
ORIGINAL ARTICLE

Polymorphisms in methylenetetrahydrofolate
reductase gene and risk of non-Hodgkin lymphoma
in a multi-ethnic population

Sujatha Suthandiram1, Gin Gin Gan2, Shamsul Mohd Zain1, Batoul Sadat Haerian1, Ping Chong Bee2,
Lay Hoong Lian3, Kian Meng Chang4, Tee Chuan Ong4 and Zahurin Mohamed1

An imbalance in folate metabolism can adversely affect DNA synthesis and methylation systems which can lead to

susceptibility to non-Hodgkin lymphoma (NHL). Whether single nucleotide polymorphisms (SNPs) and their haplotypes in the

methylenetetrahydrofolate reductase (MTHFR) are associated with NHL, remain inconclusive. We investigated the association

between MTHFR C677T and A1298C SNPs and NHL risk in a population which is made up of Malay, Chinese and Indian

ethnic subgroups. A total of 372 NHL patients and 722 controls were genotyped using the Sequenom MassARRAY platform.

Our results of the pooled subjects failed to demonstrate significant association between the MTHFR C677T and A1298C SNPs

with NHL and its subtypes. The results were in agreement with the previous meta-analyses. In the Indian ethnic subgroup

however, single locus analysis of MTHFR A1298C appears to confer risk to NHL (Odds ratio (OR) 1.91, 95% confidence

interval (95% CI) 1.22–3.00, P¼0.006). The risk is almost doubled in homozygous carrier of MTHFR 1298CC (OR 4.03,

95% CI 1.56–10.43, P¼0.004). Haplotype analysis revealed higher frequency of CC in the Indian NHL patients compared

with controls (OR 1.86, 95% CI 1.18–2.93, P¼0.007). There is lack of evidence to suggest an association between MTHFR

C677T and A1298C with the risk of NHL in the Malays and Chinese. In the Indians however, the MTHFR A1298C confers

risk to NHL. This study suggests ethnicity modifies the relationship between polymorphisms in the folate-metabolizing gene

and NHL.

Journal of Human Genetics (2014) 59, 280–287; doi:10.1038/jhg.2014.19; published online 20 March 2014

Keywords: folate; haplotype; MTHFR; non-Hodgkin’s lymphoma; polymorphism

INTRODUCTION

Non-Hodgkin’s lymphoma (NHL) is a heterogeneous malignancy
with a wide variety of subtypes with different incidence patterns.1

It ranks among the ten most commonly diagnosed cancer and
accounts for B3–4% of all cancers worldwide, with an estimated
355 900 new cases and 191 400 deaths in 2008.2,3 NHLs are derived
from malignant B cells, T cells or natural killer cells, in which the first
make up most of the NHLs.4,5 Of these malignant B cells, diffuse large
B-cell lymphoma and follicular lymphoma are the two most common
subtypes.6 The specific aetiologies of NHL are unknown.7 What
are known today, autoimmune disorders, immunodeficiency
state, infectious agents (human immunodeficiency virus—HIV,
Epstein-Barr virus—EBV and human T-cell lymphotropic/leukemia
virus-1—HTLV-1) and exposure to chemical/pharmaceutical agents
(benzene, ethylene oxide, azathioprine and cyclosporine)1,7–10 are
among the confirmed risk factors of NHL. Racial differences in the

incidence of NHL have given a notion that susceptibility to NHL has
a genetic cause.11

Increased nutrients intake including folate has been shown
to reduce the risk of NHL and its subtypes.12 5,10-
Methylenetetrahydrofolate reductase (MTHFR) is an important
folate pathway enzyme that functions in DNA synthesis and
methylation systems.13 Functional polymorphisms in the MTHFR
gene encoding this enzyme have been associated with NHL.14,15

