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A stepwise likelihood ratio test procedure for rare
variant selection in case–control studies

Anthony YC Kuk1, David J Nott1 and Yaning Yang2

There is much recent interest in finding rare genetic variants associated with various diseases. Owing to the scarcity of rare

mutations, single-variant analyses often lack power. To enable pooling of information across variants, we use a random effect

formulation within a retrospective modeling framework that respects the retrospective data collecting mechanism of case–

control studies. More concretely, we model the control allele frequencies of the variants as random effects, and the systematic

differences between the case and control frequencies as fixed effects, resulting in a mixed model. The use of Poisson

approximation and gamma-distributed random effects results in a generalized negative binomial distribution for the joint

distribution of the control and case frequencies. Variants are selected by conducting stepwise likelihood ratio tests. The

superiority of the proposed method over two existing variant selection methods is demonstrated in a simulation study. The

effects of non-gamma random effects and correlated variants are also found to be not too detrimental in the simulation study.

When the proposed procedure is applied to identify rare variants associated with obesity, it identifies one additional variant not

picked up by existing methods.
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INTRODUCTION

Despite the success of genome-wide association studies in identifying
genetic variants associated with many diseases and traits,1 there are
still many common diseases that cannot be explained by common
genetic variants. Furthermore, the common variants identified
through genome-wide association studies often account for only a
small fraction of the heritability of the disease.2 This has led to
discoveries that some common diseases are caused by the aggregate
effect of multiple rare variants that individually have little impact. It
has also been reported that rare variants tend to be functional alleles
and have stronger effects on complex diseases than common variants.3

Recent advances in technology have made it possible to re-sequence
large stretches of a genome in a cost-effective way. With the advent of
the next-generation sequencing data, the time is ripe for rare variant
analysis, and as a result there is a huge surge of papers on this topic.
The analysis of rare variants, however, presents many new

challenges. Most existing methods of data analysis are not designed
with rare attributes in mind and their naive application will lead to
imprecise estimates and tests of low power. To overcome this
limitation, various strategies have been proposed to handle rare
variant data, including collapsing,4 weighting,5 thresholding6 and
pooling.7,8 Neale et al.9 propose a C-alpha test based on comparing
the expected variance with the actual variance of the distribution of

allele frequencies. Lin and Tang10 propose the use of score-type tests,
and Wu et al.11 propose the sequence kernel association test within
the framework of a random variant effects model. All the above
procedures are concerned with testing the overall significance of a
collection of variants rather than variant selection that is the focus of
this article. Two rare variant selection procedures that we are aware of
are the ‘RARECOVER’ method proposed by Bhatia et al.,12 and the
increase in score statistic procedure proposed by Hoffmann et al.13 In
developing RARECOVER, Bhatia et al.12 propose taking the union of
rare genetic variants, which they define as those with minor allele
frequency (MAF) between 0.0001 and 0.1. The union variant is said to
have occurred if one or more of its component variants had occurred.
By taking their union, variants with low individual MAF are
combined to form a union variant with a higher frequency of
occurrence that is more amenable to conventional statistical
analyses. RARECOVER is basically a step-up greedy procedure
whereby at each step the variant that maximizes the Pearson’s
w2-statistic upon taking union with the variants selected so far in
the current set S (which is set to the empty set f initially) is added to
S if the increase in Pearson’s statistic exceeds a certain threshold c.
Bhatia et al.12 commented that the choice of c is not crucial, and they
used c¼ 0.5. We demonstrate that this choice of c is much too liberal,
leading to hugely inflated type I error and very high false selection
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rates. As a remedy, we propose a random permutation approach to
determine c for a given nominal level of the type I error. For data
collected from a prospective study, the unweighted version of the
procedure of Hoffmann et al.13 is based on statistics of the form

TS ¼

PN
i¼1

P
j2S

ðRij� �RjÞðDi � �DÞ
( )2

PN
i¼1

P
j2S

ðRij� �RjÞðDi � �DÞ
( )2 ;

where N is the sample size, Di the disease status of subject i,
i¼ 1,yN, �D ¼

PN
i¼1 Di=N , Rij¼ 1 if subject i has rare variant j,

�R:j ¼
PN

i¼1 Rij=N , and S is a subset of {1,y,J}. Hoffmann et al.13

interpreted TS as the score test statistic for testing H0: b¼ 0 in the
logistic model

logit PrðDi ¼ 1Þf g ¼ aþ b
X
j2S

Rij;

where S denote the set of variants included in the above model.
Similar to RARECOVER, Hoffmann, Marini and Witte’s SCORE
procedure is a step-up procedure whereby at each step, the variant
which maximizes the score test statistic is added to the current set S if
the increase in score statistic exceeds a certain threshold c. Again, we
will use the random permutation approach to determine c.
As useful information is at a premium for rare variant analysis, it is

clear that some kind of pooling of information is necessary. The way
we propose to do this is to treat the control frequencies of all the rare
variants, which are not of direct interest, as random effects that follow
a common distribution; and the effects of disease on the causal
variants that are of substantive interest as fixed effects, resulting in a
mixed model. Although mixed models have been used before in the
genome-wide association studies literature, they are mostly based on
the prospective14 approach of modeling the probability of disease
occurrence, given the genetic variants of an individual. We choose to
model instead the distribution of the genetic variants of a person
given his/her disease status that is more in line with the
retrospective14 nature of a case–control study. It will be shown in
the Materials and methods section that the use of Poisson approx-
imation and gamma-distributed random effects results in a general-
ized negative binomial distribution for the joint distribution of the
control and case frequencies. Variants are selected by conducting
stepwise likelihood ratio tests (LRTs) based on the generalized
negative binomial likelihood. Again, a random permutation approach
is used to determine the critical value to account for multiple testing.
The superiority of the proposed method over RARECOVER and
SCORE is demonstrated in a simulation study. When applied to
identify rare variants associated with obesity, the proposed stepwise
LRT procedure identifies one additional variant that is not picked up
by RARECOVER and SCORE.

