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Joint analysis of bivariate competing risks survival
times and genetic markers data

Alexander Begun

Bivariate survival models with discretely distributed frailty based on the major gene concept and applied to the data on related

individuals such as twins and sibs can be used to estimate the underlying hazard, the relative risk and the frequency of the

longevity allele. To determine the position of the longevity gene, additional genetic markers data are needed. If the action of the

longevity allele does not depend on its position in the genome, these two problems can be solved separately using a two-step

procedure. We proposed an extension of this method allowing us to search the position of two longevity genes at a chromosome

using the bivariate survival data with correlated competing risks combined with genetic markers data. We have studied the

properties of the model with two longevity genes located on the same and on different chromosomes using simulated data sets.
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INTRODUCTION

Longevity studies show lifespan correlation between related indivi-
duals such as twins, sibs and family members. These correlations can
be caused by common environmental and genetic factors. Some genes
responsible for longevity have already been discovered, but they
explain only a small part of genetic variation. Genes associated with
longevity can be identified using the information on genotype
frequencies for two or more age groups. A significant age trend of
these frequencies can indicate a gene-longevity association. The ‘gene
frequency’ method is based on this idea.1,2 This basic method can be
extended using demographic information about a studied population
to allow the estimation of initial frequencies, relative risks and the age
trajectories of mortality for candidate genes.3,4

Bi- and multivariate correlated frailty models allow us to search for
the association between genes and disease or mortality in the absence
of observed covariates. The simplest way to find this association is to
compare correlations for monozygotic and dizygotic twins.5 More
complex models can involve the decomposition of the frailty into
additive genetic factors, genetic dominance factors, shared environ-
mental factors and non-shared environmental factors.6,7

In addition to the frailty models with continuously distributed
frailty, the major genes models with discretely distributed frailty and
mixed models with discretely and continuously distributed frailty can
also be considered.8 The models with discretely distributed frailty
have an important advantage, as they can be easily adapted to the
family and pedigree data.9

If, in addition to longevity or morbidity data, the genetic markers
data are also available, we can locate the position of the longevity or

disease genes at the chromosome. Li and Zhong10 proposed a
retrospective likelihood approach based on the allele-sharing test for
the genetic linkage analysis using sibship data. Jonker et al.11 used an
extension of this method to test for linkage and heritability.
A weighted nonparametric linkage statistic has been proposed by
Callegaro et al.12 to test for linkage for the selected samples. All these
approaches use the correlated frailty model, where the frailty is
broken down into the sum of the linkage effect and a shared residual
effect. The components of the frailty must be calculated for each locus
separately by maximizing the retrospective likelihood. This can lead to
an enormous increase in calculating time if several genetic markers are
involved in these calculations.
If the markers are in linkage disequilibrium, we can use them as

covariates in the Cox-like regression and estimate respective regres-
sion coefficients. Significant deviation of some coefficients from zero
can indicate that respective markers are involved in survival or
disease. Even if the genetic markers are in linkage equilibrium, we can
determine the position of longevity or disease genes at the chromo-
some using the linkage analysis.13 Under the assumption that location
of the longevity or frailty gene does not influence survival, this
approach involves the two-step procedure. In the first step, we
estimate the parameters of the underlying hazard functions and the
parameters of frailty distribution for the model with the major gene
by maximizing the observed survival data likelihood. The second step
is focused on determining the position of the longevity gene between
observed markers.
In this paper, we propose an extension of this two-step method—a

bivariate correlated competing risks survival model with two major
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genes and genetic markers data. The properties of this model are
illustrated using examples based on simulated data.

MATERIALS AND METHODS

Survival analysis
Suppose that Ki related individuals belong to cluster i, i¼ 1,...,n, and

individuals from different clusters are statistically independent. Subjects from

the same cluster can belong to a sibship or to a family. For subject k from

cluster i, we denote the time to first failure or the censoring time, and the

vector of time-independent covariates by tik and uik, respectively. Let likA(1,...,

L), be the type of the first observed failure and lik¼ 0 stand for right censoring.

