a rheumatoid arthritis dataset.
The results also point to potentially substantial increase in
power given the large amount of missing genotype in the data
(Supplementary Materials A.2).
To combine information from both affected and unaffected off-

spring, a weight needs to be specified. In our simulation results
presented in this paper, we set the weight to be the population
prevalence of the disease, which is typically available for common
diseases from epidemiology studies (e.g. Supplementary Table S1).
Further investigation with estimated population prevalence from the
data for the ‘B’ settings show similar performances (Supplementary
Table S7 and Supplementary Figures S17–S22). To show that utilizing
unaffected offspring with other weights can also lead to increase in
power without compromising type I error rate, we used the weight
w¼ 1/2 (the most extreme in some sense since the unaffected
component is weighted as much as the affected component) for the
‘A’ settings. The results, presented in Supplementary Figures S23–S28
and Supplementary Table S8, show that including unaffected indivi-
duals in the analyses still lead to an increase of power without

compromising the type I error even with this extreme setting of the
weight. Nevertheless, using population prevalence as the weight is
preferred as the results indicate greater power gains (Figure 2,
Supplementary Figure S1–S5 versus S23–S28).
For performing MC sampling of missing genotypes, we need allele

frequencies if there is missing founder genotypes. For the procedure
to be valid, an important assumption is that the underlying
population is homogeneous; that is, all pedigrees in the dataset are
from the same population. Ding et al.21 showed that when population
stratification exists but the sub-populations are not very different in
some key factors, the effect of ignoring the population structure may
be minimal. However, if the sub-populations are very different in
some key aspects, such as causing different missing patterns, then the
impact could be large.
In this article, we focus on considering genetic information for each

marker separately. However, it is possible to extend the method to
consider haplotypes encompassing multiple markers as in previous
studies.22–24 Further, imprinted loci are believed to interact with one
another owing to imprinted gene network;20,25,26 therefore, it is of
considerable interest to explore the potential of extending PPATu to
that setting. For example, if two loci interact in a recessive manner to
express epistatic imprinting, PPATu can be modified to capture this
type of imprinting by revising the expression for excess/deficiency of
transmission of the alleles by considering both loci together.

Web resources
The URLs for data presented herein are as follows:

MCPDT, http://www.stat.osu.edu/Bstatgen/SOFTWARE/MC-PDT/;
R Project for Statistical Computing, http://www.r-project.org/.
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