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Composite likelihood-based meta-analysis of breast
cancer association studies

Ioannis Politopoulos1, Jane Gibson1, William Tapper1, Sarah Ennis1, Diana Eccles2 and Andrew Collins1

For detecting low risk disease variants in genome-wide association panels, meta-analysis is a powerful strategy to increase

power. We apply a composite likelihood-based method, which models association with disease in regions defined on a linkage

disequilibrium map and combines the evidence across multiple genome-wide samples. This fixed region approach has the

advantage that, as only one statistical test is made per region, there is no increased multiple testing penalty in higher marker

density panels. Imputation of missing genotypes is also advantageous to increase coverage. Meta-analysis of three breast

cancer data sets combines evidence from samples that show heterogeneity in phenotype and, particularly, in marker coverage.

The FGFR2 gene has the highest rank, consistent with previous analysis of one of these samples and supported by the small

number of early-onset breast cancer cases included. The 8q24 breast cancer region also ranks highly and is supported by

evidence from both early-onset and post-menopausal breast cancer samples. The PIK3AP1 gene region is highlighted in this

analysis as a strong candidate for further study.
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INTRODUCTION

Genome-wide association studies using large samples of cases and
controls have been successful in identifying many genes involved in
‘common’ diseases. For breast cancer at least 20 genes or genomic
regions have been found to be associated with the disease using these
methods.1–12 Rarer forms of variation such as disease variants in the
BRCA1 and BRCA2 genes and moderate penetrance genes found by
targeted candidate studies bring the total number of genes implicated
in breast cancer to about 30. However, collectively these only account
for B30% of the disease genetic variance, suggesting many more
genes remain to be discovered. There are several possible sources for
the ‘missing heritability’ including genes missed because of low
statistical power and uneven marker coverage, heterogeneity through
sub-phenotypes associated with different genetic variants and rare
genetic variation (as only common variants are screened by existing
single nucleotide polymorphism (SNP) panels). One route to identi-
fying new targets is through meta-analysis, which can increase the
power to detect novel disease variation for further follow-up by
combining data from independent samples. Zeggini et al.13 describe
meta-analysis of genome-wide association studies combining evidence
for individual single SNPs using genotyped and imputed data.
We develop and apply a composite likelihood-based method, which
models information from multiple SNPs in a given genomic

region and combines evidence across corresponding regions in
independent data sets. Modelling association with disease on an
underlying linkage disequilibrium (LD) map further increases
power and resolution of mapping, compared with single SNP
tests.14,15 This approach also partitions the genome into regions,
which contain equivalent levels of LD. As only one statistical test is
made in each region, there is no increased multiple-testing penalty
with greater marker density. The three data samples analysed here are
from the Cancer Genetic Markers of Susceptibility Project (CGEMS),1

which comprises post-menopausal breast cancer samples, a sample
from the prospective study of outcomes in sporadic versus hereditary
breast cancer (POSH) cohort of early-onset breast cancer,4,16 and data
from the Wellcome Trust Case Control Consortium (WTCCC).17 The
first two data sets have genome-wide SNPs whereas the latter com-
prises genotypes for non-synonymous coding SNPs only. The three
samples therefore show a high degree of heterogeneity in both
phenotype and marker coverage and thus present a challenge for
meta-analysis. Previous findings from these data sets include primary
evidence for association of the FGFR2 gene with breast cancer,1

whereas the POSH sample formed part of a larger study that
determined novel breast cancer genes.4 Our analysis examines the
evidence for breast cancer genes through composite likelihood-based
meta-analysis in these three samples.
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MATERIALS AND METHODS

Data preparation and quality control
We undertook the following procedures for the three data samples analysed in

the meta-analysis:

CGEMS sample. The CGEMS sample (http://cgems.cancer.gov/) comprises

data from 1145 post-menopausal breast cancer patients and 1142 controls

genotyped with 555 148 SNPs. The downloaded sample excludes data that

failed the original quality control (QC) employed by Hunter et al.1 Using

PLINK18 we removed an additional 93 SNPs with inconsistent or ambiguous

genomic locations, 8648 SNPs and one individual with 410% of genotypes

missing, 53 615 SNPs with minor allele frequencies (MAF) o0.05 and 4308

SNPs with large deviations from Hardy–Weinberg (HW) (w1
2410) in the

controls. Some SNPs failed QC for more than one of these reasons.

