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Correcting for differential genotyping error in genetic
association analysis

Min Yuan1, Hongyan Fang2 and Han Zhang3

Differential genotype error in case–control association studies occurs when cases and controls are genotyped under different

conditions. Existence of differential errors can considerably bias the association test, resulting in inflation of type I error and

spurious significance. With the availability of high-throughput genotyping technologies such as the SNPchip, null markers that

are unlinked with the disease can be used to correct for the bias caused by differential errors. A similar method, known as the

genomic control, had been used to correct for population stratification in association studies. In this paper, we show that the

same idea can be used to correct for the bias caused by differential errors, under the assumption that the null markers and the

candidate marker are subject to the same or similar genotyping error model. The variance inflation is shown to be minor and

the bias in the association test is the major source of type I error inflation in the presence of differential errors. Our method

centralizes the test statistic by deducting the bias estimated from null markers through a quadratic regression method, which

adjusts for the variability of null marker allele frequencies. Simulation results show that the proposed method performs very

well in correcting for the type I error inflations.
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INTRODUCTION

Case–control design is widely used in genetic association studies. In a
well-designed case–control study, cases and controls have no differ-
ential structures except the obvious difference between the disease
status and the genotypes (if linked to disease) under investigation.
However, differential structure is a common issue in population-
based case–control studies. The most well-known example is the
population structure, correction of which has been studied extensively
in the literature.1–9 Differential genotype errors between cases and
controls is another possible source of biases for association analysis,
especially so in large-scale genetic studies for which cases and controls
may be genotyped under different conditions.10,11

Genotype error occurs with inaccurate genotyping measurement or
laboratory error. Genotype of single-nucleotide polymorphisms were
reported to have misclassification rates in the range of 0.1–5%.12,13

Most studies assumed that the genotype misclassification rates are the
same (non-differential) for case and control groups, for which the
association tests have correct type I error but may lose power.
Different methods have been proposed to increase power in the
presence of non-differential genotype error.14–18

However, the genotype measurement errors may have systematic
variabilities between cases and controls when the two groups are
subject to different experiment conditions.19 Genotype error may

depend on factors such as, among others, quality of blood samples,
working conditions of genotyping instrument and expertise of
laboratory researchers. For example, the DNA samples from cases
and controls in a large-scale association study may be collected at
different phases of a study or from different centers using different
genotyping instruments. Another example is, if the person genotyping
the samples were not blinded to the disease status, quality of genotype
measurements may have systematic difference between cases and
controls and genotype errors may be differential.

The importance of addressing the differential errors in association
analysis was reported in Clayton et al.10 In their study, the DNA
sample were obtained from the same extraction protocol and of the
same quality, but inflation in the single locus type I error was
observed, much of which was caused by the systematic differential call
rates between samples. Other heterogeneity factors such as population
substructure contribute only minor proportion to the type I error
inflation. Moskvina et al.11 studied the effects of differential
genotyping error rate on the type I error in case–control studies.
Their results show that differential genotyping error can substantially
inflate the type I error of association tests even at a low misclassifica-
tion rate. In fact, any factors (observed or unobserved) that are
differential for cases and controls lead to bias as well as variance
inflation in association tests.
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Genomic control (GC) method1 was proposed for correcting
variance inflation caused by population substructure. It assumes the
cases and controls have differential sub-populations with different
cryptic relatedness structures. The GC method corrects for the effect
of differential cryptic relatedness by using information from unlinked
null (or null) loci. Devlin and Roeder1 and Devlin et al.5 argued that
in the presence of many unknown sub-populations with cryptic
relatedness, there is no bias on average and the variance inflation
contribute most to the inflation of the type I error. On the other
hand, Gorroochurn et al.20 proposed a d centralization method to
correct for the bias of test statistic caused by population stratification.

In this paper, similar to the GC method, we assume that null
markers (with similar allele frequencies) that are unlinked to the
disease are available and these markers are subject to the same or
similar misclassification models as the candidate marker. We use these
null markers to estimate quantities related to the null distribution of
the test statistic for the candidate marker. This study shows that the
variance distortion is minor in the presence of differential errors and
the bias caused by differential errors leads to the inflation of the type I
error. We centralize the test statistics by using information estimated
from the null markers. Note that with random misclassifications,
perfect matching of allele frequencies is not feasible. Our strategy is to
match allele frequencies as much as possible, and apply the regres-
sion-based procedure to correct for the biases. Simulation results
show that our method is quite robust to the variabilities of the allele
frequencies of the null markers and robust to mixing of a small
proportion of linked loci in the selected ‘null’ markers.

MATERIALS AND METHODS
We focus on a bi-allelic candidate marker with alleles A and a. Let p¼ P(A) be

the population allele frequency. Denote the three genotypes aa, Aa and AA by

G0 ¼ 0, 1, 2, respectively. In a case–control design, denote the disease status by

Y¼ 1 for cases and Y¼ 0 for controls, and let the true genotype frequencies be

p0ij¼ P(G0 ¼ j|Y¼ i), j¼ 0, 1, 2; i¼ 0, 1. The null hypothesis of no association

is H0: p00j¼ p01j¼ p0 j, j¼ 0, 1, 2. Let G be the observed genotype. The

definitions of the observed genotype counts are given in Table 1.

Owing to the genotyping error, the true genotypes may be misclassified.