Among these polymorphisms, MTHFR C677T and A1298C are the
most studied. The C-to-T transition at the nucleotide position 677
in exon 4 (Ala222Val), causes a thermolabile enzyme of reduced
activity resulting in decreased folate concentration and increased
homocysteine levels in the serum. A 30% reduced enzyme activity was
reported in 677CT heterozygous carriers and the percentage is
doubled (60%) in homozygous TT.16 The A-to-C transversion at
nucleotide 1298 (Glu429Ala) may also decrease MTHFR activity.17
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MTHFR enzyme catalyzes the irreversible conversion of 5,10-
methylenetetrahydrofolate (5,10-methylene THF) to 5-methyltetrahy-
drofolate (5-methyl THF), the main circulating form of folate, which
acts as the methyl donor for the remethylation of homocysteine to
methionine, which is further converted to S-adenosylmethionine.14

The 5,10-methylene THF donates a methyl group to uracil, converting
it to thymidine, by thymidylate synthase (TS) enzyme. Lower
MTHFR activity can cause optimal DNA synthesis by reducing the
uracil misincorporation rate, a cause of double-strand breaks during
uracil excision repairing processes.18 Lower availability of 5-methyl
THF may decrease the synthesis of methionine and consequently of
S-adenosylmethionine, which is involved in the cellular methylation
processes. The decreased MTHFR activity leads to increased plasma
levels of homocysteine and decreased levels of 5-methyl THF
formation. The lack of 5-methyl THF may cause hypomethylation
of important genes, which may then activate cell growth and promote
malignant transformation.19

There are a number of conflicting results in the study of MTHFR
C677T and A1298C polymorphisms over the past decade. Furthermore,
most of the published reports are coming from the Western population.
We therefore investigate the association of these functional single
nucleotide polymorphisms (SNPs) in folate-metabolizing gene MTHFR
with risk of NHL in a Malaysian population. Our study provides a
multi-ethnic setting comprising Malays, Chinese and Indians, each of
which are presumably of different genetic pool, hence giving an
opportunity to study ethnic differences and their risk to NHL.

MATERIALS AND METHODS

Subjects
This is a case-control study consisting of a total of 1094 subjects, including 372

(34%) patients with NHL and 722 (66%) controls. The patients and controls

were matched by gender and age. Ethnicity of the subjects was confirmed by

verifications of no mixed marriages for at least three generations. This study

was a part of collaboration between the University Malaya Medical Centre

(UMMC) and Ampang Hospital, both of which are located in the city of Kuala

Lumpur, Malaysia. Patients were recruited from hematology clinics between

September 2010 and December 2012. Patients were eligible for inclusion if they

were at least 18 years old, were not afflicted with other active malignancies and

were not infected by HIV. The controls were unrelated healthy blood donors

based on family history and following cross-checking from the patients’

database. A standardized extraction template was used to collect demographic

details, medical history and types of NHL from the medical records. NHL

types were classified according to the World Health Organization (WHO) 2008

classification system. At the time of peripheral blood collection, written

informed consent was given by all subjects. The study protocol was approved

by the medical ethics committees of both centers.

Sequenom MassARRAY genotyping
Genomic DNA was extracted from the collected blood samples using a

QiAamp DNA Blood Mini Kit (Qiagen, Hilden, Germany). The quality of

DNA was checked consistently to confirm that 260/280 and 260/230

absorbance ratios exceed 1.8 to indicate high-quality of DNA. The genomic

DNA was then diluted to 10 ngml�1 and 20 ngml�1, respectively for sample

and duplicate sample and then placed in the well. A volume of 1ml of DNA

were used in every amplification reaction. The MTHFR C677T (rs1801133)

and A1298C (rs1801131) polymorphisms were genotyped at the University of

Hong Kong, Genome Research Centre using the Sequenom MassARRAY

technology platform with the iPLEX GOLD chemistry (Sequenom, San Diego,

CA, USA) according to the manufacturer’s protocol. MassARRAY AssayDesign

software package (v4.0) (Sequenom) was used to design the specific assays with

proximal SNPs filtering. Quality of the PCR fragment amplification and

extension primer specificity was checked before to running the reaction.