MATERIALS AND METHODS
One hindrance in using the retrospective modeling approach (which focuses

on the distribution of the genetic variants given disease status) when there are

multiple variants is the dearth of distributions for multivariate binary/discrete

data. Fortunately, it is common in the rare variant literature to assume

independence between rare variants (RVs); see Li and Leal,4 Neale et al.,9

Bhatia et al.,12 and the references therein. With this independence assumption,

the retrospective approach is greatly simplified because we can model the allele

frequency given disease status one variant at a time.

Generalized negative binomial likelihood for the collapsed
frequencies
Suppose there are n0 controls, n1 cases and J rare genetic variants under

consideration. To focus on issues that are particular to rare variants, we

consider only RVs in our analysis that is also what Bhatia et al.12 did. As rare

mutations are infrequently observed, for each individual and at each marker,

we will combine the scenario of having ‘two mutant alleles’ with that of ‘one

mutant allele only’ into a merged category of ‘at least one mutant allele’ in the

hope that the merged category will have slightly larger frequency than the

original MAF. Another advantage of merging genotypes 1 and 2 is that it frees

us from making the assumption of Hardy–Weinberg equilibrium that is highly

unlikely to be true for rare alleles. Thus, for j¼ 1,y,J we define Yj0 as the

number of individuals among the n0 controls who have ‘at least one

occurrence’ of the jth RV. Similarly, Yj1 is the number of individuals among

the n1 cases who have ‘at least one occurrence’ of the jth RV. To respect the

data generating mechanism of case–control studies, we adopt a retrospective

approach to model the data as

Yj0 � Binomial n0; pj0
� �

ð1Þ

independently of

Yj1 � Binomial n1; pj1
� �

; ð2Þ

given the probabilities pj0 and pj1 of at least one occurrence of the jth RV for

the controls and cases, respectively. We refer to Yj0 and Yj1 as the collapsed

frequencies in this paper. As explained earlier, we assume independence

between RVs that means that the (Yj0,Yj1) for different j are independent. Now

rather than treating pj0 and pj1 as fixed parameters, and there are lots of them if

J is large, we reduce the number of parameters by treating p10,p20,y,pJ0 as

random effects generated from a common distribution that enables pooling of

information across variants. The fact that the alleles are rare means that the pJ0
and pJ1 are small, and so if the sample sizes n0 and n1 are reasonably large, the

two binomial distributions given by (1) and (2) can be approximated by

Poisson distributions to yield

Yj0 � Poisson rj0
� �

; ð3Þ

where rj0¼ n0pj0, and

Yj1 � Poisson rj1
� �

; ð4Þ

with rj1¼ n1pj1¼ fn0pj1, and the factor f¼ n1/n0 reduces to 1 when n0¼ n1. For

the sake of mathematical convenience, we will assume that

rj0 � gammaða; lÞ ð5Þ

independently, which implies that marginally, the collapsed control frequencies

Yj0, j¼ 1,y,J, are independently distributed according to the negative

binomial distribution,15 with probability function

PðYj0 ¼ yÞ ¼ Gðyþ n� 1Þ
y !Gðn� 1Þ

1

1þ nm

� �n� 1

nm
1þ nm

� �y

¼ nyGðyþ n� 1Þ
y !Gðn� 1Þ

1

1þ nm

� �n� 1

m
1þ nm

� �y

ð6Þ

where m¼ a/l¼ E(Yj0) is the marginal mean of Yj0, and v¼ a�1 is the

dispersion parameter of the negative binomial distribution. Now let

dj ¼ log pj1
� �

� log pj0
� �

¼ log
n0pj1

rj0

� �

be the difference between the case and control probabilities for RV j on the log

scale, so that rj1¼ n1pj1¼ fn0pj1¼ f exp(dj)rj0. Note that dj40 corresponds to a

deleterious effect of the variant, and djo0 a protective effect, and f¼ n1/n0 is a

factor to account for unequal sample sizes. As the dj are of substantive interest,
we will treat them as fixed rather than random effects. According to (4), Yj1 is

conditionally Poisson, and under the log link,

log rj1
� �

¼ log fn0pj1
� �

¼ log f þ dj þ logðrj0Þ

is a linear function of both the fixed effects dj and logarithm of the gamma-

distributed random effects rj0. This results in what is called a generalized linear

mixed model. As the random effects rj0, j¼ 1,y,J, are independent, it follows

that marginally, the vectors (Yj0,Yj1) are also independent. Generalizing (6),
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the joint distribution of (Yj0,Yj1) is given by

PðYj0 ¼ y0;Yj1 ¼ y1Þ

¼ nyj0 þ yj1Gðy0 þ y1 þ n� 1Þ
y0 ! y1 !Gðn� 1Þ

1

1þ nmð1þ fedj Þ

� �n� 1

m
1þ nmð1þ fedj Þ

� �y0 mfedj

1þ nmð1þ fedj Þ

� �y1

:

ð7Þ

Stepwise LRTs
Within the earlier described framework, the variant selection problem that we

are interested in can be formulated as finding those dj that are not equal to 0.