Denote the probability of misclassifying true genotype k as j by

pðiÞkj ¼PðG¼ j j G0 ¼ k; Y ¼ iÞ; k; j¼ 0; 1; 2; i¼ 0; 1;

where the superscript i denotes the group. Non-differential error means

pð1Þkj ¼ pð0Þkj , or P(G¼ j|G0 ¼ k,Y¼ i)¼P(G¼ j|G0 ¼ k). We assume that the

misclassification rates are differential for the case and control groups, that is,

pð1Þkj 6¼ pð0Þkj for at least some k, j¼ 0, 1, 2. Then the frequencies of observed

genotypes for group i(i¼ 0, 1) are given as

pij ¼PðG¼ j j Y ¼ iÞ¼
X2

k¼ 0

PðG¼ j j G0 ¼ k;Y ¼ iÞPðG0 ¼ k j Y ¼ iÞ

¼
P2

k¼ 0

pðiÞkj p
0
i k:

ð1Þ

Note that when the error rates are non-differential, that is, pð1Þkj ¼pð0Þkj for all

k, j, we have p0j¼ p1j, j¼ 0, 1, 2 under the null H0: p01j¼ p00j, j¼ 0, 1, 2. This

means that association tests is valid with correct type I error. In this paper, we

consider an error model with two parameters pðiÞ0 (the probability of

misclassifying a homozygote as the heterozygote in group i and pðiÞ1 (the

probability of misclassifying the heterozygote as a homozygote in group i for

i¼ 0, 1. This model has been considered by other authors.16,22 The error rates

(or misclassification rates) with this model are presented in Table 2. We define

the misclassification rate ratio (MRR) to be pð1Þ1 =pð0Þ1 ¼pð1Þ0 =pð0Þ0 and use this

as a measure of differential degree in genotype errors. Obviously, with the

differential errors, the frequencies of observed genotypes for case (p1j) and

groups (p0j) may not be identical under the null.

Cochran–Armitage’s trend test and Pearson’s chi-square test
The Cochran–Armitage’s trend (CAT) test is widely used in genetic

association analysis.23,24 The CAT test assigns scores 0, x, 1 to the three

genotypes aa, Aa, AA, respectively. Different specifications of the score x for

the heterozygote Aa rely on the underlying mode of inheritance. Specifically,

scores x¼ 0, 0.5, 1 correspond, respectively, to the recessive, additive and

dominant models.

Let Dx ¼ðp12 � p02Þ þ xðp11 � p01Þ; s2
x ¼ðn� 1

1 þ n� 1
0 Þ½ðp2 þ x2p1Þ� ðp2 þ xp1Þ2�

and D̂x ¼ðp̂12 � p̂02Þþ xðp̂11 � p̂01Þ, ŝ2
x ¼ðn� 1

1 þ n� 1
0 Þ½ðp̂2 þ x2p̂1Þ� ðp̂2 þ xp̂1Þ2�

are their estimates, where pj¼ n1p1j/nþ n0p0j/n, p̂j ¼ n1p̂1j=nþ n0p̂0j=n and

p̂ij ¼ nij=ni. For a specific choice of the score x for genotype Aa, the CAT indexed

by x is given as

Zx ¼
D̂x

ŝx
¼ ðp̂12 � p̂02Þþ xðp̂11 � p̂01Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn� 1
1 þ n� 1

0 Þ½ðp̂2 þ x2p̂1Þ� ðp̂2 þ xp̂1Þ2�
q : ð2Þ

This test is used for testing null hypothesis H0: p01j¼ p00j¼ p0 j, j¼ 0, 1, 2 for

the two groups with observed data. Let mx ¼ EH0
ðD̂xÞ and t2

x ¼ varH0
ðD̂xÞ. If

there is no genotype error, then mx¼ 0, t2
x ¼s2

x and Zx is asymptotically

distributed as a standard normal distribution N(0, 1).

If there exists differential error between cases and controls, then mxa0 and

t2
x 6¼ s2

x . We call lx ¼ t2
x=s

2
x as the variance inflation factor (VIF). Figure 1

illustrates the bias mx and variance inflation factor lx as functions of allele

frequency p or MRR, which measures the degree of differentiation of

misclassification rates between cases and controls. For a given MRR, both of

the mx and the lx decrease with allele p, indicating that the CAT is more

severely biased when the allele A is rare. On the other hand, both of them are

increasing with MRR (bottom panels of Figure 1), indicating the CAT is more

biased when cases and controls are more differential in genotype misclassifica-

tions. The variance inflation factor is very close to 1 as shown in Figure 1.

Extensive simulation and theoretical investigation also confirm this. We will

thus focus on correcting the bias term in our study. In Appendix A, we show

that

mx ¼ b0 þ b1pþ b2p
2:

We therefore apply a quadratic regression method to correct for the biases

caused by differential error.

Pearson’s chi-square test (PCT) is given by Tp ¼
P1

i¼ 0

P2
j¼ 0ðnij � eijÞ2=eij

where eij¼ nimj/n, which has several different representations. In our study, we

choose to use the following representation,25,26 which clearly links the PCT

Table 1 Genotype counts for case–control design

G (genotype)

Group 0 1 2 Total

Control (Y¼0) n00 n01 n02 n0

Case (Y¼1) n10 n11 n12 n1

Total m0 m1 m2 n

Table 2 Conditional probability of observed genotype given the true

genotype in group i (i¼0, 1)

Observed genotype (G)

True genotype (G0) 0 1 2

0 1� pðiÞ0 pðiÞ0 =2 pðiÞ0 =2

1 pðiÞ1 =2 1� pðiÞ1 pðiÞ1 =2

2 pðiÞ0 =2 pðiÞ0 =2 1� pðiÞ0
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with the CAT test for x¼ 0, 1:

Tp ¼
Z2

0 � 2r̂Z0Z1 þZ2
1

1� r̂2
¼ðZ0;Z1Þ

1 r̂
r̂ 1

� �� 1
Z0

Z1

� �
; ð3Þ

Where r̂¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0m2=ððm0 þm1Þðm2 þm1ÞÞ

p
. With this representation, we can

correct the PCT through correcting the trend tests Z0 and Z1.27

Centralize the tests by using null markers
Centralizing the CAT test is possible if the error probabilities are known or

estimable from additional information sources. Otherwise, the CAT has

inflated type I error and cannot be used as a test for association when the

misclassification rates are differential for the case and control groups. The GC

method uses null markers that are unlinked to the disease and control to

correct the bias and/or variance distortion caused by population structures. If

the null markers satisfy the additional assumption that they are subject to the

same (or roughly the same) misclassification distribution as the candidate

marker, then these markers can also be used to correct the CAT similar to the

GC method. As shown above, the variance distortion is not problematic if we

consider small genotype errors. Thus, we consider only correction of bias using

the information from the null markers.