After merging with the HapMap (phase 3) reference populations and under-

taking multidimensional scaling cluster analysis, we identified and removed

an additional four samples, which did not cluster strongly with the

CEU (Western European origin) reference population, suggesting potential

admixture. After QC we had a total of 498 786 SNPs typed in 1143 cases and

1139 controls.

We increased genotypic coverage by 98% through imputation of missing

SNP genotypes, after merging CGEMS data with CEU data, and a total

of 544 683 markers were imputed ‘sufficiently’ according to PLINK defaults.

The default cut-offs designate reliably imputed SNPs and require there to be

‘information content metric’ values 40.8 and SNP genotype imputation for

90% or more individuals in the sample. Before combining with CGEMS,

further QC removed 55 692 SNPs (488 991 imputed SNPs retained), of which

308 had 410% missing genotypes, 6800 showed significant HW deviation in

the controls and 49 019 had MAF o0.05. Some SNPs failed QC for more than

one of these reasons. The combined data set comprised genotypes for 987 777

SNPs (Supplementary Table 1).

POSH sample. Turnbull et al.4 describe an analysis, which includes 308 POSH

cases genotyped on an Illumina Infinium (Illumina, Inc, San Diego, CA, USA)

660k array forming part of a study of cases preferentially selected to have at

least two affected first or second degree relatives. Most cases had been screened

and found to be negative for germline mutations in the BRCA1 and BRCA2

genes. Data for 294 POSH cases and 580 030 SNPs were provided by the lead

authors. Their QC procedures4 resulted in the exclusion of 63 112 markers. In

addition, a total of 14 individual samples were excluded because of apparent

non-European ancestry (eight samples) and heterozygosity P-values o10�5 (six

samples). We used WTCCC phase 2 genotypic data from the European

Genotype Archive (EGA) (http://www.ebi.ac.uk/ega/page.php?page¼study&study

¼EGAS00000000028&cat¼www.wtccc2.studies.xml&subcat¼controls) as con-

trols. Both 1958 birth cohort and UK National Blood Service controls (UNBS)

Illumina 1.2M genotypic data sets were used in the analysis. During QC on the

controls, using the exclusions lists supplied by the WTCCC, we removed 231

samples and 215 732 SNPs from the 1958 birth cohort and 236 samples and

214 848 SNPs from the UNBS data. From the original 1 155 595 markers

genotyped across 2930 1958 birth cohort controls and 2737 NBS controls, first-

stage QC yielded 939 863 SNPs in 2699 controls and 940 747 in 2,501 controls in

the two samples, respectively.

We determined a common subset of 536 205 SNPs typed in both WTCCC

controls and POSH cases genotypic data sets. Our standard QC in the

combined data set identified an additional 3926 SNPs deviating from

HW equilibrium (w1
2410) in the controls, 106 SNPs with 410% missing

genotypes and 23 738 SNPs with MAFo0.05. The final data set comprised

genotypic information for 280 cases, 5200 controls and 506 610 SNPs after

removal of 2138 SNPs contained in the exclusion lists provided by the lead

authors.

Using PLINK we then determined 535 110 sufficiently imputed SNPs,

of which 17 387 were excluded because of significant HW deviation, 270

were excluded with 410% missing genotypes and 46 410 SNPs with

MAFo0.05 (or excluded on more than one criteria). The final imputation-

inclusive data set comprised 979 409 SNPs for 5200 WTCCC phase 2 controls

and 280 POSH cases, suggesting an increase in genotypic coverage by impu-

tation of B93%.