The censoring is denoted by dik¼ I(lika0), where I(x)¼ 1 if x¼ ‘True’ and

I(x)¼ 0, otherwise. We define the cause-specific hazard function for subject k

from cluster i by using the formula:

likjðt j uik;ZikjÞ ¼ lim
Dt!0þ

PðtpTþDt; lik ¼ j j TXt; uik;ZikjÞ=Dt

¼ l0jðtÞZikj expðb0juikÞ

where j¼ 1,...,L, Zikj is an individual frailty for the failure type j, l0j is an

underlying cause-specific hazard, bj are cause-specific regression coefficients’

vectors and the symbol ‘0’ stands for transposition.14

If only one of the failure types can occur, the full hazard function for the

same subject is defined by using the formula:

likðt j uik;Zik1; :::;ZikLÞ ¼ lim
Dt!0þ

Pðt � TotþDt j T

� t;uik;Zik1; :::;ZikLÞ=Dt

¼
XL
j¼1

l0jðtÞZikj expðb0juikÞ

suppose that individual frailties Zikj can correlate for subjects from the

same cluster and different types of failure. Dependency between subjects

from a cluster can be caused by correlated genotypes for relatives. Complex

diseases can be influenced by many genes and environmental factors

and the same genes and factors can be involved in different diseases (onsets).

This leads to correlations between types of failure (types of onsets or causes of

death).

Example (two competing risks of death influenced by two major
genes)
Assume that two causes of death are influenced by two unobserved

major genes, and the data on the age at death or the age at censoring for

each of the twins in the sample consisting of n twin pairs are available. Let

l01(t) and l02(t) be the underlying hazards for the first and the second cause of

death, respectively. Assume that two longevity alleles with dominant action a

and b have frequencies pa and pb, respectively, and that they are located in

different loci at the same or different chromosome. The neutral alleles in these

loci are denoted by A and B with frequencies 1–pa and 1–pa, respectively.

Suppose that the presence of at least one longevity allele a in genotype

decreases the risk of the type 1 failure by factor r1, r1o1, and the risk of the

type 2 failure by factor q2, q2o1. Similarly assume that the presence of at least

one longevity allele b in the genotype decreases the risk of the type 2 failure by

factor r2, r2o1, and the risk of the type 1 failure by factor q1, qo1. Suppose

that the absence of the longevity allele corresponds to frailties Zik1¼Zik2¼ 1. If

both longevity genes are in Hardy–Weinberg and linkage equilibrium and the

action of the longevity genes does not depend on the location at the

chromosome, then the possible longevity genotypes have the frequencies and

frailties given in Table 1.

In this table notation (aaþ aA)�BB; for example, means that a subject has

one of the possible genotypes from the set (aa�BB, aA�BB). We assume that

in the first locus of the genotype xX� yY, the allele x is inherited from the

mother and allele X from the father. Similarly in the second locus of this

genotype, the allele y is inherited from the mother and allele Y from the father.

Suppose that the parents are genetically independent and that their offspring

inherit their genotypes independently. The frequencies of an offspring’s

genotypes depending on the parental genotypes can be calculated under the

assumption that an offspring receives with equal probability one of the two

alleles from its mother’s genotype and likewise one of the two alleles from its

father’s genotype (the law of segregation).15

We denote the observed data in cluster i, i¼ 1, ..., n, by (Xi, Ui, Li, di), where

Xi¼ (Xik), k¼ 1,...,Ki, is the time to the first failure or time to censoring vector

for subjects in cluster i, Ui¼ (uik) is the set of vectors of observed covariates,

Li¼ (lik) is the vector of the types of failure and di¼ (dik) is the vector of event
indicators. Let us assume that given the observed covariates U and frailties Zikj,

the censoring times are independent of the failure times and do not correlate

with frailties, frailties are independent of covariates, and covariates’ effect is

subject specific.14 If the underlying cause-specific hazard functions are known

up to the vector parameter o, we can write the likelihood function in the form

of the following:

LðX; L j U ; d; b;x; fÞ

¼
Yn
i¼1

EZ
YKi

k¼1

exp �
XL
j¼1

Zikje
b0juikH0jðXik j xÞ

 ! 

