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A remark on rare variants

Konrad Oexle

The genetic architecture of a disease determines the epidemiological methods for its examination. Recently, Bodmer and Bonilla

suggested that moderately strong, moderately rare variants contribute substantially to the genetic population attributable risk

(PAR) of common diseases. In the first part of this communication, I provide a concise reconstruction of their deliberation.

Variants contributing to human disease can be identified by linkage or by association tests. Risch and Merikangas analyzed

the power of these tests by comparing the affected sib-pair linkage test (ASP) and the transmission disequilibrium association

test (TDT). In the second part of this paper, I give an accessible reconstruction of this comparison and derive simple approximations

in the low allele frequency range, directly showing that the linkage test is much more sensitive to a decrease of frequency

or effect size. In the third part, I analyze a disease model whose genetic architecture is proportional to Kimura’s infinite sites

model. The relation between a variant’s selection coefficient and its effect size in disease generation is assumed to be simple,

and the number of contributing genetic variants is determined by the sum of their approximative PAR contributions. An

association test (TDT) is finally applied to this disease model. For different ranges of effect size and allele frequency, I derive

the minimal sample size necessary to detect at least one contributing variant. It turns out that, although the majority of

contributing variants is not accessible with realistic sample sizes, a minimum of sample size may be given for moderately strong

variants in the 1% frequency range.
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Happy families are all alike; every unhappy family is unhappy
in its own way.

(Tolstoy1 1875)

INTRODUCTION

Different assumptions on the nature of genetic factors accompany
the history of genetics since its very beginning; that is, since Darwin2

in 1859 who pictured a gradual originating of species as a sequence
of small effects, and Mendel3 in 1866 who examined traits determined
by a single factor. Little more than 100 years later, genome-wide
investigations in human genetics have identified rare variants with
strong effects by linkage analyses of monogenic disorders and com-
mon variants with weak effects by association analyses of multi-
factorial traits. However, the genetic influence on phenotypes cannot
be accounted for by these two extreme types of variants only. Weak-
effect variants probably occur in all frequency ranges. Moreover, there
may be a considerable number of intermediate variants with moder-
ately strong effects that have moderately low allele frequencies.
In this paper, I first pick up a reflection of Bodmer and Bonilla4

who recently called attention to the contribution of moderately rare
variants with moderately strong effects to the incidence of multi-
factorial diseases. Frequency and effect size of a variant determine the
power of tests used for its detection. Comparative power analyses of

genome-wide linkage and association tests have been performed by
Risch and Merikangas.5 I reconstruct these analyses in a dense but
complete and comprehensible manner, and provide simple approx-
imations for small frequencies. The approximations allow for a direct
comparison of the influences of frequency and effect size on the power
(that is, necessary sample sizes) of linkage and association tests in
detecting disease-related variants.
Bodmer and Bonilla4 also made assumptions on the relation

between number, frequency and effect size of variants involved in a
multifactorial disease. However, to some extent these assumptions on
the genetic architecture were merely postulated. I construct a disease
model whose effectors are distributed in proportion to the infinite
sites model of Kimura6 with the disease being the relevant selective
force. This disease model is then used for a general consideration
of association testing. On the basis of this consideration, I discuss
strategies to increase test efficiency, such as candidate space reduction,
formation of equivalence classes of mutations or selection of probands
(controls) with increased (decreased) mutation probability.

BODMER AND BONILLA ON RARE VARIANTS IN COMMON

DISEASE

Bodmer and Bonilla4 provided a quantitative estimate of the role of
moderately rare (0.1–3%) variants in the susceptibility to complex
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disease. They derived a simple relation between the population
attributable risk (PAR) of a variant, its risk allele frequency and the
associated odds ratio (OR; see Box 1 of their paper). However, their
derivation is difficult to comprehend. Here, I provide a reconstruction.
At first they defined the PAR as the fractional contribution of a risk
allele A to the incidence P(D) of a disease D,