WTCCC sample. WTCCC phase 1 breast cancer data were obtained from the

European Genotype Archive (http://www.ebi.ac.uk/ega/page.php?page¼study

&study¼EGAS00000000024&cat¼www.wtccc.studies.xml.ega2&subcat¼BC). The

aggregated genome-wide data set of genotypes for 15 436 SNPs across 1045 cases

and 1476 controls was subjected to QC following the annotation files provided,

which resulted in 2859 SNPs and 51 samples (41 cases and 10 controls) being

removed. Marker exclusion was based on poor genotype call scores, high missing

genotype rate, monomorphic SNPs and HW deviations. Sample exclusion was due

to putative relatedness of individuals, questionable ancestry, missing genotypes and

positive BRCA2 testing. The final data set comprised of 12 577 SNPs, 1004 cases

and 1466 controls.

Genome-wide imputation in QC-clean WTCCC data, after merging

with the CEU data (111 individuals and 1 615 203 SNPs), identified

36 587 sufficiently imputed SNPs. Our standard QC in the combined

data set identified 28 SNPs with 410% missing genotypes, 1829 SNPs

with significant HW deviation and 7052 SNPs with MAFo0.05. The final

imputation-inclusive data set comprised 40 300 SNPs, 1004 cases and 1466

controls.

Composite likelihood mapping
We used the CHROMSCAN program,19 which models association between

disease and SNP markers in a chromosome region to compute a maximum

composite likelihood location, S, for a disease variant, a standard error for

that location, a 95% confidence interval and a P-value. The program incorpo-

rates the underlying LD structure in the region as a LD unit (LDU)

map,20 which represents regions of strong LD (blocks) as plateaus and

recombination hot-spots as steps when plotted against the kilobase map. Gene

mapping on the LDU map has been shown to increase power and accuracy.21

The LDU maps were made from the CEU sample (HapMap phase II and build

36 of the human genome sequence). CHROMSCAN establishes significance for

a region through a permutation test, which employs a large number of

replicates for which the disease phenotype is randomised by shuffling.

Computing probabilities for the test statistic based on the null P-value

distribution avoids distortions (inflation and deflation) in the P-value distribu-

tion. The program generates an information matrix from which information

weights, W, for location S are obtained along with a standard error. CHROMS-

CAN analysis was performed in fixed regions of four LD units, which facilitates

meta-analysis and provides reasonable coverage (on average) of each region

(430 SNPs in a B550 000 SNP scan, given that there are B60 000 LDUs in the

CEU genome22,23).

Meta-analysis
For combining information across the CGEMS, POSH and WTCCC samples,

we examined Fisher’s combined probability test (CPT),24 the Z-transform test

(ZTT),25 and the weighted Z-test (WZT).26 Whitlock’s study26 shows that the

WZT has greater power and precision than the CPT and ZTT in simulated data.

We used the CPT to combine permutation-based P-values from the three

samples (or fewer if a sample contained no information for a given region) in

corresponding four LDU regions as: w2
F ¼ �2

Pk
i¼1 lnPi, where k is the number

of samples and wF
2 has a w2 distribution with 2k degrees of freedom. w2 were

converted to the corresponding probability and w1
2 using the appropriate

functions from the gsl library (http://www.gnu.org/software/gsl/manual/

html_node/The-Chi_002dsquared-Distribution.html). The ZTT first converts

P-values to the corresponding (signed) standard normal deviates Z. Z-scores

were obtained from the permutation-based probabilities from each sample

using the gsl library as above. The combined Z-score (ZS) is obtained as:

ZS ¼
Pk

i¼1 zi=
ffiffiffi
k

p
, where ZS has a standard normal distribution. We computed

the corresponding combined P-values and the corresponding w1
2 using the gsl

library. The WZT is a weighted version of the ZTT. We weighted each sample

by information W, from the composite likelihood model as above, and

obtained ZW ¼
Pk

i¼1 WiZi=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk

i¼1 W
2
i

q
.