� l0Lik ðXik j xÞZikLik e
b0Lik

uik Þdik
� �

here H0jðx j xÞ ¼
R x
0 l0jðt j xÞdt are depending on x, the cause-specific

cumulative hazard functions, j¼ 1, ..., L and EZ is the expectation with respect

to frailty Z. Unknown vector parameter f¼ (pa, pb, r1, q1, r2, q2) characterizes

the frailty distribution. In the case when clusters are dizygotic twin pairs and

longevity is regulated by two dominant genes, we can rewrite the last formula

as follows:

LDZðX; L j U ; d; b;x; fÞ ¼
YnDZ
i¼1

X
Gm ;Gf

PðGm j fÞPðGf j fÞ

�
X
G

PðG j Gm;Gf Þ exp �
X2
j¼1

Zi1jðG; fÞeb
0
jui1H0jðXi1 j xÞ

 ! 

� l0Li1 ðXi1 j xÞZi1Li1 ðG; fÞe
b0Li1

ui1
� �di1�

�
X
G

PðGm;Gf Þ exp �
X2
j¼1

Zi2jðG; fÞeb
0
jui2H0jðXi2 j xÞ

 ! 

� l0Li2 ðXi2 j xÞZi2Li2 ðG; fÞe
b0Li2 ui2

� �di2�

Here, Gm and Gf are the maternal and paternal genotypes, respectively. The

frequencies of these genotypes P(Gm|f) and P(Gf|f) and the twin frailties

Zi1j(G) and Zi2j(G), j¼ 1,...,2 are given in Table 1. The segregation ratios of the

mating types P(G|Gm,Gf) (the proportions of the different genotypes in the

offspring of all mating types) can be calculated using the law of segregation. In

this formula, the second with third lines and the fourth with fifth lines stand

for expected survivals and probability densities given parental genotypes for

the first and the second twin, respectively. We assumed here that both the twins

inherited their genes from their parents independently. In the first line, we take

the average for all the possible parental genotypes.

Table 1 Frailties and genotype frequencies. Both longevity genes are

dominant

Zik1 Zik2 Genotype Frequency

r1q1 r2q2 (aaþ aA)� (bbþbB) (1–(1–pa)
2)(1–(1–pb)

2)

r1 q2 (aaþ aA)�BB (1–(1–pa)
2)(1–pb)

2

q1 r2 AA� (bbþbB) (1–pa)
2(1–(1–pb)

2)

1 1 AA�BB (1–pa)
2(1–pb)

2
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The monozygotic twins have identical genotypes and the likelihood function

has a form

LMZðX; L j U ; d;b;x; fÞ ¼
YnMZ

i¼1

X
Gm ;Gf

PðGm j fÞPðGf j fÞ

�
X
G

PðG j Gm;Gf Þ exp �
X2
j¼1

Zi1jðG; fÞeb
0
jui1H0jðXi1 j xÞ

 !

� l0Li1 ðXi1 j xÞZi1Li1 ðG; fÞe
b0Li1

ui1
� �di1

� exp �
X2
j¼1

Zi1jðG; fÞeb
0
jui2H0jðXi2 j xÞ

 !

� l0Li2 ðXi2 j xÞZi1Li2 ðG; fÞe
b0Li2

ui2
� �di2

The full likelihood is as follows:
LðX; L j U ; d; b;x; fÞ ¼LMZðX; L j U ; d;b;x; fÞ

� LDZðX; L j U ; d;b;x; fÞ
We can directly find the estimate ðb̂; x̂; f̂Þ of the unknown vector

parameters (b, x, f) maximizing the likelihood function L(X, L |U, d; b, x,

f) with respect to (b, x, f). Using the likelihood ratio, we can test different

hypothesis about the parameters of the model.