Residual nucleotides were dephosphorylated before to the iPLEX Gold

reaction. Based on a single-base extension, reaction products were desalted

with SpectroClean resin (Sequenom), and 10 nl was spotted onto the Spectro-

CHIP (Sequenom) using the MassARRAY Nanodispenser (Sequenom). Mas-

sARRAY Analyzer Compact MALDI-TOF mass spectrometer (Sequenom) was

used to determine the mass. The MassARRAY Typer 4.0 software was used for

proper data acquisition and analysis. Genotypes were called after cluster

analysis using the default setting of Gaussian mixture model. Inspection of the

clusters was done to ensure a clear cluster separation with good signal to noise

cut-off. A manual review was done to further clarify uncertain genotype calls.

Assay with o80% call rate within the same SpectroChip was considered failed.

A blank and five duplicates were introduced as quality controls. SpectroChip

with more than 25% call rate in the blank control or with o99.5%

concordance in duplicate checks along with more than 10% call rate in blank

check were considered to have failed and would be required to be repeated.

Statistical analysis
All values are presented as mean±s.d. for continuous data and as percentages

for categorical data. A goodness-of-fit w2-test was used to assess whether each

individual variant was in equilibrium at each locus in the population (Hardy–

Weinberg equilibrium). Deviation from Hardy–Weinberg equilibrium was set

at default Po0.05. Although gender and age were matched, a multivariate

analysis reconfirmed no significant contribution of gender and age in the

analysis. Association of allele was performed using logistic regression. In order

to avoid false discoveries owing to population stratification, the association

analysis was performed for each marker (SNP/haplotype) separately, for each

ethnic group. The overall estimate was evaluated using multiple logistic

regression with ethnicity as a cofactor. Correction for multiple testing was

performed using Bonferroni method. The calibration and fit of the model were

assessed using Hosmer–Lemeshow goodness-of-fit and receiver-operating

characteristic curves. All statistical tests were two-sided and results were

considered significant if Po0.05. All statistical analyses were performed using

the Statistical Package for the Social Sciences (SPSS) software version 21.0

(SPSS, IBM Corp., Chicago, IL, USA). Linkage disequilibrium and haplotype

analyses for the MTHFR C677T and A1298C were performed using Haploview

4.2 program (http://www.broad.mit.edu/mpg/haploview). The P values were

generated using 100 000 permutations. The OR of the haplotypes was

calculated using R software version 2.11.1 (http://www.R-project.org).

RESULTS

The patients’ demographic information is summarized in Table 1. The
372 patients consisted of 199 Malays, 121 Chinese and 52 Indians.
Out of the 722 controls, 307 were Malays, 265 Chinese and 150
Indians. Male patients (59%) were more than female (41%) and the
mean age of the subjects was 48 years. Majority of the patients had
diffuse large B-cell lymphoma (51%) and followed by follicular
lymphoma (13%). Of the 372 NHL patients, 332 (89%) were B-cell
NHL and 40 (11%) were T-cell NHL. Table 2 lists the distribution of
NHL histological subtypes among patients.

Table 3 shows the frequencies and association between MTHFR and
SNPs with overall NHL. All genotypes were in Hardy–Weinberg
equilibrium for both patients and controls, as well as when stratified
according to ethnicity. No significant association was found between
the SNPs and overall NHL for the pooled subjects. Similar trend was
observed for diffuse large B-cell lymphoma (Table 4) and follicular
lymphoma (Table 5). The association was however observed for the
MTHFR A1298C in the Indians after ethnic stratification (OR 1.91,
95% CI 1.22–3.00, P¼ 0.006). Patients bearing single risk allele C of
the MTHFR A1298C have 1.91 risk of NHL. The risk is doubled when
they have a homozygous CC genotype (OR 4.03, 95% CI 1.56–10.43,
P¼ 0.004). The P-value remained significant after correction of
multiple testing (0.05/2). No association was found in all the three
ethnic subgroups for MTHFR C677T.

Tables 3–5 also demonstrated the distribution of the haplotype
frequency. There are four possible combination of haplotypes where
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only three (CA, CC and TA) were presented with frequencies of above
5%. Haplotype TC (o5%) was not taken into account in the analysis
as result generated will not be meaningful. The highest frequency was
observed for haplotype CA, followed by CC and TA, and this was seen
in all the three ethnic subgroups. Haplotype analysis revealed a
significantly higher frequency of the haplotype CC in the Indian
patients compared with controls (P¼ 0.007). Although we did not see
significant finding for single marker of MTHFR C677T, combination
of markers (haplotype) showed increased susceptibility to NHL
(OR 1.86, 95% CI 1.18–2.93, P¼ 0.007). Interestingly, both marker
SNPs were found to be in strong linkage disequilibrium (D0 ¼ 0.83).