We evaluated statistical heterogeneity from pooling evidence across samples

following Tapper et al.27 which computes
P

WiðŜ� SiÞ
2
, the heterogeneity

w2 with k-1 degrees freedom (wk�1
2 ) where Ŝ ¼

P
WiSi=

P
Wi and Si is the
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maximum composite likelihood LDU location from the ith sample with data in

the LDU region under consideration.

RESULTS

The meta-analysis combines association tests in four-LDU regions
across CGEMS (14 340 regions with data), POSH (13 908 regions with
data) and WTCCC (3679 regions with data) samples. Although the
WTCCC sample comprises far fewer SNPs than the other samples
(Supplementary Table 1) and only covers non-synonymous SNPs, it
provides additional information that can be exploited in composite
likelihood-based meta-analysis. Turnbull et al.4 in their Table 1 detail
13 loci confirmed as associated with breast cancer through association
studies (both genome-wide and candidate gene based). We examined
evidence for each of these regions in our meta-analysis (Table 1). The
FGFR2 locus is known to contribute one of the largest effect sizes
among the common susceptibility loci detected so far. The gene was
identified in the CGEMS sample by Hunter et al.1 who recognised it as
a risk factor for sporadic postmenopausal breast cancer. It is note-
worthy that the evidence is supported by the small number (280) of
POSH individuals, indicating it may have roles in both early-onset and
post-menopausal breast cancer. The 95% confidence interval for the
location of the associated variant for CGEMS and POSH samples
spans 26 kb, which corresponds to intron 2 of the gene (Table 2).
Intron 2 is not tagged by the non-synonymous SNP panel from the
WTCCC genotypes so this sample provides no additional evidence.
The combined meta-analysis w1

2 of 25.75 (ZTT) makes this the highest
ranked region and the only region achieving genome-wide signifi-
cance, P¼0.006, after a conservative Bonferroni correction for 14 340
tested regions.

The evidence for other breast cancer genes (Table 1) is variable and
reflects the relatively low power of fairly small, heterogeneous and
incompletely genotyped samples for detecting low risk variants.
However, it is noteworthy that the 8q24 breast cancer region has the
fifth highest rank (ZTT w1

2 14.35) using combined evidence from
CGEMS and POSH samples (but not WTCCC as this is a ‘gene
desert’28). There is evidence, therefore, that this region may be
involved in both early-onset and post-menopausal breast cancer.

The 8q24 region has well established associations with prostate, breast
and colorectal cancer.8 It has been shown that the effects of a number
of risk alleles in the region are cancer site specific. Easton et al.2 first
reported an association between rs13281615 (128.42 Mb) (Figure 1)
and breast cancer and subsequently Fletcher et al.8 reported a
protective effect at rs13254738 (128.17 Mb) with limited evidence
for interaction between the two. The LDU map of the region (Figure 1)
and the likelihood surface for the POSH data (Figure 2) shows that the
95% confidence interval (128.38–128.44 Mb) (Table 2) includes
rs13281615. However, rs13254738 lies outside of the four LDU region
and that region was not identified as high ranking in the meta-
analysis. As pointed out by Fletcher et al.8 the relatively low power of
studies undertaken so far suggests that 8q24 may contain several
additional breast cancer susceptibility loci. Composite likelihood
evidence from the CGEMS sample (Table 1) places the peak at
128.497 Mb (Figure 1) within the prostate cancer ‘region 3’,8 although
the most significant single SNP in the region is rs10447995 at
128.427 Mb, much closer to, and in the same LD block as rs1328165
and the peak from the POSH sample. Multiple signals reflect the
existence of a cluster of, possibly independently acting, associated
variants with heterogeneous influences on disease phenotype, which
may impact, for example, on differences in age of onset.

The COX11 gene region ranks one hundred and seventh (ZTT) and
the WTCCC study provides contributory information in the meta-
analysis. The most significant non-synonymous WTCCC SNP in this
region is rs7222197, which is in the STXBP4 gene, adjacent to COX11.
However this presumably reflects LD across this region as the SNP
considered to be most strongly associated with risk is correlated with
elevated levels of cytochrome C assembly protein 11 (COX11) and not
with altered expression at STXBP4.29 However, causal relationships
between this effect and breast cancer predisposition have not been
determined.