Suppose there are K null markers available. We can assume that all these

K markers are in Hardy–Weinberg equilibrium (HWE). Because in a large-

scale genome-wide association studies, there are sufficient null markers that it

is easy to pick out K markers in Hardy–Weinberg equilibrium. Suppose

numerators of the CAT test statistics for the null markers are D̂ð1Þ
x ; :::; D̂ðKÞ

x ,

then we can estimate mx from these statistics. A basic requirement for the null

marker to be able to correct for the bias of the test on the candidate marker is

that the null markers should be subject to the same (or roughly the same)

misclassifications as the candidate. We will consider two different situations: (i)

the null markers are matched with the candidate marker in minor allele

frequencies (MAFs). In this situation, the null markers have the same or closely

the same MAFs as the candidate marker, therefore it is reasonable to assume

that they have the same or closely the same misclassification rates. Thus, the

homogeneity assumption on misclassification rates is unquestionable; (ii) the

null markers are not matched with the candidate. In this situations, we do not

require the null markers to have the same MAFs as the candidate and therefore

allows much more flexibility in selecting null markers.

For situation (i), one can simply estimate the bias parameter by sample

mean of the D̂ðkÞ
x ’s. Namely, m̂x ¼

PK
k¼ 1 D̂

ðkÞ
x =K: This case is essentially the

same as what is done in the original GC method.1 However, we would not

explore this method further since matching MAFs for null markers is not

reliable in presence of genotyping error and matching can also reduce the

number of available null markers that can be used. For situation (ii), the null

markers are not matched with the candidate marker in MAF, therefore we need

to adjust for the variability of MAFs. Let the MAF of the k-th null marker be

pk, which can be estimated by counting alleles from the genotype in control

group (denoted by p̂k). Appendix B shows that such estimates are

asymptotically unbiased when misclassification rates are small (see Appendix

B for details). Note that genotypes of null markers have errors, the MAF

estimate may be biased. However, since presumably the misclassification rates

are small (say, between 0.1% and 0.5%), p̂k is not severely biased and can be

used as linear regression. We propose estimating the bias parameter by the

quadratic formula

m̂x ¼ b̂0 þ b̂1p̂þ b̂2p̂
2;

where b̂i are the regression parameters obtained from the linear regression

model

EðD̂ðkÞ
x Þ¼ b0 þ b1p̂k þ b2p̂

2
k ; k¼ 1; 2; :::;K;

where p̂ is the estimated MAF for the candidate marker and ðD̂ðkÞ
x ; p̂kÞ, k¼ 1,

2,y, K are the computed CAT test statistics and estimated MAFs from the null

markers. With either estimate of mx in situation (i) or (ii), one can centralize

the CAT test statistic by

Z�
x ¼

Dx � m̂x
ŝx

;

Figure 1 Variance inflation factor (VIF) and bias of Cochran–Armitage’s trend (CAT) test with score x (n1¼n0¼500,pð0Þ1 ¼pð0Þ0 ¼0.005) and

misclassification rate ratio (MRR).
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and the corrected the PCT� by

T�
p ¼

Z�2
0 � 2r̂Z�

0Z
�
1 þZ�2

1

1� r̂2
¼ðZ�

0 ;Z
�
1 Þ

1 r̂
r̂ 1

� �� 1
Z�

0

Z�
1

� �
:

Simulation
Let the risk allele be A, population frequency is p¼P(A), genotypes are AA,

Aa, aa, use G0 ¼ 2, 1, 0 (number of allele A) to denote the three genotypes and

G the observed genotype.

We assume the following penetrance model,

fk ¼PðY ¼ 1 j G0 ¼ kÞ¼ eaþbzk

1þ eaþbzk
ð4Þ

where Y is the indicator of disease, zk is the score of genotype k. We take z0�0,

z2�1 and use z1¼ 1 for dominant model, z1¼ 0.5 for additive model and

z1¼ 0 for recessive model, respectively. Note that eb is the genotype relative risk

and a is baseline log odds. In our simulation studies, we will investigate the GC

method under the recessive (REC), additive (ADD) and dominant models

(DOM). The corresponding tests are CAT with x¼ 0, 0.5 and 1, respectively.

Assuming Hardy–Weinberg equilibrium in the population, then the

population genotype frequency rk ¼PðG0 ¼ kÞ¼ 2
k

� �
pkð2� pÞ2� k, where

k¼ 0, 1, 2 and p¼ P(A) is the MAF for allele A in population. The genotype

frequencies for the two groups are

pij ¼PðG¼ j j Y ¼ iÞ¼

P2

k¼ 0

PðY ¼ i j G0 ¼ kÞPðG¼ j j G0 ¼ kÞPðG0 ¼ kÞ

P2

j¼ 0

P2

k¼ 0

PðY ¼ i j G0 ¼ kÞPðG¼ j j G0 ¼ kÞPðG0 ¼ kÞ

¼

P2

k¼ 0

f ikð1� fkÞ1� ipðiÞkj rk

P2

j¼ 0

P2

k¼ 0

f ikð1� fkÞ1� ipðiÞkj rk

;

where pðiÞkj is specified by the given error model (for example, the (j, k) entry in

Table 2).