If the underlying cause-specific hazard functions are not parametrically

defined, the nonparametric maximum likelihood estimators can be used to

estimate the vector parameter b and the cause-specific cumulative hazard

functions using the EM algorithm.14,16

Linkage analysis
After the unknown parameters (b, x, f) have been estimated, we can try to

locate the positions of longevity genes in the genome. Both monozygotic and

dizygotic twin pairs contribute to the likelihood L(X, L|U, d; b, x, f). On the

contrary, only the dizygotic twin pairs contribute to the likelihood function for

determining the position of longevity genes. The search for linkage between

two loci is based on calculating the Lod score, log10 LðyÞ=Lðy0Þ½ �, proposed by

Barnard17 and used later by Morton18 in sequential test procedures of the null

hypothesis y0¼ 0.5 versus an alternative value yo0.5. Here y is the probability

of recombination between two loci. Lander and Green19 proposed an

algorithm based on the hidden Markov chain concept to calculate the

multipoint pedigree likelihood. This algorithm was later modified and

optimized by Kruglyak and Lander,20 Kruglyak et al.21 The hidden Markov

chain algorithm is used to calculate the probability of the extended vector of

markers (Ms
E), s¼ 1, ..., SþNg (this vector consists of S observed markers M

and Ng non-observed major genes) taking into account the Markov property of

a pair (Ms
E, Vs), where (Vs) are inheritance vectors. In experiments with twins,

an inheritance vector Vs¼ (Vs
1, Vs

2, Vs
3, Vs

4)’ is a binary vector at each locus s,

s¼ 1, ..., SþNg, having four components. The first and the second

components stand for alleles inherited in this locus by a twin, and the third

and the fourth ones characterize alleles inherited by its co-twin. It is assumed

that the first and the third components denote alleles inherited from

the mother (0 if from the grandmother and 1 if from the grandfather). The

second and the fourth components stand for alleles inherited from the father

(same rules).

Given the location of the major genes at the chromosome, we calculate the

Lod score for dizygotic twin pairs using the value

LDZðX; L;M j U ; d; b̂; x̂; f̂; yÞ ¼
YnDZ
i¼1

X
Gm ;Gf

PðGm j f̂ÞPðGf j f̂Þ

�
X
G

PðG;M j Gm;Gf ; yÞ exp �
X2
j¼1

Zi1jðG; f̂Þeb̂
0
jui1H0jðXi1 j x̂Þ

 ! 

� l0Li1 ðXi1 j x̂ÞZi1Li1 ðG; f̂Þe
b̂0Li1

ui1
� �di1�

�
X
G

PðG;M j Gm;Gf ; yÞ exp �
X2
j¼1

Zi2jðG; f̂Þeb̂
0
jui2H0jðXi2 j x̂Þ

 ! 

� l0Li2 ðXi2 j x̂ÞZi2Li2 ðG; f̂Þe
b̂0Li2 ui2

� �di2�

Here (G,M) is an extended genotype of a twin including genetic markers

and longevity genes. A vector parameter characterizes the location of longevity

genes in the genome (for example, the recombination distance from respective

neighboring markers). The details about the calculation of the extended

segregation ratios P(G, M|Gm, Gf;y) for twins can be found elsewhere.13 Finally

we calculate the Lod score in the form

LodScore ¼ log10ðLDZðX; L;M j U ; d; b̂; x̂; f̂; yÞ=LDZðX; L;M j U ; d; b̂; x̂; f̂; y0ÞÞ

where y0 stands for longevity genes located at the recombination distance of

0.5 from all markers. We position the longevity loci at different places of a

chromosome between respective markers, and calculate in each case the Lod

score values. This Lod score profile can be used for testing the linkage. In

accordance with current standard criterion for declaring linkage, we construct

a support interval containing all the points where the Lod score is higher than

or equal to 3. To exclude the linkage, we regard the points where the Lod score

is less than or equal to �2.

Simulation study
In order to investigate the properties of the model described above, we have

generated three types of data sets. In the first data set type, both longevity

genes were situated on the same chromosome with markers. In the second type

of data set, the first longevity gene was situated on the same chromosome with

markers and the second one out of this chromosome. In the third type of

generated data sets, both longevity genes were situated out of the chromosome

with markers. In all experiments, non-censored survival data for 1000 dizygotic

twin pairs were controlled by two correlated competing mortality risks without

observed covariates, and the earliest failure time of each twin has been chosen.