Our approach to variant selection is to conduct stepwise LRT in the following

way. We begin with testing the complete null hypothesis

Hf : d1 ¼ � � � ¼ dJ ¼ 0

against the alternative

Hfkg : dk 6¼ 0; dj ¼ 0 for j 6¼ k

one k at a time using the LRT, and we select the rare variant that maximizes the

likelihood ratio statistic provided the value of this maximized statistic is greater

than some critical value or cutoff c. We will postpone discussion of the choice

of c to the next section and treat c as given for our present discussion. After we

have included a variant, we will try to add one more variant by maximizing the

likelihood ratio statistic of the current subset versus the current subset plus one

more RV. The procedure stops when the maximized likelihood ratio statistic is

oc. To make this operational, we need to maximize the marginal likelihood

function under the generic null hypothesis

H0 : dj 6¼ 0 for j 2 S; dj ¼ 0 for j =2 S;

where S denotes the subset of RVs with non-zero dj in the current model. The

likelihood function under H0 based on the observed frequencies yj0 and yj1 is

given by the following product of terms like (7)

likðH0Þ ¼
YJ
j¼1

PðYj0 ¼ yj0;Yj1 ¼ yj1Þ

¼
Y
j2S

nyj0 þ yj1Gðyj0 þ yj1 þ n� 1Þ
yj0 ! yj1 !Gðn� 1Þ

1

1þ nmð1þ fedj Þ

� �n� 1

m
1þ nmð1þ fedj Þ

� �yj0 mfedj

1þ nmð1þ fedj Þ

� �yj1

�
Y
j=2S

nyj0 þ yj1Gðyj0 þ yj1 þ n� 1Þ
yj0 ! yj1 !Gðn� 1Þ

1

1þ nmð1þ f Þ

� �n� 1

m
1þ nmð1þ f Þ

� �yj0 mf
1þ nmð1þ f Þ

� �yj1

:

To obtain the maximum likelihood estimates m̂0; n̂0 and d̂j(jAS) of the

parameters under H0, we differentiate the log-likelihood with respect to m, v,
and dj, jAS, and set them to 0. The Newton–Raphson algorithm is used to

solve these score equations.

The generic alternative hypothesis under our stepwise setup is

H1 : dj 6¼ 0 for j 2 S0; dj ¼ 0 for j =2 S0;

where S0 ¼ S,{k} for some keS. The likelihood function lik(H1) under this

alternative hypothesis has the same form as lik(H0) given above, but with S

replaced by S0 ¼ S,{k}. The maximum likelihood estimates of the parameters

m, v, and dj, jAS0 ¼ S,{k}, can again be obtained using the Newton–Raphson

algorithm. The LRT statistic of H0 against H1 is given by

W ¼ 2 logfl̂ikðH1Þg� logfl̂ikðH0Þg
� �

;

where l̂ik(H1) and l̂ik(H0) are the maximum values of lik(H1) and lik(H0)

respectively.

Choice of critical value
As the hypotheses being tested are nested, the LRT statistic Wk¼Wfvs{k} for

testing the initial complete null hypothesis Hf: d1¼ � � � ¼ dJ¼ 0 versus H{k}:

dka0; dj¼ 0 for jak is distributed asymptotically like w21 under Hf, and so

setting c¼ 3.84 will control the asymptotic type I error at level 0.05 one test at

a time, but the familywise error rate is not controlled at 0.05 because a variant

will be selected at stage 1 if the maximal statistic M¼ max
1pkpJ

Wk is 4c.

This implies the selection of at least one variant because more variants could

have been selected at the subsequent stages of the stepwise procedure. Thus,

the type I error is PHf (M4c). The null distribution of the maximal statistic

M¼ max
1pkpJ

Wk is, however, quite complicated because the statistics

W1,W2,y,WJ are not independent even when the variants are. The use of

Bonferroni inequality leads to an overly large critical value. We propose instead

the following permutation approach to find the critical value adaptively.

Represent the observed data by an J by (n0þ n1) matrix Y¼ {yji}, where yji¼ 1

if the ith individual has at least one copy of the jth RV, and yij¼ 0 otherwise.

We can assume without loss of generality that i¼ 1,y,n0 correspond to the

controls, and i¼ n0þ 1,y,n0þ n1 correspond to the cases, so that Yj0¼Pn0
i¼1 yji and Yj1¼

Pn0 þ n1
i¼n0 þ 1 yji are the control and case frequencies, respec-

tively. The permutation approach operates as follows.

Step 1: Generate a random permutation r(1),y,r(n0þ n1) of 1,y,n0þ n1.

Step 2: Compute Y�
j0 ¼

Pn0
i¼1 yj;rðiÞ and Y�

j1 ¼
Pn0 þ n1

i¼n0 þ 1 yj;rðiÞ for j¼ 1,y,J.

Step 3: For k¼ 1,y,J re-compute the likelihood ratio statistic for testing

S¼f versus S¼ {k} using the permuted frequencies Y�
j0,Y

�
j1,j¼ 1,y,J. Denote

that by W�
k , and let M*¼ max

1pkpJ
W�

k :

Repeat the above procedure independently B times to obtain M�
1 ; . . . ;M

�
B.