Genotype data for null markers are generated in similar way except that

these markers are not linked to the diseases (that is, b¼ 0 in equation 4). In

our simulation study, we do not require the null markers match with the

candidate marker in MAF, their MAFs are randomly generated from uniform

Table 3 Type I error of the corrected and uncorrected trend tests and the PCT (a¼0.05, p
ð0Þ
1

¼0:005; p
ð0Þ
0

¼0:003; e¼0:002;
n1 ¼ n0 ¼1000;K ¼100)

P¼0.1 P¼0.3

Model MRR CAT CAT* PCT PCT* CAT CAT* PCT PCT*

r¼0

REC 1 0.057 0.056 0.054 0.057 0.053 0.058 0.044 0.048

3 0.091 0.069 0.084 0.061 0.048 0.057 0.046 0.048

5 0.194 0.061 0.155 0.046 0.070 0.049 0.053 0.048

7 0.370 0.066 0.273 0.055 0.080 0.059 0.070 0.058

9 0.535 0.054 0.442 0.058 0.103 0.054 0.081 0.052

ADD 1 0.052 0.053 0.059 0.064 0.048 0.051 0.056 0.057

3 0.062 0.059 0.077 0.059 0.049 0.051 0.062 0.063

5 0.119 0.047 0.158 0.058 0.053 0.048 0.059 0.060

7 0.218 0.056 0.278 0.058 0.057 0.044 0.062 0.048

9 0.333 0.054 0.440 0.057 0.080 0.049 0.097 0.056

DOM 1 0.052 0.056 0.051 0.056 0.047 0.051 0.044 0.046

3 0.057 0.058 0.064 0.048 0.060 0.054 0.048 0.052

5 0.105 0.058 0.152 0.059 0.052 0.046 0.054 0.053

7 0.136 0.050 0.294 0.068 0.053 0.044 0.067 0.059

9 0.204 0.053 0.446 0.060 0.059 0.054 0.084 0.057

r¼0.05

REC 1 0.059 0.084 0.048 0.051 0.046 0.061 0.047 0.055

3 0.093 0.065 0.072 0.064 0.060 0.087 0.050 0.061

5 0.202 0.064 0.141 0.054 0.070 0.072 0.060 0.056

7 0.372 0.062 0.282 0.061 0.084 0.071 0.072 0.061

9 0.520 0.061 0.450 0.058 0.100 0.060 0.079 0.048

ADD 1 0.054 0.084 0.059 0.066 0.050 0.068 0.052 0.060

3 0.067 0.051 0.067 0.057 0.049 0.058 0.041 0.050

5 0.125 0.052 0.154 0.053 0.050 0.052 0.062 0.054

7 0.220 0.064 0.283 0.056 0.079 0.057 0.068 0.055

9 0.351 0.053 0.450 0.061 0.077 0.047 0.086 0.066

DOM 1 0.049 0.051 0.053 0.065 0.061 0.059 0.051 0.058

3 0.061 0.075 0.072 0.060 0.053 0.056 0.063 0.064

5 0.090 0.054 0.154 0.050 0.053 0.058 0.060 0.065

7 0.120 0.064 0.273 0.055 0.051 0.065 0.067 0.060

9 0.204 0.052 0.462 0.064 0.063 0.081 0.085 0.057

Abbreviations: ADD, additive; CAT, Cochran–Armitage’s trend test; DOM, dominant; MRR, misclassification rate ratio; PCT, Pearson’s chi-square test; REC, recessive. CAT* and PCT* are
respectively the corrected version of CAT and PCT.
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distribution U(0, 0.5). The genotype misclassification for the null markers are

taken to be close to those for the candidate marker. Specifically, for each

null marker we generate the error probabilities for control from

Uðpð0Þi � e;pð0Þi þ eÞ; i¼ 0; 1 and the error probabilities of case group are then

determined by these values and the given value of MRR.

RESULTS

For the candidate marker, MAF p is assumed to be 0.1 and 0.3,
respectively. The misclassification rates are pð0Þ1 ¼ 0.005 and
pð0Þ0 ¼ 0.003 for the control group in our simulation. The differential
index, MRR, is taken to be 1, 3, 5, 7, 9. Note that when MRR¼ 1, the
errors are not differential. We use the error model shown in Table 2.
Then the misclassification rates for the case group can be calculated
by pð0Þi (i¼ 0,1) and MRRs. Null markers are generated independently
with the candidate marker. Their MAFs are generated from uniform
distribution U(0, 0.5). The null markers are in principle unlinked to
the disease, but we allow a proportion, r, of them to be linked with
disease. When r¼ 0, the null markers are unlinked to the disease. The
misclassification rates for the null markers are taken to be close to the

candidate marker allowing slight deviations (e¼ 0.002), specifically,
the error rates for the null markers in control groups are generated
from pð0Þ1 BU(0.003, 0.007), pð0Þ0 BU(0.001, 0.005). The number of
null markers is K¼ 100. The sample size is n¼ 2000 (1000 cases and
1000 controls). We investigate the three common modes of inheri-
tance of recessive, additive and dominant models indexed respectively
by x¼ 0, 0.5 and 1. All simulations are run with 2000 replicates.

Tables 3 and 4 show the simulation results for nominal significance
levels a¼ 0.05 and 0.01, respectively. From Tables 3 and 4, the type I
errors of CAT are considerably inflated for large MRRs. For example,
when the disease model is recessive, MAF¼ 0.1 and MRR¼ 5, the
type I error is 0.194 for CAT and 0.155 for PCT if the nominal
significance level is 0.05. Generally, the type I error of CAT or PCT is
increasingly inflated when MRR increases or MAF decreases. The
inflation is most evident for rare allele cases and is negligible when
MAF is close to 0.5. In addition, the inflation is largest for recessive
model and smallest for dominant model. The same phenomenon is
observed in all the scenarios we investigated with different error
models. Tables 5 and 6 give the type I errors for K¼ 50 and K¼ 200.