Of the 13 known breast cancer genes/regions listed in Table 1 the
highest w1

2, suggesting a more powerful test, is achieved by the ZTT in
six cases, by the WZT in five cases and by the CPT in two cases.
Consistent with this pattern, the highest sum of w2 is for the ZTT
(69.02) whereas the lowest is for the WZT (63.6). Given this empirical

Table 1 Results for known breast cancer genes and regions

CGEMS POSH WTCCC

Locus Chromosome LDU range Na w1
2 Na w1

2 Na w1
2 CPTw1

2 WZTw1
2 ZTTw1

2 (rankb)

FGFR2 10q26.13 2376–2380 47 16.37 45 10.93 0 — 24.18 24.51 25.75 (1)

8q24 8q24 2256–2260 79 10.55 82 5.45 0 — 13.30 6.09 14.35 (5)

COX11 17q23.2 1200–1204 117 5.68 119 0.82 17 4.02 6.31 7.84 6.99 (107)c

MAP3K1 5q11.2 1144–1148 132 3.70 138 2.35 27 0.75 3.41 2.32 4.24 (502)

2q35 2q35 3608–3612 65 3.11 60 3.77 0 — 4.93 5.59 5.84 (210)

5p12 5p12 1028–1032 333 5.91 321 0.75 0 — 4.41 5.99 4.17 (529)

1p11.2 1p11.2 2372–2376 46 3.05 50 0.27 18 2.05 2.26 0.55 2.62 (1362)

TOX3 16q12.1 980–984 45 0.25 48 4.95 0 — 3.01 4.85 2.39 (1551)

6q25.1 6q25.1 2692–2696 114 3.03 116 0.09 20 0.87 1.24 2.18 1.20

RAD51L1 14q24.1 1016–1020 134 1.05 135 0.76 0 — 0.80 1.13 1.14

LSP1 11p15.5 44–48 52 0.02 55 3.20 2 0.08 0.63 2.43 0.24

SLC4A7 3p22 768–772 79 0.89 95 0.64 9 0.00 0.16 0.14 0.09c

CASP8 2q33.1 3344–3348 119 1.52 119 0.00 33 0.02 0.08 0.02 0.00

Total — — — — — — — — 64.72 63.63 69.02

Abbreviations: CPT, combined probability test; LDU, linkage disequilibrium unit; POSH, prospective study of outcomes in sporadic versus hereditary breast cancer; SNP, single nucleotide
polymorphism; WTCCC, Wellcome Trust Case Control Consortium; WZT, weighted Z-test; ZTT, Z-transform test.
aTotal number of SNPs typed and imputed in the region.
bRanks for Z-test among 14340 regions.
cRegions significant by heterogeneity test.
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support for the ZTT we list the 10 highest ranked regions on the basis
of this test (Table 3). The highest ranking regions identify the FGFR2
region as most significant. Also represented is the region containing

the PIK3AP1 gene (w1
2 13.06). This gene is known to be associated with

a key carcinogenesis pathway and has been found to be upregulated in
the peripheral blood of breast cancer patients. Expression of this gene

Table 2 The FGFR2 and 8q24 regions: association with post-menopausal and early-onset breast cancer

Data N SNPs Location S (LDU, Mb) 95% CI, Mb (difference, Kb) w3
2 (P value) msSNP (Mb)

FGFR2

CGEMS 47 2379.7, 123.342 123.316–123.342 (26) 22.47 (0.000052) rs2420946 (123.341)

POSH 45 2379.7, 123.342 123.316–123.342 (26) 16.38 (0.000946) rs2420946 (123.341)

8q24

CGEMS 79 2259.7, 128.497 128.470–128.497 (27) 15.95 (0.001159) rs10447995 (128.427)

POSH 82 2257.7, 128.413 128.381–128.439 (58) 9.88 (0.019578) rs622556 (128.402)