For a nominal type I error of e, we will choose c to be the upper 100e empirical

percentile of M�
1 ; . . . ;M

�
B. To save computing time, we use B¼ 100 that seems

to do a reasonable job in our simulation study. With the aim of filtering the list

to a manageable but sufficiently rich set of RVs for further investigation and

confirmatory study, we recommend a relatively liberal nominal type I error

such as 0.1 or 0.2 (because of the inherent problem of insufficient sample size

for rare mutations) so as to select more variants at the expense of a possible

increase in false selection rate, which hovers B15–30% in our simulation

studies to be reported later. An alternative to the permutation approach is the

bootstrap.16 The way the bootstrap differs from the permutation approach is

that r(1),y,r(n0þ n1) are now obtained by sampling with replacement n0þ n1
times from 1,y,n0þ n1. We do not expect sampling with or without

replacement to make a big difference, and hence we expect the permutation

and bootstrap approach to produce similar critical values. This turns out to be

the case in our real data examples.

To have a fair comparison between the proposed stepwise LRT procedure

with RARECOVER and SCORE, we ought to control the type I error of all

three procedures at the same level. Bhatia et al.12 recommended the use of

c¼ 0.5. Based on the evidence of our simulation study (not shown here to save

space), this choice of c is much too liberal and grossly over-selects the number

of variants with false selection rates easily reaching 70% or more. Hoffmann,

Marini and Witte13 seem to suggest the use of c¼ 0 that also over-selects. The

solution that we propose to overcome this problem is again to use the random

permutation approach to determine the cutoffs for all three procedures.

RESULTS

Selection of rare variants associated with obesity
Against the background that blockade of the endocannabinoid
receptor reduces obesity and improves metabolic abnormalities, the
Comprehensive Rimonabant Evaluation Study of Cardiovascular
ENDpoints and Outcomes (CRESCENDO) clinical trial (trial number
NCT00263042 in ClinicalTrials.gov) was conducted to assess whether
rimonabant, a cannabinoid-1 receptor blocker, would improve major
vascular event-free survival. The subjects in this study are patients
with abdominal obesity and with previously manifested or increased
risk of vascular disease. More details about the study design and
protocol can be found in http://clinicaltrials.gov/ct/show/
NCT00263042 and Topol et al.17 Our concerns here are not on
cardiovascular outcomes, but on finding rare genetic variants that are
associated with obesity. Out of 2958 Caucasian individuals aged 55
years or older in the CRESCENDO cohort, Harismendy et al.18

selected individuals at the two extreme ends of the body mass
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index for DNA sequencing. In the end, 143 individuals (73 men and
70 men) with body mass index440 kgm�2 were selected as the cases
(obese persons); and 146 individuals (74 men and 72 women) with
body mass index o30 kgm�2 were selected as the controls. So the
selected samples are balanced in gender. The DNA samples of the
cases and controls were re-sequenced around two genes, FAAH and
MGLL, known to be involved in endocannabinoid metabolism. Bhatia
et al.12 also made use of this data set to illustrate their RARECOVER
procedure, and we extracted the data from their online supplementary
materials. Apparently, some new cases and controls have been added
because the data online consist of 148 cases and 150 controls that our
analysis will be based on. For each rare variant in the FAAH and
MGLL regions, Table 1 lists the collapsed frequencies (that is, the
number of individuals with at least 1 occurrence of the rare variant)
among the 148 cases and the 150 controls. The variants in bold type,
16 of them in the FAAH region and 12 in the MGLL region, were
those selected by Bhatia et al.12 using RARECOVER with critical value
c¼ 0.5. Among the 16 RVs selected by RARECOVER in the FAAH
region, the case versus control frequencies are 1:0 for 12 of them.

Likewise, 6 of the 12 RVs selected by RARECOVER in the MGLL
region have frequency comparison of 1:0. It is hard to justify in our
view this mass selection of RVs, each of which occurs only once in the
entire sample of 148 cases. As commented earlier, it is better to try to
control the familywise type I error by using the permutation approach
to determine the critical value. We will do this for all three selection
procedures: stepwise LRT, RARECOVER and SCORE.

Rare variants in the MGLL and FAAH regions
Even though it is commonly believed that RVs are at linkage
equilibrium (that is, occur independently), we should check whether
this assumption holds for the data at hand. One way to test whether
two RVs are at linkage disequilibrium (LD) is to compute their
correlation r from a sample of n individuals. As the data are bivariate
binary rather than bivariate normal, we do not use the usual test
statistic (n�2)� r2/(1�r2) to test the significance of r. Rather, we use
the Pearson test of independence in the corresponding 2� 2 table of
frequencies, which for the present case of binary variables, is
numerically equal to nr2. As we are dealing with RVs, the expected
frequencies will be low in some cells, and the w2 approximation may
not be accurate. As a remedy, we use the option provided in the R
function ‘chisq.test’ to compute P-values by B¼ 10 000 Monte Carlo
simulations. We consider the MGLL region first, with 25 RVs in this
region, there are 25C2¼ 300 pairs of RVs to be tested for LD. To
correct for multiple testing, we use Bonferroni’s correction and
declare LD for a pair of RVs only when the P-value is o0.05/
300¼ 0.000167. Of all the 300 pairs of correlations, only the
correlation between RV6 and RV7 is declared significant by Bonfer-
roni’s method (n¼ 298, r¼ 0.913, P-value¼ 0.0001). It may not be
appropriate to combine the cases with controls to test for LD between
two RVs because there may be a systematic difference between the
case and control frequencies, but the same conclusion is reached if we
test LD using the control data (n¼ 148) or the case data only
(n¼ 150). Looking more closely at RVs 6 and 7, out of the total of
298 individuals, the two variants occur simultaneously for 11
individuals, and separately for only two individuals (one for each
variant), with neither variant occurring for the remaining 285
individuals. Furthermore, the position of the two variants differ only
by one (chr3:129031590 versus chr3:129031591), and so they are in
tight LD. Thus, we drop RV7 (with frequencies 9:3) and keep RV6
(with frequencies 10:2) in our analysis. RVs 19 and 20 also differ by
one position only, and they both have collapsed frequency ratio of 2:0.
However, their sample correlation is 0.497 only, with P-value 0.014
that is not significant when the familywise type I error is set at level
0.05. Thus, we keep both RVs 19 and 20 in our analysis. Ignoring
significance for the time being, the order in which RVs are selected by
stepwise LRT (Materials and Methods) can be found in the top panel
of Table 2. The first three are RVs 6, 3 and 1 with collapsed frequency
ratio of 10:2, 15:6 and 18:13, respectively. The associated stepwise
(maximal) likelihood ratio statistics are 7.22, 7.45 and 5.07. The
permutation-based critical values turn out to be 6.28 for nominal
level 0.1 and 6.90 for level 0.05. Thus, whether we aim to control the
type I error at 0.05 or 0.1, the proposed stepwise LRT procedure will
select RVs 6 and 3, but not RV1. As commented before, the bootstrap
critical values (6.01 and 6.90) are similar to the permutation critical
values and the conclusion remains unchanged for this example. We
will use the permutation approach to determine critical values in the
remainder of this paper.
The middle and lower panels of Table 2 show the results for