Table 4 Type I error of the corrected and uncorrected trend tests and the PCT (a¼0:01; p
ð0Þ
1

¼0:005;p
ð0Þ
0

¼0:003; e¼0:002;

n1 ¼ n0 ¼1000;K ¼100)

P¼0.1 P¼0.3

Model MRR CAT CAT* PCT PCT* CAT CAT* PCT PCT*

r¼0

REC 1 0.009 0.015 0.007 0.011 0.011 0.011 0.009 0.013

3 0.021 0.017 0.021 0.012 0.009 0.010 0.009 0.008

5 0.063 0.017 0.043 0.013 0.014 0.010 0.012 0.009

7 0.147 0.015 0.101 0.010 0.025 0.013 0.020 0.014

9 0.266 0.011 0.203 0.016 0.029 0.007 0.020 0.011

ADD 1 0.004 0.005 0.013 0.014 0.009 0.011 0.008 0.011

3 0.015 0.011 0.021 0.014 0.013 0.011 0.013 0.015

5 0.030 0.013 0.044 0.009 0.009 0.009 0.012 0.010

7 0.084 0.011 0.113 0.013 0.013 0.008 0.011 0.007

9 0.134 0.009 0.216 0.017 0.021 0.009 0.021 0.013

DOM 1 0.011 0.014 0.005 0.009 0.008 0.007 0.007 0.007

3 0.015 0.013 0.012 0.005 0.011 0.011 0.011 0.013

5 0.023 0.014 0.050 0.012 0.011 0.011 0.014 0.013

7 0.044 0.013 0.128 0.015 0.011 0.011 0.018 0.010

9 0.067 0.011 0.223 0.011 0.013 0.011 0.025 0.013

r¼0.05

REC 1 0.007 0.015 0.007 0.012 0.005 0.008 0.010 0.011

3 0.021 0.011 0.017 0.013 0.013 0.022 0.013 0.013

5 0.054 0.011 0.038 0.010 0.017 0.018 0.015 0.012

7 0.139 0.018 0.104 0.013 0.021 0.017 0.019 0.012

9 0.257 0.026 0.227 0.017 0.030 0.015 0.019 0.013

ADD 1 0.009 0.011 0.010 0.016 0.009 0.018 0.009 0.012

3 0.013 0.007 0.018 0.011 0.008 0.009 0.007 0.010

5 0.032 0.014 0.051 0.014 0.010 0.010 0.013 0.014

7 0.085 0.014 0.108 0.010 0.021 0.010 0.018 0.013

9 0.149 0.013 0.223 0.011 0.018 0.012 0.021 0.011

DOM 1 0.011 0.014 0.011 0.014 0.011 0.012 0.011 0.015

3 0.012 0.027 0.019 0.013 0.013 0.013 0.015 0.015

5 0.027 0.011 0.042 0.013 0.007 0.009 0.010 0.015

7 0.037 0.010 0.102 0.015 0.011 0.016 0.015 0.014

9 0.064 0.011 0.224 0.013 0.011 0.025 0.016 0.012

Abbreviations: ADD, additive; CAT, Cochran–Armitage’s trend test; DOM, dominant; MRR, misclassification rate ratio; PCT, Pearson’s chi-square test; REC, recessive. CAT* and PCT* are
respectively the corrected version of CAT and PCT.
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Table 6 Type I error of the corrected and uncorrected trend tests and the Pearson’s chi-square test (a¼0:01; p
ð0Þ
1

¼0:005;p
ð0Þ
0

¼0:003;

e¼0:002;n1 ¼ n0 ¼1000;K ¼50;200)

P¼0.1 P¼0.2 P¼0.3 P¼0.4 P¼0.5

K Model MRR CAT CAT* CAT CAT* CAT CAT* CAT CAT* CAT CAT*

50 REC 1 0.005 0.010 0.011 0.014 0.011 0.013 0.008 0.013 0.005 0.011
3 0.025 0.012 0.014 0.011 0.013 0.013 0.010 0.011 0.009 0.009
5 0.071 0.015 0.028 0.014 0.018 0.015 0.011 0.007 0.009 0.011
7 0.135 0.013 0.044 0.015 0.024 0.013 0.017 0.011 0.008 0.011
9 0.267 0.015 0.088 0.014 0.043 0.013 0.014 0.011 0.008 0.011

ADD 1 0.013 0.020 0.014 0.017 0.009 0.009 0.007 0.009 0.010 0.013
3 0.011 0.015 0.011 0.012 0.008 0.007 0.011 0.009 0.008 0.009
5 0.048 0.015 0.018 0.013 0.013 0.009 0.008 0.006 0.010 0.010
7 0.077 0.011 0.029 0.009 0.010 0.007 0.009 0.010 0.012 0.013
9 0.159 0.009 0.038 0.011 0.017 0.010 0.009 0.008 0.008 0.009

DOM 1 0.007 0.011 0.011 0.013 0.016 0.014 0.018 0.018 0.007 0.008
3 0.012 0.010 0.008 0.010 0.013 0.012 0.011 0.011 0.008 0.010
5 0.018 0.011 0.009 0.009 0.010 0.011 0.007 0.008 0.014 0.015
7 0.038 0.011 0.018 0.011 0.015 0.011 0.010 0.009 0.013 0.013
9 0.072 0.010 0.025 0.015 0.011 0.011 0.011 0.013 0.013 0.012