DISCUSSION

In the present study, we investigated the associations between the
MTHFR C677T and A1298C polymorphisms and susceptibility to
overall NHL and its subtypes in the Malaysian tri-ethnic population.
Our results showed no significant association for both SNPs in the
pooled subjects, however significant difference was shown for MTHFR
A1298C in the Indians.

Single marker SNP analysis of MTHFR C677T failed to demon-
strate any significant association with susceptibility to NHL in the
pooled population. This finding is in contrast with reports from
the Koreans20 and Italians,13 but is in the direction with many
other published reports; West Siberians,21 Jordanians,22 Swedish,23

Russians,24 Saudi-Arabians,25 Turkish,26,27 French,28 Germans,29,30

Egyptians,17 British,14 Italians31 and Spanish.32 The difference in the
findings probably reflects the differences in genetic pools between
various populations studied.

Our result of the MTHFR A1298C in the pooled subjects was
supported by most of the studies which found no significantT
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Table 2 Distribution of histological subtypes among cases

Histological subtype Patient (%), n¼372

Non-Hodgkin’s lymphoma (NHL)

B-cell NHL

Diffuse large B-cell lymphoma (DLBCL) 191 (51)

Follicular lymphoma (FL) 50 (13)

Other B-cell NHL subtype

Chronic lymphocytic leukemia (CLL) 36 (10)

Burkitt lymphoma (BL) 9 (3)

Mantle cell lymphoma (MCL) 9 (3)

Lymphoplasmacytic lymphoma (LPL) 10 (3)

Hairy cell leukemia-variant (HCL-V) 6 (2)

Othersa 21 (6)

Total 332 (89)

T-cell NHL

Adult T-cell leukemia (ATLL) 15 (4)

Anaplastic large cell lymphoma, T-cell (ALCL) 10 (3)

Peripheral T-cell lymphoma, NOS (PTCL, NOS) 6 (2)

Extranodal NK/T-cell lymphoma, nasal type (ENNKTL) 4 (1)

Othersb 5 (1)

Total 40 (11)

aOthers: Marginal zone lymphoma (MZL), Extranodal marginal zone lymphoma of mucosa-
associated lymphoid tissue (MALT lymphoma) (MALT), Splenic marginal zone lymphoma
(SMZL), Small lymphocytic lymphoma (SLL), Primary cutaneous follicle center lymphoma
(PCFCL) and Primary mediastinal (thymic) large B-cell lymphoma (MLBCL).
bOthers: Angioimmunoblastic T-cell lymphoma (AILT), Aggressive NK-cell leukemia (ANKL),
Mycosis fungoides (MF), Primary cutaneous T-cell lymphoma, NOS (PCTCL, NOS) and
Subcutaneous panniculitis-like T-cell lymphoma (SPTCL).
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association to NHL; West Siberians,21 Swedish,23 Russians,24 French,28

British,14 Italians13 and Germans.33 Studies by the Jordanians,22

Koreans20 and Egyptians17 however demonstrated positive
significant findings. Surprisingly, we were able to replicate these
Middle East and Eastern reports in our Indian ethnic subgroup. The
risk of NHL in our Indians is however greater than the others (1.91,
1.63, 1.20 and 0.365, for the Malaysian Indians, Jordanians, Koreans
and Egyptians, respectively). The significant association in the
Malaysian Indians is in contrast to the absence of such association
in the Malays and Chinese. In the 1800s, the Malaysian Indians
migrated to Malaysia from Southern India.34 Studies have suggested
that the Indians from India were proto-Asian origin with West
Eurasian admixture, therefore giving them the genetic affinity towards
both Asian and European.11,35 It is known that the highest incidence
rates of NHL is in the USA, New Zealand and Australia, and Europe,
and the lowest in the Eastern and South Central Asia.36 Furthermore,
the MTHFR A1298C C-allele and CC genotype frequencies were
shown to be significantly higher among South Indians.37