RARECOVER and SCORE using permutation-based critical values. It
can be seen that whether at level 0.05 or 0.1, both procedures select

Table 1 Case- versus control-collapsed frequency comparisons for 32

rare variants near the FAAH gene on chromosome 1 and 25 rare

variants near the MGLL gene on chromosome 3

FAAH MGLL

Variant Position

No. of case:

no. of control Variant Position

No. of case:

no. of control

1 chr1:46626821 1:0 1 chr3:129030872 18:13

2 chr1:46626861 1:0 2 chr3:129031044 1:0

3 chr1:46627175 1:0 3 chr3:129031107 15:6

4 chr1:46627232 1:0 4 chr3:129031199 0:1

5 chr1:46627269 1:0 5 chr3:129031511 1:0

6 chr1:46627603 0:2 6 chr3:129031590 10:2

7 chr1:46627621 11:6 7 chr3:129031591 9:3

8 chr1:46627662 1:0 8 chr3:129031787 0:2

9 chr1:46628062 1:0 9 chr3:129031864 3:0

10 chr1:46628247 3:3 10 chr3:129032558 0:1

11 chr1:46628507 1:4 11 chr3:129032662 1:0

12 chr1:46628583 1:0 12 chr3:129032671 1:0

13 chr1:46628584 1:0 13 chr3:129032842 1:0

14 chr1:46628662 1:0 14 chr3:129033307 1:1

15 chr1:46628901 0:1 15 chr3:129033308 1:0

16 chr1:46629068 0:1 16 chr3:129033356 0:1

17 chr1:46629129 1:0 17 chr3:129033939 0:1

18 chr1:46629215 0:1 18 chr3:129034047 0:1

19 chr1:46629280 0:1 19 chr3:129034092 2:0

20 chr1:46629431 1:0 20 chr3:129034093 2:0

21 chr1:46629606 9:6 21 chr3:129034259 1:0

22 chr1:46629717 4:0 22 chr3:129034402 4:1

23 chr1:46630187 1:0 23 chr3:129034757 1:0

24 chr1:46630534 14:13 24 chr3:129034814 4:3

25 chr1:46630612 3:5 25 chr3:129035532 1:0

26 chr1:46630633 2:0

27 chr1:46630674 1:0

28 chr1:46630716 18:10

29 chr1:46630719 1:0

30 chr1:46631328 4:0

31 chr1:46631519 1:0

32 chr1:46631810 2:0

The variants in bold type are those selected by RARECOVER with threshold 0.5.
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RV 6 only, but not RV3. It appears that by pooling information across
variants, the proposed stepwise LRT procedure was able to identify
one more potential causal variant.
In the FAAH region, only the correlation between RV4 and RV7 is

found significant at level 0.05 after applying Bonferroni’s correction,
but we will not merge these two variants and keep them separate as
they are quite far apart. It can be seen from Table 3 that at level 0.1,
no variant is selected by all procedures. If one is willing to increase the
level to B0.2 to induce more discoveries, then stepwise LRT will flag
out RV28 (with frequency ratio 18:10) as a variant worthy of further
investigation, but RARECOVER and SCORE will select no variant
even at level 0.2.
Our findings so far are purely empirical. Bhatia et al.12 and

Harismendy et al.18 have reported findings that corroborate with
ours, and they also offer some scientific conjectures to explain how
the selected RVs in the MGLL and FAAH regions could cause obesity.

Simulation results when the assumed model is correct
Mimicking the MGLL example, we generate data for n0¼ 150
controls, n1¼ 148 cases, and 24 RVs in the following way. First, we
simulate rj0¼ n0pj0¼ 150pj0 (j¼ 1,y,24) according to the gamma
(a, l) distribution with v¼ a�1¼ 0.98 and m¼ a/l¼ 1.72 as in the
model selected by stepwise LRT based on the original MGLL data
(given in bold type in Table 2). We then divide rj0 by n0¼ 150 to get
the pj0 and then generate the control data in the form of binary
vectors (Yij0, j¼ 1,y,24), i¼ 1,y,150, with Yij0BBernoulli(pj0)
independently. Summing over individuals, we obtain Yj0¼

P
i Yij0.