200 REC 1 0.008 0.009 0.009 0.010 0.011 0.011 0.009 0.009 0.009 0.010
3 0.025 0.012 0.011 0.010 0.011 0.008 0.011 0.009 0.008 0.007
5 0.061 0.010 0.022 0.009 0.016 0.008 0.011 0.010 0.012 0.013
7 0.140 0.011 0.039 0.012 0.020 0.010 0.013 0.011 0.010 0.011
9 0.264 0.012 0.070 0.010 0.034 0.012 0.016 0.010 0.011 0.010

ADD 1 0.010 0.011 0.010 0.011 0.011 0.011 0.009 0.010 0.012 0.012
3 0.017 0.012 0.012 0.012 0.009 0.009 0.009 0.008 0.009 0.009
5 0.034 0.009 0.018 0.010 0.013 0.012 0.010 0.011 0.009 0.009
7 0.077 0.010 0.026 0.007 0.015 0.010 0.009 0.006 0.009 0.008
9 0.151 0.010 0.036 0.009 0.018 0.009 0.012 0.010 0.010 0.008

DOM 1 0.008 0.008 0.010 0.010 0.008 0.007 0.011 0.011 0.010 0.012
3 0.011 0.010 0.010 0.011 0.010 0.008 0.010 0.011 0.009 0.008
5 0.024 0.007 0.011 0.010 0.011 0.011 0.012 0.012 0.010 0.010
7 0.043 0.011 0.016 0.010 0.012 0.012 0.009 0.008 0.012 0.009
9 0.073 0.012 0.021 0.009 0.013 0.009 0.010 0.009 0.010 0.008

Abbreviations: ADD, additive; CAT, Cochran–Armitage’s trend test; DOM, dominant; MRR, misclassification rate ratio; REC, recessive. CAT* and PCT* are respectively the corrected version of CAT and PCT.

Table 5 Type I error of the corrected and uncorrected trend tests and the Pearson’s chi-square test (a¼0:05;p
ð0Þ
1

¼0:005;p
ð0Þ
0

¼0:003;
e¼0:002; n1 ¼ n0 ¼1000;K ¼50;200)

P¼0.1 P¼0.2 P¼0.3 P¼0.4 P¼0.5

K Model MRR CAT CAT* CAT CAT* CAT CAT* CAT CAT* CAT CAT*

50 REC 1 0.050 0.058 0.055 0.064 0.051 0.059 0.050 0.058 0.052 0.048
3 0.086 0.095 0.058 0.061 0.053 0.058 0.056 0.056 0.048 0.048
5 0.203 0.071 0.093 0.054 0.067 0.059 0.050 0.050 0.055 0.051
7 0.346 0.061 0.133 0.053 0.081 0.065 0.060 0.051 0.054 0.049
9 0.511 0.071 0.214 0.060 0.120 0.061 0.069 0.052 0.057 0.058

ADD 1 0.057 0.066 0.045 0.049 0.050 0.054 0.045 0.050 0.045 0.053
3 0.072 0.060 0.052 0.051 0.051 0.051 0.050 0.051 0.050 0.051
5 0.127 0.062 0.067 0.058 0.051 0.045 0.053 0.055 0.044 0.050
7 0.220 0.057 0.105 0.045 0.057 0.046 0.049 0.050 0.051 0.047
9 0.345 0.054 0.128 0.043 0.067 0.046 0.056 0.057 0.053 0.056

DOM 1 0.044 0.060 0.045 0.046 0.060 0.060 0.055 0.059 0.048 0.051
3 0.050 0.048 0.048 0.046 0.045 0.049 0.048 0.054 0.048 0.049
5 0.081 0.051 0.054 0.048 0.053 0.054 0.041 0.043 0.060 0.061
7 0.148 0.046 0.061 0.050 0.051 0.051 0.043 0.044 0.056 0.052
9 0.209 0.050 0.086 0.058 0.054 0.054 0.053 0.054 0.061 0.060

200 REC 1 0.049 0.052 0.049 0.051 0.053 0.056 0.051 0.053 0.044 0.045
3 0.092 0.059 0.059 0.047 0.050 0.045 0.053 0.055 0.047 0.048
5 0.193 0.055 0.085 0.049 0.068 0.051 0.057 0.048 0.054 0.055
7 0.345 0.053 0.129 0.052 0.083 0.051 0.064 0.053 0.051 0.051
9 0.518 0.054 0.194 0.051 0.112 0.058 0.067 0.052 0.052 0.047

ADD 1 0.047 0.051 0.052 0.052 0.050 0.052 0.049 0.048 0.051 0.052
3 0.065 0.047 0.055 0.051 0.049 0.050 0.051 0.050 0.046 0.046
5 0.123 0.049 0.073 0.051 0.061 0.050 0.055 0.051 0.049 0.050
7 0.217 0.053 0.097 0.046 0.060 0.051 0.050 0.043 0.054 0.050
9 0.336 0.044 0.127 0.047 0.077 0.044 0.056 0.045 0.048 0.045

DOM 1 0.047 0.048 0.051 0.052 0.053 0.053 0.053 0.054 0.052 0.053
3 0.054 0.051 0.052 0.049 0.051 0.048 0.056 0.053 0.049 0.049
5 0.089 0.047 0.054 0.044 0.050 0.046 0.055 0.055 0.048 0.050
7 0.130 0.046 0.066 0.046 0.057 0.048 0.050 0.047 0.052 0.045
9 0.201 0.050 0.084 0.044 0.054 0.046 0.053 0.052 0.050 0.043

Abbreviations: ADD, additive; CAT, Cochran–Armitage’s trend test; DOM, dominant; MRR, misclassification rate ratio; REC, recessive. CAT* and PCT* are respectively the corrected version of CAT and PCT.
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Table 7 Type I error of the corrected and uncorrected trend tests and the PCT (a¼0:05; p
ð0Þ
1