For univariate cause-specific survival functions Sj(x), j¼ 1, 2, we have used the

gamma-Gompertz parameterization

SjðxÞ ¼ 1þ s2j ~HjðxÞ
� �

� 1=s2j ¼
X
Gm ;Gf

PðGm j fÞPðGf j fÞ

�
X
G

PðG j Gm;Gf Þ exp �ZjðG; fÞH0jðxÞ
� � !

Here ~ljðxÞ ¼ d ~HjðxÞ=dx ¼ bje
cjx , ~Hjð30Þ ¼ 0, bj40, cj40, sj

240

are unknown parameters. That is, the cause-specific survivals are equal to

the cause-specific survival in a population of individuals which has survived to

age 30 years (left truncation at age 30) with underlying hazards ~ljðxÞ and

gamma-distributed frailty with mean 1 and variance sj
240 at age 30 years. For

survival data generation, we put bj¼ 2.5� 10�5, cj¼ 0.1, sj
2¼ 0.01, j¼ 1, 2.

Given the parameters f, bj, cj, sj
2, j¼ 1, 2, the cause-specific underlying

cumulative hazard functions H0j(x) can be found as follows: In the first step,

we calculate ~HjðxÞ and Sj(x) for given the age x using formulas ~HjðxÞ ¼
ðbj=cjÞðecjx � e30cj Þ and SjðxÞ ¼ ð1þ s2j ~HjðxÞÞ� 1=s2j . Then we calculate P(Gm|f),

P(Gf|f) and P(G|Gm, Gf) using assumptions of the model and the law of

segregation. Finally, we find H0j(x) from the formula:

SjðxÞ¼
P

Gm ;Gf
PðGm j fÞPðGf j fÞ

P
G PðG j Gm;Gf Þ exp �ZjðG; fÞH0jðxÞ

� �� �
using a simple bisectional procedure. The functions H0j(x) are used to calculate

the likelihood and the Lod score values. To generate the survival data, we have

set pa¼ pb¼ 0.5 for longevity allele frequencies, r2¼ q1¼ 0.1 and either

r1¼ q2¼ 0.1 or r1¼ q2¼ 0.05 for mortality risks. It is not difficult to show

that the vector parameter f¼ (pa, pb, r1, q1, r2, q2)¼ (0.5, 0, 5, 0.1, 0.1, 0.1, 0.1)

in the model with two dominant major genes and two causes of death with

equal hazard functions corresponds to the vector of frailties (Z1, Z2, Z3)¼ (1.0,

0.55, 0.01) with probabilities (P1, P2, P3)¼ (0.25, 0.5, 0.25) in the model with

one major gene and one cause of death. We can compare these values with

results obtained in the longevity study of Danish twins using the major gene

model [8]. In the case of autosomal locus with multiplicative action of one

beneficial allele, it was found that ð ~Z1; ~Z2; ~Z3Þ ¼ ð1:0; 0:37; 0:14Þ with

probabilities ð~P1; ~P2; ~P3Þ ¼ ð0:21; 0:49; 0:30Þ. The frailty Z3¼ 0.01 in our

study is substantially smaller than the value of frailty ~Z3 ¼ 0:14, but this

effect is caused by the assumption about multiplicative action of beneficial

alleles.

For genetic data generation, we assumed that 10 genetic markers were

uniformly distributed over a chromosome with a distance of 5 cM between
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neighboring markers. Each gene at the marker locus can be characterized by a

pair from the set of 10 different alleles and each allele can be met in the

population with a frequency equal to 0.1. In the first type of simulated data,

the first longevity gene was situated in the middle between the third and fourth

markers and the second longevity gene was situated in the middle between the

seventh and eighth markers. In the second type of simulated data, the first

longevity gene was situated in the middle between the fifth and sixth markers,

whereas the second longevity gene was out of this chromosome. In addition,

we have assumed that the observed markers and longevity genes are in linkage

equilibrium and in Hardy–Weinberg equilibrium. The peaks for Lod scores

were counted to calculate the statistical power and the type I error rate. We

used a Lod score threshold of 3 as an indicator of linkage.