The case data (Yij1, j¼ 1,y,24), i¼ 1,y,148, are generated with
Yij1BBernoulli(pj1) independently, where pj1¼ exp(dj)pj0. We

consider two parameter settings for the dj. In setting (a), we have
d1¼y¼ d24¼ 0, which corresponds to the situation of no causal
variant. For this setting, we focus on type I error. In setting (b), we set
d3¼ 1.24, d6¼ 1.68, and dj¼ 0 for ja3,6 as in the model selected by
stepwise LRT based on the original MGLL data. For this setting, our
interest will focus on the procedure’s ability to select RVs 3 and 6, and
the false selection rate. To compare selection procedures on equal
footing, we will use the random permutation approach to determine
the critical values, with nominal type I error set at a liberal level of 0.2
(as our aim is to select a sufficiently rich set of potential causal RVs
for further investigation).
The results based on 100 sets of simulations are present in the top

panel of Table 4. It can be seen that the type I errors of the three
procedures range from 0.12 to 0.15 when there is no casual variant
and so are conservative. In setting (b), where RVs 3 and 6 are the
casual variants with d3¼ 1.24 and d6¼ 1.68, RV6 is selected more
often by stepwise LRT than by RARECOVER and SCORE (47 times as
compared with 40 and 39). The number of times that RVs 3 and 6 are
selected together is also highest for stepwise LRT (15 versus 11 and
10). Over the 100 samples simulated, RV3 is selected by stepwise LRT
26 times, RV6 is selected 47 times, whereas the other non-casual
variants are selected a total of 15 times; thus, the false selection rate
for stepwise LRT is 15/(26þ 47þ 15)¼ 0.17. The false selection rates
of both RARECOVER and SCORE are 0.167. Although the set of
figures given above seems to suggest only modest power for stepwise
LRT to select the right variants, we expect the power to improve with
either larger sample sizes and/or larger sizes of the variant effects (that
is, larger values for d3 and d6). To illustrate this point, we conduct a
simulation study with the same model parameters but double the

Table 2 Selection of RVs associated with obesity in the MGLL region using stepwise LRT, RARECOVER and SCORE procedures with critical

values obtained using random permutations and case- versus control-collapsed frequencies given in parentheses

Stepwise LRT

Step RV added n̂ m̂ d̂6 d̂3 d̂1 d̂8 2� increase in log-likelihood

0 None 1.22 2.12 c0.1¼6.28, c0.05¼6.90

1 6 (10:2) 1.15 1.95 1.63 7.22

2 3 (15:6) 0.98 1.72 1.68 1.24 7.45

3 1 (18:13) 0.72 1.49 1.75 1.38 0.89 5.07

4 8 (0:2) 0.73 1.53 1.74 1.37 0.88 �11.7 3.27

RARECOVER

Step RV added Increase in Pearson statistic

c0.1¼5.02, c0.05¼5.67

1 6 (10:2) 5.67

2 3 (15:6) 4.99

3 9 (3:0) 2.92

SCORE

Step RV added Increase in score statistic

c0.1¼5.08, c0.05¼5.62

1 6 (10:2) 5.62

2 3 (15:6) 3.23

3 9 (3:0) 2.58

Abbreviations: LRT, likelihood ratio test; RV, rare variants.
The models in bold type are those selected at nominal level 0.05.
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sample sizes (that is, 300 controls and 296 cases), and the results of
stepwise LRT improve to selecting RV3 35 times, RV6 55 times, and
together 21 times, with a false selection rate of 0.167 that is almost
unchanged.

Simulation results when the assumed model is incorrect
To investigate how the performance of the three procedures is affected
by violations of the model assumptions, we conduct two more sets of
simulations. For the first set of extra simulations, we focus on non-
gamma rj0. A general class of mixtures of Poisson distributions to
model over-dispersed count data has been proposed by Hougaard
et al.19 A prominent member of that class is the inverse Gaussian–
Poisson distribution. The second panel of Table 4 summarizes the
simulation results when the rj0 are simulated from an inverse
Gaussian distribution with the same mean and variance as the gamma
distribution used to generate the results of the top panel of Table 4.
We can see that the powers of all three procedures are slightly
reduced, but stepwise LRT is still marginally more powerful and has
lower false selection rate (0.186 versus 0.215 and 0.261).
Our last set of simulations is designed to look into the effect of LD

(that is, correlated variants) on our procedure and its competitors.
Instead of simulating independent binary observations given the pj0,
we simulate correlated binary observations given the pj0. As there is a
dearth of distributions for correlated discrete data, we resort to the
familiar technique of dichotomizing multivariate normal latent
variables as is commonly done in multivariate probit models. To be
specific, we first generate the rj0 from the same gamma distribution as
before. Given the rj0, and for each i¼ 1,y,n0, rather than generating
Yij0BBernoulli(pj0¼ rj0/n0) independently for j¼ 1,y,24, we

simulate a multivariate normal vector (Zij0, j¼ 1,y,24)BN24(Z,S),
where S¼ (sij) is a correlation matrix with sii¼ 1, and sij¼ r ci � cjj j,
where ci and cj are the positions of RVs i and j listed in Table 1. This
seems to be a sensible correlation structure where the correlation
decays exponentially with inter-loci distance. We set r to 0.99, so that
r200¼ 0.134, where 200 is roughly the average distance between
successive RVs in theMGLL region; Table 1. The mean vector Z of the
multivariate normal distribution is chosen to make the marginal
distribution of the dichotomized variable Y�

ij0 ¼ I{Zij040} the same as
that of Yij0, namely, Bernoulli(pj0). But unlike the Yij0, that are
mutually independent, the Y�

ij0 ¼ I{Zij040} are correlated because the
Zij0 are. We will treat Y�

ij0 as the control data in this set of simulations.
Similarly, to simulate the case data, we generate (Zij1, j¼ 1,y,
24)BN24(Z,S), where the correlation matrix S is as defined
above, and the mean vector Z is chosen to make Y�

ij1 ¼
I{Zij040}BBernoulli(pj1), where pj1¼ exp(dj)pj0. As before, we con-
sider two settings: (a) all dj¼ 0, and (b) d3¼ 1.24, d6¼ 1.68, and
dj¼ 0 for ja3,6. The results based on 100 simulations are given in the
bottom panel of Table 4 under the headings 3(a) and 3(b). It can be
seen that for setting 3(a), the type I error is inflated to 0.23 for
RARECOVER, 0.25 for stepwise LRT, and 0.28 for SCORE. In setting
3(b), just as in settings 1(b) and 2(b), stepwise LRT selects the correct
RVs more often than RARECOVER and SCORE, but the false
selection rates increase to 0.283, 0.25 and 0.241, respectively.

Simulation results for the case of protective variants
To investigate the power of the proposed stepwise LRT procedure in
picking out protective variants, we conduct extra simulations with
parameter values set to v¼ 1, m¼ 5, J¼ 24, d6¼ �2,�3, dj¼ 0 (ja6)

Table 3 Selection of RVs associated with obesity in the FAAH region using stepwise LRT, RARECOVER and SCORE procedures with critical

values obtained using random permutations and case- versus control-collapsed frequencies given in parentheses

Stepwise LRT

Step RV added n̂ m̂ d̂28 d̂22 d̂30 d̂7 2� increase in log-likelihood

0 None 1.24 2.20 c0.2¼5.24, c0.1¼7.22

1 28 (18:10) 1.12 2.04 0.88 5.17

2 22 (4:0) 1.16 1.98 0.88 1.91 3.51

3 30 (4:0) 1.20 1.93 0.88 1.94 1.94 3.57

4 7 (11:6) 1.12 1.82 0.91 1.91 1.91 0.88 3.27

RARECOVER

Step RV added Increase in Pearson statistic

c0.2¼5.18, c0.1¼6.21

1 22 (4:0) 4.11

2 30 (4:0) 3.16

3 32 (2:0) 2.14

SCORE

Step RV added Increase in score statistic

c0.2¼5.53, c0.1¼6.12

1 22 (4:0) 4.06

2 30 (4:0) 2.49

3 26 (2:0) 2.03

Abbreviations: LRT, likelihood ratio test; RV, rare variants.
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with n0¼ 150, n1¼ 148 as in the CRESCENDO study. This amounts
to an average MAF of 5/150¼ 0.033 in the control population. Strictly
speaking, a variant with MAF 0.033 is not very rare, but we need to
leave some room for the variant to be even rarer among the cases if it is
in fact protective. The nominal level is 0.1 and the critical value is
determined adaptively using the random permutation approach. The
number of times RV6 is picked out in 100 simulations, and the number
of times other variants are wrongly picked, together with the false
selection rate are shown in the top panel of Table 5 under the heading
(a). The power is moderate but this is to be expected as it is very
difficult to detect the difference between the rare and the rarer.
Increasing the sample size will obviously help. Part (b) of Table 5
depicts the results when the sample sizes are doubled to n0¼ 300,
n1¼ 296, and m increased to 10 correspondingly. It can be seen that the
power is now increased to 0.48 and 0.57 for the cases d6¼ �2 and
d6¼ �3 respectively, whereas the false selection rate is kept at 0.2 or less.

DISCUSSION

Due to the scarcity of information in rare variant analysis, it is
important to pool information across variants. We show that one way
to do this is to treat all the rare variant occurrence probabilities in the
control sample as random effects from a common distribution,
resulting in a mixed model. Even though the retrospective likelihood
approach and its advantages have been advocated by Epstein and
Satten20 and Satten and Epstein,21 genetic variant analyses are

currently still mostly based on prospective likelihoods even when
the study is retrospective, with justifications provided by Prentice and
Pyke.22 One reason for this tendency is that it is easier to model
disease status given genotypes by some kind of binary regression
model than to model the genotypes at multiple sites given disease
status. Our mixed models are based on a retrospective formulation to
better reflect the sampling given disease status nature of case–control
studies. The justifiable and commonly made assumption of indepen-
dence between rare genetic variants offers great simplification to the
retrospective likelihood that we take full advantage of. We also prefer
to treat the variant effects that are of substantive interest as fixed
rather than random effects, which we think is the sensible thing to do.
As we are dealing with RVs, we collapse frequencies as it is highly
unlikely for an individual to have two mutant alleles at the same
locus. Another advantage of modeling the collapsed frequencies is that
it does not assume Hardy–Weinberg equilibrium, which is unlikely to
be true for rare alleles. Efficiency calculation reported by Kuk, Xu and
Li23 within the context of haplotype frequency estimation when there
is no random effect demonstrated that collapsing frequencies will not
lead to much loss of estimation efficiency when the alleles are rare. We
take rarity explicitly into account by making use of Poisson
approximation in Equations (3) and (4). Out of convenience, we
assume in (5) that the rj0¼ n0pj0 are gamma distributed to result in
the generalized negative binomial distribution (7) for (Yj0,Yj1). Our
simulation results show that the resulting stepwise LRT procedure is
more powerful than RARECOVER and SCORE in selecting the
correct variants. When applied to the MGLL data, stepwise LRT
picks up one more variant, namely, RV3, than RARECOVER and
SCORE. LRT is computationally more demanding as it involves
finding the maximum likelihood estimates under both the null and
alternative models. But as pointed out on p.9, the log-likelihood
function has the same form under both models, and both can be
fitted by the Newton–Raphson algorithm without too much difficulty.
We outline in the appendix how to obtain the required first and
second derivatives of the log-likelihood function. The proposed LRT
approach is a parametric one and may not be robust against
departures from the parametric assumptions. The fact that we obtain
critical values by the random permutation approach rather than from
the asymptotic distribution of LRT should make the procedure a bit
more robust, and this is corroborated by the findings of our
simulation study to a certain degree.
Non-gamma distributions could have been used for rj0¼ n0pj0 in