Despite showing no single marker association between MTHFR
C677T and NHL, association was found for the haplotype
(677C–1298C) in the Indians. This finding is anticipated given that
the R-squared value is not that high between C677T and A1298C
(HapMap 0.184 and 0.096), for JPTþCHB and South Indian
population, respectively. Both SNPs were in strong linkage
disequilibrium, but were nevertheless lower than that reported in
the HapMap. This could be owing to the relatively low sample size in
this study and population-specific differences compared with the
HapMap data. Another possible explanation could be that the
frequency of the MTHFR A1298C minor allele was similar between
Malaysian Indians (0.37) and Gujarati Indians (0.39) from the
HapMap database (www.hapmap.org). The MTHFR C677T minor
allele on the other hand, was lower in the Malaysian Indians (0.08) as
compared with the Gujarati Indians (0.16).

The genetic effect alone is insufficient to explain the NHL risk. The
differences in NHL susceptibility in various populations have implied
the significant contribution of genetics. However, most of the Western
(Europeans/Caucasians) studies failed to demonstrate positive
associations,14,23,24,28–30,32,38 despite being the population with the
highest incidence rate (double or triple than the Eastern).3 This
indicates possible gene-environment interplay, such as diet, or
nutritional intake of folate and related vitamins. The MTHFR
677TT and 1298CC genotype leads to decreased levels of 5-methyl
THF for DNA methylation and increased 5,10-methylene THF
availability for DNA synthesis by thymidylate synthase (TS), which
protect cells from DNA damage.16,39 The decreased MTHFR activity
modifies the normal intracellular supply of folate substrates in favor
of precursors for nucleotide synthesis.40 This may provide a possible
mechanism by which, if sufficient levels of folate are available,
although MTHFR activity is low, there is adequate conversion of 5-
methyl THF for DNA methylation, whereas still shifting 5,10-
methylene THF toward the synthesis of deoxyuridine
monophosphate to deoxythymidine monophosphate and preventing
uracil incorporation as well as causing chromosomal damage. This
suggests that differences in folate availability may influence functional
effects of MTHFR polymorphisms.41 The addition of folate to foods
in Western countries may cover the impact of differential enzyme
actions along the folate metabolic pathway.12

There are several limitations and strengths of this study. The low
incidence of the disease in our study population has caused difficulty
in sampling, hence the relatively small study sample size. The
limitation in sample size is shared by most of the studies including

the European population which were found to be of high risk for
NHL. In spite of that, our study is presented with the total
number of NHL patients that are greater than 76% and 69% of the
studies, for MTHFR C677T and A1298C respectively. Our findings
in the pooled subjects did not show significant association
between the SNPs and NHL, and this was supported by the latest
meta-analysis.21 Although positive genetic association studies
between MTHFR SNPs and NHL has been shown for various
populations, when further investigated into different NHL
subtypes, the results have not always been in concordance for
the different populations. This could be owing to the differences
in pathogenesis of different NHL subtypes. Limitation is also
imposed by the relatively low sample size while trying to preserve
the genetic effect.19 In this study, gene effect alone seems to
provide a moderate effect on the association. A study that
measures both gene and environmental effects would provide a
better result and increase the confidence of the finding. However,
none of the studies to date has measured both gene and
environmental effects. A major strength of this study was the
ability to compare the association between MTHFR polymorphisms
and NHL among the three major ethnic groups in Malaysia, which are
also the main ethnic groups in Asia.42 This study provides data on the
low-risk population that is among the least studied.

In conclusion, this study suggests that ethnicity modifies the
relationship between MTHFR gene polymorphisms and NHL risk.
Future studies that incorporate both genetic and environmental
factors will be able to provide a better understanding on the outcome
of NHL. Since most of the studies are limited by sample size, a
genome-wide association study from multi-centers is necessary.
A meta-analysis that analyzes both the Western and Eastern popula-
tions separately will give a better picture on disease association with
regard to population difference.
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