Abbreviations: CI, confidence interval; ms, most significant; LDU, linkage disequilibrium unit; POSH, prospective study of outcomes in sporadic versus hereditary breast cancer; SNP, single
nucleotide polymorphism.
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has been used as part of a set of profiles as a molecular predictor of
breast cancer.30

There is evidence for significant statistical heterogeneity for the
COX11 and SLC4A7 breast cancer regions (Table 1) and for two of the
top-ranked regions (Table 3). Among a number of likely sources for
heterogeneity, evidenced by combining statistics from these samples,
are variations in marker coverage and informativeness, differences in
breast cancer phenotype, and the impact of multiple (or different)
association signals within a region. Increasing sample sizes, more
consistent marker coverage, more refined breast cancer phenotypes
and fine mapping (including mapping within smaller LDU windows
in samples with higher marker density) will reduce the impact of these
sources of heterogeneity in future.

DISCUSSION

Composite likelihood-based meta-analysis in discrete regions defined
on an underlying LD map has a number of advantages over single SNP
based approaches for combining evidence. Model fitting combines
evidence across a number of SNPs giving a point estimate along with a
confidence interval in the region of interest. Within fixed regions
increasing marker density, including that achieved by imputation of
genotypes, does not increase the multiple testing penalty. Combina-
tion of P-values across regions using the ZTT enables meta-analysis of
samples that have heterogeneous phenotypes (such as early and late-
onset disease in the POSH and CGEMS samples respectively) and
widely differing marker coverage profiles (such as the WTCCC
compared with CGEMS and POSH data sets). The empirical evidence
from known breast cancer gene regions (Table 1) marginally supports
the use of the ZTT rather than the weighted test (WZT). The Fisher
test (CPT) clearly lacks power as noted by Whitlock.26 The weighted
Z-test favoured by that author is likely to be the most powerful where
reliable weights are available. The apparent modest superiority of the
ZTT over the WZT in our study may reflect instability in the weights
where the completeness of marker coverage and marker information
content is particularly variable in these heterogeneous samples. There
is also a statistical argument, pointed out by Whitlock,26 that the
P-values are already weighted by sample size when using the ZTT.31

The empirical evidence supports the use of the ZTT in composite
likelihood-based meta-analysis but examination of the weighted scores
may identify further potential candidates for follow up.

This meta-analysis supports existing evidence for at least two
known breast cancer genes and regions (FGFR2 and 8q24), despite
the relatively small number of samples included and heterogeneous
marker coverage in the three data sets. The application of this
approach to combination of evidence from larger samples and for
defined breast cancer sub-types may be useful to further characterise
the genetic basis of breast cancer and contribute to the identification
of some of the ‘missing heritability’.

The WTCCC non-synonymous SNP panel has, understandably,
limited genome coverage even after imputation of SNPs. Perhaps
remarkably, meta-analysis of 1200 SNPs known to be associated with
diseases, found that for 40% of SNPs there was no association with
known exonic sequences.32 There are at least five associated breast
cancer non-genic regions and other variants within genes are known
to be intronic (for example, the FGFR2 association).

Although only the FGFR2 gene achieves genome-wide significance
in the combined sample after correction for the number of regions
tested, we note that the high ranked regions include the PIK3AP1
gene, which is a promising candidate for further study. We also present
evidence of association for FGFR2 genes and 8q24 regions with
early-onset disease, despite the relatively small number of early-
onset (POSH) cases studied. Early-onset cancers include a greater
proportion of estrogen receptor negative (ER�) tumours but most
genome-wide association studies undertaken so far have focussed on
later onset disease and have had greater power to detect genes
associated with ER+ tumours.9 The evidence suggests that the
associations at genes such as FGFR2 and 8q24 are stronger for
ER+ tumours and there is reportedly greater FGFR2 expression in
ER+ cell lines. Genetic analysis of larger samples of early-onset cases,
stratified by tumour sub-types, is essential to fully comprehend the
heterogeneity in phenotype-genotype associations and the degree
to which early and late-onset disease may have different genetic
backgrounds.
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