RESULTS

In Table 2, the results for parameter estimates bj, cj, sj, j¼ 1, 2 and p,
p1, q, q1, r, r1 based on 100 simulated data sets are given. Table 2
includes the empirical means and s.d.’s of the estimates. Taking into
account s.d.’s, all parameter estimates are in agreement with true
values. The Lod score profiles averaged over all simulations are shown
in the Figures 1–6. A twofold decrease in the frailties r1, q2 can
substantially increase the Lod score and the beneficial action of the
first longevity gene, if this gene is situated on the same chromosome
with markers (see Figure 1). On the contrary, this leads to a decrease
of the Lod score if both longevity genes are situated out of the
chromosome with markers (Figure 2). In this case, we observe
background Lod score profiles without clear peaks. The coefficient
of the correlation between life spans of siblings has not increased
significantly (0.23±0.03 versus 0.26±0.03) by a twofold decrease in
the frailties r1, q2. In summary, the decreased action of the longevity
gene can improve the chances to reject or accept the hypothesis that
the longevity gene is situated on the chromosome with markers. In
experiments with two longevity genes situated on the same chromo-
some with markers, we observe two clear peaks situated symmetrically
on the plots (see Figures 3 and 4). As expected, the heights of the
peaks are similar, if the actions of both longevity genes are also similar
(see Figure 4). In other words, we cannot distinguish between the first
and the second longevity genes using the Lod score profile. The
stronger the action of the longevity gene, the higher the respective
peak in the Lod score profile. If we look at Figure 3, we can conclude
that the first and the second longevity genes are most probably
located on the first and on the second half of the chromosome with
markers, respectively. The background Lod score profiles for both
cases are shown in Figures 5 and 6. It seems that the values of the Lod
score for these profiles depend only on the value of the distance
between the possible positions of the first and the second longevity
genes and on the distance to neighboring markers. In the neighbor-
hood of the markers, the values of the Lod score are slightly smaller.
We assessed the power of the likelihood ratio test when comparing
true hypothesis H1 (the data set was generated using the model with
two dominant major genes and vector parameter f1¼ (pa, pb, r1, q1,
r2, q2), pa¼ pb¼ 0.5, r1¼ q1¼ r2¼ q2¼ 0.1) and false null hypothesis
H0 (the data set was generated using the model with one dominant
major gene and vector parameter f0¼ (pa, r1, q2), pa¼ 0.5,
r1¼ q2¼ 0.1). The power in this experiment was equal to 0.92.
If the data set was generated under the assumption of a single

major gene and the Lod score profile was calculated using the present
method, we will observe a peak situated near the diagonal y1¼ y2.
Finally, we have calculated the Lod score profile (averaged over 100
simulations) using the model with a single dominant major gene
applied to the data set generated using the model with two dominant
major genes (both situated on the same chromosome—in the middle
between the third and fourth markers and in the middle between the

Table 2 Summary of simulation results for unknown parameters

True value Mean s.d. True value Mean s.d.

10�5 b1 2.50 2.30 0.48 2.50 2.28 0.58

10�1 c1 1.00 1.02 0.03 1.00 1.02 0.04

10�1 � s1 1.00 1.55 1.46 1.00 1.37 1.43

10�5 � b2 2.50 2.28 0.59 2.50 2.29 0.55

10�1 � c2 1.00 1.02 0.04 1.00 1.02 0.04

10�1 � s2 1.00 1.17 1.55 1.00 1.43 1.59

10�1 � pa 5.00 5.11 1.01 5.00 5.04 0.76

10�1 � r1 1.00 1.26 0.73 0.50 0.44 0.21

10�1 � pb 5.00 4.86 1.03 5.00 4.97 0.68

10�1 � r2 1.00 1.06 0.38 1.00 0.95 0.35

10�1 � q1 1.00 0.85 0.43 1.00 0.96 0.29

10�1 � q2 1.00 0.81 0.41 0.50 0.47 0.29

Figure 1 Lod score profile. The first longevity gene is situated between the

fifth and sixth chromosomes. The second longevity gene is out of the

chromosome. pa¼ pb¼0.5; r2¼ q1¼0.1.