¼0:02;p
ð0Þ
0

¼0:01; e¼0:01;
n1 ¼ n0 ¼1000;K ¼100)

P¼0.1 P¼0.3

Model MRR CAT CAT* PCT PCT* CAT CAT* PCT PCT*

r¼0
REC 1 0.051 0.063 0.049 0.056 0.052 0.058 0.051 0.049

3 0.057 0.053 0.046 0.051 0.053 0.051 0.052 0.058
5 0.069 0.060 0.063 0.057 0.054 0.056 0.054 0.053
7 0.085 0.057 0.079 0.054 0.052 0.049 0.047 0.049
9 0.128 0.060 0.102 0.060 0.053 0.051 0.061 0.068

ADD 1 0.054 0.052 0.050 0.056 0.041 0.044 0.043 0.051
3 0.060 0.059 0.046 0.048 0.043 0.046 0.061 0.062
5 0.052 0.051 0.058 0.051 0.051 0.046 0.045 0.049
7 0.068 0.053 0.076 0.060 0.051 0.049 0.051 0.055
9 0.091 0.052 0.108 0.054 0.053 0.050 0.048 0.047

DOM 1 0.041 0.046 0.043 0.049 0.048 0.047 0.049 0.053
3 0.051 0.055 0.049 0.058 0.049 0.049 0.058 0.060
5 0.052 0.052 0.063 0.059 0.054 0.051 0.051 0.052
7 0.060 0.049 0.084 0.051 0.057 0.056 0.050 0.052
9 0.071 0.053 0.103 0.053 0.051 0.046 0.054 0.059

r¼0.05
REC 1 0.051 0.123 0.049 0.052 0.050 0.057 0.045 0.047

3 0.059 0.066 0.054 0.062 0.051 0.053 0.048 0.053
5 0.071 0.059 0.060 0.059 0.045 0.070 0.056 0.060
7 0.083 0.048 0.078 0.050 0.051 0.053 0.055 0.058
9 0.132 0.060 0.107 0.063 0.065 0.059 0.050 0.051

ADD 1 0.051 0.058 0.050 0.056 0.054 0.055 0.048 0.050
3 0.051 0.065 0.047 0.050 0.049 0.059 0.050 0.052
5 0.054 0.058 0.062 0.051 0.040 0.043 0.049 0.051
7 0.071 0.053 0.085 0.057 0.053 0.048 0.051 0.056
9 0.098 0.056 0.099 0.059 0.056 0.056 0.053 0.054

DOM 1 0.050 0.056 0.043 0.051 0.056 0.075 0.049 0.052
3 0.062 0.099 0.051 0.059 0.062 0.060 0.042 0.044
5 0.050 0.047 0.069 0.053 0.047 0.044 0.051 0.051
7 0.068 0.060 0.068 0.053 0.051 0.059 0.052 0.052
9 0.064 0.055 0.098 0.056 0.052 0.057 0.049 0.049

Abbreviations: ADD, additive; CAT, Cochran–Armitage’s trend test; DOM, dominant; MRR, misclassification rate ratio; PCT, Pearson’s chi-square test; REC, recessive. CAT* and PCT* are
respectively the corrected version of CAT and PCT.

Table 8 Type I error of the corrected and uncorrected trend tests and the PCT (a¼0:01; p
ð0Þ
1

¼0:02;p
ð0Þ
0

¼0:01; e¼0:01;

n1 ¼ n0 ¼1000;K ¼100)

P¼0.1 P¼0.3

Model MRR CAT CAT* PCT PCT* CAT CAT* PCT PCT*

r¼0
REC 1 0.011 0.018 0.007 0.009 0.011 0.012 0.013 0.011

3 0.009 0.011 0.011 0.011 0.012 0.011 0.011 0.013
5 0.013 0.014 0.015 0.011 0.011 0.009 0.011 0.013
7 0.021 0.011 0.019 0.009 0.011 0.010 0.011 0.011
9 0.029 0.011 0.024 0.015 0.011 0.011 0.011 0.017

ADD 1 0.009 0.011 0.009 0.010 0.006 0.006 0.009 0.011
3 0.011 0.012 0.013 0.010 0.010 0.009 0.010 0.011
5 0.016 0.009 0.011 0.009 0.005 0.006 0.009 0.009
7 0.011 0.013 0.020 0.012 0.014 0.013 0.013 0.013
9 0.028 0.010 0.027 0.010 0.013 0.011 0.011 0.007

DOM 1 0.006 0.006 0.010 0.011 0.011 0.010 0.009 0.009
3 0.010 0.014 0.006 0.009 0.009 0.009 0.011 0.013
5 0.015 0.010 0.017 0.013 0.010 0.009 0.006 0.006
7 0.011 0.011 0.021 0.013 0.012 0.011 0.013 0.015
9 0.018 0.013 0.023 0.009 0.011 0.011 0.010 0.010

r¼0.05
REC 1 0.008 0.042 0.005 0.010 0.011 0.013 0.011 0.009

3 0.009 0.018 0.009 0.011 0.009 0.011 0.011 0.015
5 0.011 0.011 0.015 0.011 0.009 0.018 0.012 0.011
7 0.021 0.009 0.018 0.013 0.007 0.010 0.011 0.013
9 0.034 0.014 0.031 0.012 0.014 0.015 0.013 0.013

ADD 1 0.010 0.013 0.009 0.013 0.010 0.011 0.011 0.009
3 0.013 0.015 0.010 0.009 0.011 0.012 0.007 0.007
5 0.011 0.014 0.016 0.011 0.009 0.007 0.009 0.011
7 0.015 0.011 0.017 0.013 0.010 0.009 0.012 0.011
9 0.024 0.010 0.029 0.016 0.012 0.013 0.012 0.011