our mixed model. Our modest simulation study suggests that the
proposed stepwise LRT procedure based on gamma random effects is

Table 4 Operating characteristics of stepwise LRT, RARECOVER and

SCORE procedures with nominal level 0.2 and critical values

obtained using random permutations, based on 100 sets of data

(148 cases, 150 controls and 24 variants) simulated under both null

and non-null models, gamma and non-gamma random effects, and

independent and correlated rare variants

Stepwise LRT RARECOVER SCORE

Gamma-distributed pj0

All dj¼0

Type I error 0.15 0.12 0.15

d3¼1.24, d6¼1.68, dj¼0 for ja3,6

RV 3 selected 26 25 26

RV 6 selected 47 40 39

RVs 3, 6 selected 15 11 10

False selection rate 15/88¼0.170 13/78¼0.167 13/78¼0.167

Inverse Gaussian-distributed pj 0

All dj¼0

Type I error 0.14 0.16 0.21

d3¼1.24, d6¼1.68, dj¼0 for ja3,6

RV 3 selected 18 15 15

RV 6 selected 39 36 36

RVs 3, 6 selected 6 4 3

False selection rate 13/70¼0.186 14/65¼0.215 18/69¼0.261

Gamma-distributed pj0, correlated variants

All dj¼0

Type I error 0.25 0.23 0.28

d3¼1.24, d6¼1.68, dj¼0 for ja3,6

RV 3 selected 27 17 17

RV 6 selected 49 43 43

RVs 3, 6 selected 10 5 4

False selection rate 30/106¼0.283 20/80¼0.250 19/79¼0.241

Abbreviations: LRT, likelihood ratio test; RV, rare variants.

Table 5 Power of the stepwise LRT procedure with nominal level 0.1

and permutation-based threshold to detect a protective variant based

on 100 sets of data simulated from the gamma random effects model

with v¼1, J¼24 and all dj¼0 except d6

d6¼ �2 d6¼ �3

n0¼150, n1¼148, m¼5

RV 6 selected 24 32

Other RVs selected 7 6

False selection rate 7/31¼0.226 6/38¼0.158

n0¼300, n1¼296, m¼10

RV 6 selected 48 57

Other RVs selected 12 12

False selection rate 12/60¼0.2 12/69¼0.174

Abbreviations: LRT, likelihood ratio test; RV, rare variants.

A stepwise LRT procedure for rare variant selection
AYC Kuk et al

204

Journal of Human Genetics



not too adversely affected by departure from the gamma assumption.
Furthermore, the resulting negative binomial distribution passed the
Pearson goodness of fit test when fitted to the control data in both the
MGLL and FAAH regions.
Rather than integrating out the random effects rj0 to result in the

generalized negative binomial distribution (7), an alternative is to
eliminate the random effects rj0 as nuisance parameters by condition-
ing on the sum of the two independent Poisson counts Yj0 and Yj1 to
obtain a binomial distribution for Yj1 conditionally. Although not
mentioned explicitly, this is the theoretical basis for the C-alpha test
of Neale et al.9 But as rj0 has been eliminated from the conditional
likelihood, there is no pooling of information across variants.
Our framework allows both deleterious (d40) and protective

(do0) variants. It is also possible to incorporate covariate effects into
our retrospective modeling framework.
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APPENDIX

Appendix First and second derivatives of the log-likelihood
function
It can be assumed without loss of generality that dj¼ 0 for
JXj4k, hence the model involves only the parameters v, m and
d1,y,dk. The log-likelihood function can be written as l¼ l1þ l2,
where

l1 ¼
Xk

j¼1

yj0 log mþ yj1ðdj þ log mÞþ ðyj0 þ yj1 þ n� 1Þ
�

� log½1þ nmð1þ fedjÞ�g

þ
XJ

j¼kþ 1

ðyj0 þ yj1Þ log mþðyj0 þ yj1 þ n� 1Þ log½1þ nmð1þ f Þ�
� 	

;

and

l2 ¼
XJ

j¼1

Xyj0 þ yj1 � 1

i¼0

logð1þ inÞ:

The first and second derivatives of l1 can be obtained readily by
symbolic differentiation. Note in particular that q2l1/qdiqdj¼ 0 for
iaj. The only thing left to do is to find the derivatives of l2. As l2 is a
function of v only, the only non-zero derivatives are

@l2
@n

¼
XJ

j¼1

Xyj0 þ yj1 � 1

i¼0

i

1þ in

and

@2l2
@n2

¼ �
XJ

j¼1

Xyj0 þ yj1 � 1

i¼0

i

1þ in

� �2

:
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