PAR ¼ ðPðDÞ � PðDjaÞÞ=PðDÞ ð1Þ
where P(D|a) is the background incidence of D in the absence of A
(see their equation 1 that lacks the bracketing of the numerator,
however). They also introduced the ‘additional penetrance, f, due the
presence of a dominant variant’ and stated without derivation,

f ¼ PðDjaÞðOR� 1Þ=ð1 +PðDjaÞðOR� 1ÞÞ ð2Þ
If f is the penetrance above background,

f ¼ PðDjAÞ � PðDjaÞ ð3Þ
it is indeed possible to approximate Equation (2) from the definition
of the odds ratio, OR¼P(D|A)/(1�P(D|A))/(P(D|a)/(1�P(D|a))):
Replacing P(D|A) by f+P(D|a) according to Equation (3) yields
f¼(OR�1)(P(D|a)(1�f)�P(D|a)2) that results in Equation (2), if
P(D|a) is small enough so that P(D|a)2 can be ignored. Assuming
a small background incidence or a small effect size (that is,
P(D|a)(OR�1){1), Bodmer and Bonilla4 further simplified
Equation (2) to

f � PðDjaÞðOR� 1Þ if PðDjaÞðOR� 1Þ � 1 ð4Þ
by which they restated the fact that the OR approximates
the relative risk (RR) if it is small or if the incidence of the
disease is small: With Equations (3) and (4), RR¼P(D|A)/P(D|a)¼
f/P(D|a)+1EOR.
Bodmer and Bonilla4 then claimed that PARE2fP(A)/P(D). With

a Hardy–Weinberg assumption on the disease incidence, P(D)¼
P(D|AA)P(A)2+2P(D|A)P(A)(1�P(A))+P(D|a)(1�P(A))2, this claim
can be examined: It is true if the variant is rare enough so that the
P(A)2 terms can be neglected. With Equation (3),

PðDÞ � 2PðDjAÞPðAÞ+ PðDjaÞð1� 2PðAÞÞ
� 2fPðAÞ+PðDjaÞ if PðAÞ � 1 ð5Þ

Thus, with Equations (1), (4) and (5),

PAR � 2fPðAÞ=PðDÞ if PðAÞ � 1
� 2ðOR� 1ÞPðAÞPðDjaÞ=PðDÞ if PðAÞ � 1; f � 1
� 2ðOR� 1ÞPðAÞ if PðAÞ � 1; f � 1

ð6Þ

Bodmer and Bonilla4 applied Equation (6) both to rare and to
common variants in spite of the condition P(A){1. Moreover,
they assumed additivity of the PAR, which also must be regarded
as a simplifying approximation. Their purpose was to compare

the cumulated PAR contributions of variants in different frequency
ranges,

PARp � 2npfpp=PðDÞ � 2nppðORp � 1ÞPðDjaÞ=PðDÞ
� 2nppðORp � 1Þ ð7Þ

with ORp, fp and np as OR, penetrance and number, respectively, of the
variants in the frequency class with P(A)¼p. Bodmer and Bonilla4

compared a small set of common variants associated with small effects
(np¼10, p¼0.5, ORp¼1.4) and a larger set of moderately rare variants
associated with stronger effects (np¼200, p¼0.002, ORp¼3.5; see Box
1 in their paper). The inverse relation of p and ORp was derived from a
survey of published association studies. The assumptions on np were
rather speculative. From these two sets, they calculated ‘relative PAR
contributions’, 2npp(ORp�1), of 4 and 2, respectively, suggesting that
moderately rare variants contribute substantially to the incidence of
multifactorial disease. Moreover (see Box 2 in their paper), using the
example of breast cancer (incidence P(D|a)E0.1), they compared the
moderately rare, moderately strong variants at a single locus (assum-
ing np¼1000, p¼0.002, ORp¼2) with the set (np¼1000) of very strong,
that is, highly penetrant (fp¼1) mutations involved in the Mendelian
subtype of the disease. These variants are very rare (p¼5�10�7) as the
authors derived by assuming a balance between mutation pressure m
and selective loss; that is, (1�p)m¼�ps, withm¼5�10�8 and s¼�0.1.
Again they found a comparatively large PAR contribution of the
moderately rare variants (Table 1).
Since the disease incidence P(D) and background incidence P(D|a)

do not differ substantially if OR or p is small, the ‘relative PAR
contribution’ 2npp(ORp�1) actually equals the absolute contribution
of the variants from the p-frequency class (see Equation (6)). As such,
it cannot really have values of 2 or 4. This indicates a limitation of the
examples selected by Bodmer and Bonilla4.