Figure 2 Lod score profile. Both longevity genes are out of the chromosome.

pa¼ pb¼0.5; r2¼ q1¼0.1.
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seventh and eighth markers) (Figure 7). In this case, we do not
observed clear peaks, but the plateau. The area, where the Lod score is
greater than 3, extends B32 cM.

DISCUSSION

In a previous paper13, a two-step procedure was used to estimate the
parameters of univariate fit, frailty distribution and the location of the
longevity gene. In this paper, we extended this method for the case of
two longevity genes and two correlated competing risks of mortality.
The presence of longevity genes in the genome can be tested in the
first step. In the second step, we locate the position of these genes in
the genome. There is no problem to extend the case of twin data with

two related individuals to the case of family data with more than two
related individuals if we use the model based on the major gene
concept. The major gene model makes it possible to take into account
not only the correlation between individuals but also the correlations
between competing risks of mortality using parameters q1 and q2. The
covariates such as age, gender, disease status and so on, which
influence the risk of mortality can be easily taken into account in the
form of the Cox-type regression. The unknown regression coefficients
can be estimated in the first step together with parameters bj, cj, sj,
j¼ 1, 2 and pa, pb, q1, q2, r1, r2. From our experiments with simulated
data sets, we see that parameters pa, pb, q1, q2, r1, r2 influence the
values of Lod scores and heights of possible peaks. The smaller the
values of q1, q2, r1, r2, the higher the peaks of the Lod scores and the
greater the possibility of longevity genes detection and localization. In
principle, we can extend this model to one with mixed frailty by
including an additional continuously distributed component of

Figure 3 Contour map of the Lod score profile (smoothed). The first

longevity gene was situated in the middle between the third and fourth

markers and the second longevity gene was situated in the middle between

the seventh and eighth markers. Power40.99. pa¼pb¼0.5; r2¼ q1¼0.1;

r1¼ q2¼0.05.

Figure 4 Contour map of the Lod score profile (smoothed). The first

longevity gene was situated in the middle between the third and fourth

markers and the second longevity gene was situated in the middle between

the seventh and eighth markers. Power¼0.89. pa¼ pb¼0.5; r2¼q1¼0.1;

r1¼ q2¼0.1.

Figure 5 Contour map of the Lod score profile. Both longevity genes are out

of the chromosome. Type I erroro0.01. pa¼ pb¼0.5; r2¼q1¼0.1;

r1¼ q2¼0.05.

Figure 6 Contour map of the Lod score profile. Both longevity genes are out

of the chromosome. Type I erroro0.01. pa¼ pb¼0.5; r2¼q1¼0.1;

r1¼ q2¼0.1.
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frailty. This continuous component will measure the averaged
influence on mortality of a large number of genes and environ-
ment. However, it is not reasonable for sample sizes used in this study,
as the bivariate probability density functions for the model with
discretely and continuously distributed frailties are very similar.8 In
some cases, we can detect the presence of model misspecification
analyzing the Lod score profiles. For example, large plateau in
experiments with a single major gene can indicate the presence of
two major genes situated on the same chromosome. On the contrary,
if a single major gene influences the lifespan and the present method
is used, we will observe a peak of Lod score situated near the diagonal.
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Figure 7 Lod score profile. The first longevity gene was situated in the

middle between the third and fourth markers and the second longevity gene

was situated in the middle between the seventh and eighth markers

(pa¼ pb¼0.5; r2¼ q1¼0.1; r1¼ q2¼0.1). The Lod score profile was

calculated under the assumption of a single dominant major gene model.

Joint analysis
A Begun

699

Journal of Human Genetics


	Joint analysis of bivariate competing risks survival times and genetic markers data
	Introduction
	Materials and methods
	Survival analysis
	Example (two competing risks of death influenced by two major genes)
	Linkage analysis
	Simulation study

	Results
	Discussion
	References