DOM 1 0.009 0.009 0.010 0.011 0.015 0.018 0.004 0.013
3 0.018 0.034 0.010 0.013 0.011 0.010 0.009 0.011
5 0.011 0.009 0.013 0.011 0.013 0.013 0.011 0.010
7 0.017 0.011 0.016 0.009 0.011 0.012 0.009 0.012
9 0.016 0.010 0.022 0.009 0.009 0.010 0.009 0.007

Abbreviations: ADD, additive; CAT, Cochran–Armitage’s trend test; DOM, dominant; MRR, misclassification rate ratio; PCT, Pearson’s chi-square test; REC, recessive. CAT* and PCT* are
respectively the corrected version of CAT and PCT.
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Type I error can be well controlled even with small number of null
markers; for example, K¼ 50. When the number of null markers is
becoming larger, the type I errors are better controlled, but there is
not too much improvement when the number is greater than
K¼ 100. Thus, we suggest that K¼ 100 is much enough in practice.
Tables 7 and 8 report the type I errors when the misclassification rates
are as large as 2%. From these two tables, we can conclude that the
type I errors of the corrected CAT and PCT are much closer to the
nominal level than the non-corrected ones with large misclassification
rates.

Note that when MRR¼ 1, the genotype errors are not differential
for cases and controls. The type I errors of CAT and PCT are generally
close to the nominal values except when the mode of inheritance is
recessive. When sample size becomes larger, the type I errors of CAT
or PCT are all close to the nominal values when MRR¼ 1 (results not
shown here). We observed that the corrected CAT (denoted by CAT*
in the table) has slightly inflated type I error compared with the
original CAT. This is intuitively true since use of null markers
introduced more variabilities. When MRR is greater than 1, that is,
differential errors are present, the original CAT has substantially
inflated type I error and the corrected CAT has type I error that are
reasonably close to the nominal values for all the situations we
considered.

Figure 2 illustrates the type I errors and the corrected type I errors
under another setting of parameters (pð0Þ1 ¼ pð0Þ0 ¼ 0.0025, e¼ 0.0015).
Figure 3 illustrates the power of the CAT and the quadratic regression
GC-corrected CAT. Upper row is for MRR¼ 1 and lower row is for

MRR¼ 4. We can see from the upper row that, when MRR¼ 1, use of
null markers does not affect the power performance of the trend test
under the three genetic models. From the lower row, because of
inflation of type I error, power of CAT test is also inflated. Our
method can correctly control type I error of CAT and consequently
report correct power and avoid spurious association.

DISCUSSION

In this study, we proposed to correct for the bias introduced by
differential errors in association analysis by a regression method using
null markers. The bias of the association tests can be effectively
captured by null markers that are unlinked to the disease. We have
not required that the null markers match with the candidate marker
in MAFs and we estimate the bias by using a quadratic regression
method to adjust for the variabilities of MAFs of the null markers.
The regression method fit the bias by a quadratic function of the
MAFs. We have shown that the approach works well although the
MAF estimates have biases with the presence of genotyping errors.
This is because the bias of MAF estimates are small and does not have
a significant role in the quadratic regression.

Misclassification rates for null markers (allele frequencies that are
close to that of the candidate marker) are assumed to be the same
with the candidates. However, it might be true that different loci may
have different misclassification rates, which might depend on the
specific allele frequency or genotype frequencies on each locus. We
have recognized this and allowed the misclassification rates to be
deviated slightly from that for the candidate marker. Simulation

Figure 2 Type I error of Cochran–Armitage’s trend (CAT) tests and the corrected trend tests (CAT*); (n1¼ n0¼1000, a¼0.05, pð0Þ1 ¼0:0025; pð0Þ0 ¼0:0025,

e¼0.0015). MRR, misclassification rate ratio.
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studies show that with slight fluctuations in misclassification rates of
the null markers, the proposed method performs reasonably well.
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APPENDIX A

Under the null hypothesis

mx ¼ EH0
ðD̂xÞ¼ p12 � p02 þ xðp11 � p01Þ j H0

¼
X2

k¼ 0

ðpð1Þk2 � pð0Þk2 þ xðpð1Þk1 � pð0Þk1 Þ
n o

p0k;

which is generally not 0 if the misclassification rates are differential
(that is, pð1Þij 6¼ pð0Þij for some i, j), and

t2
x ¼ varH0

ðD̂xÞ¼
1

n1

X2

k¼ 0

pð1Þk2 þ x2pð1Þk1

� �
p0k �

X2

k¼ 0

pð1Þk2 þ xpð1Þk1

� �
p0k

" #2( )

þ 1

n0

X2

k¼ 0

pð0Þk2 þ x2pð0Þk1

� �
p0k �

X2

k¼ 0

pð0Þk2 þ xpð0Þk1

� �
p0k

" #2( )

Then ZxBN(dx,lx), Z2
xBlxw2

1ðd
2
xÞ, where lx ¼ t2

x=s
2
x is the variance

inflation factor and d2
x ¼ m2

x=s
2
x is the noncentrality parameter.

With the Hardy–Weinberg equilibrium under the null, the bias
term mx is a quadratic function of MAF p, and t2 is a quartic function
of p.

APPENDIX B

We estimate allele frequency by using controls only, namely
p̂¼ p̂02 þ p̂01=2, then we can see this estimate is approximately
unbiased

Eðp̂Þ¼ pð0Þ02 þ pð0Þ01 =2
n o

þ � 2pð0Þ02 � pð0Þ01 þ 2pð0Þ12 þ pð0Þ11

n o
p

þ pð0Þ02 þ pð0Þ01 =2þ pð0Þ22 þ pð0Þ21 =2� 2pð0Þ12 � pð0Þ11

n o
p2

� p2

as long as the misclassification rates pð0Þjk , jak, are small and pð0Þjj E1.
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