RISCH AND MERIKANGAS ON LINKAGE AND ASSOCIATION

TESTING IN THE DETECTION OF RARE VARIANTS

Risch and Merikangas5 compared the power of linkage and association
analyses in detecting causative genes of complex disorders. As an
example of linkage analysis they used the test for disproportional allele
sharing in affected sib-pairs (ASP7,8), as an example of an association
analysis they used the transmission/disequilibrium test (TDT9) that
enquires for preferential allele transmission from parents to affected
children. They simulated these tests on a disease model with genotype
frequencies P(A)¼p and P(a)¼q¼1�p and multiplicative genotype
relative risks g and g2 for Aa and AA subjects, respectively.
For that purpose, Risch and Merikangas5 considered a random

variable B with discrete values (for example, b and �b) that indicates
the positive or negative outcome of each of M tested instances. The
expected value and variance of B are given as m and s2, respectively.
The sum S¼SBi is examined to identify a genetic effect. If M is large

Table 1 Cumulative population attributable risk (PAR contribution) of variants in different frequency classes (PARp) according to Bodmer and

Bonilla4 as calculated with a background disease frequency P(D|a)EP(D)E10%

Type of variant Risk allele frequency (p) Variants involved (np) Odds ratio (ORp) Estimated PARp Variants per individual

Common 0.5 10 1.4 4 10

Moderately rare 0.002 200 3.5 2 0.8

Moderately rare* 0.002 1000 2 4 4

Very rare* 5�10�7 1000 N (fp¼1) 0.01 0.001

Variants marked by (*) refer to the single locus example. PARp is estimated as 2np(ORp�1)p in case of common and moderately rare variants whereas in case of the very rare variants with complete
penetrance (fp¼1, ORp-N), it is estimated as 2npfpp/P(D).
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enough, S has a normal distribution with a mean ofMm and a variance
of Ms2. The minimal necessary separation of the distributions of S
under the null (m0, s0) and the alternative (m, s) hypotheses is
determined by the acceptable error rates as expressed by the intended
significance a and the projected power 1�b; that is,

Mm+M1=2sZb ¼ Mm0 +M1=2s0Z1�a ð8Þ
where Z1�a¼�Za and Zb¼�Z1�b are quantiles of a standard normal
distribution corresponding to a and b, respectively. The necessary
number of instances can be calculated from Equation (8). If the test-
specific definition of B (see below) is chosen such as to imply m0¼0
and s02¼1 for the null hypothesis, Equation (8) yields

M ¼ ðZa � sZ1�bÞ2=m2 ð9Þ
Notably, the cumulative rate of false-positives in genome-wide

analyses depends on the number of tested markers. As compared to
association analysis, the number of markers can be small in linkage
analysis because interfering recombinations are rare within families.
Risch and Merikangas5 applied a Bonferroni correction and arrived
at commonly accepted levels of a¼10�4 (Za,link¼�3.72) in linkage
analysis and a¼5�10�8 (Za,assoc¼�5.33) in association analysis.
For the power (1�b) they chose the usual level of 80%. Despite
the difference in Za, they showed that for small effect size g the
necessary M is much larger in linkage analysis because the allele
sharing between two affected sibs is already close to random whereas
the bias in disease allele transmission to an affected still is substantial
(see below).
Examining the linkage test (ASP), Risch and Merikangas5 assumed

fully informative allele characterization and scored B¼1 if the sib-pair
shared an allele identical by descent from a parent and B¼�1 if not.
They derived the expected proportion Yof identical by descent-shared
alleles to calculate m¼(1)Y+(�1)(1�Y) and s2¼(1�m)2Y+(�1�m)2

(1�Y). Y was calculated from the probabilities of an ASP to share j (0, 1
or 2) alleles identical by descent: Y¼

P
j j P(j|sib_pair_aff)/2 (see their

footnote 2; watch for typing errors, however). These probabilities are
given as

Pð jjsib pair affÞ ¼ zj ¼ Pð jÞPðsib pair aff j jÞ=Pðsib pair affÞ ð10Þ
After specification of the genetic model (multiplicative; see above)

and assuming randommating, the zj can be calculated from the weighted
list of genotypic combinations. For example, the list of parental mating
types with all possible genotypes in two children yields P(sib_pair_aff).
Less tediously, Risch and Merikangas5 (also see earlier publications of
Risch) followed James10 and used a partitioning of the variance in
genotypic disease frequency for calculating the correlation between
relatives. Hence, P(sib_pair_aff|0)¼c2K2, P(sib_pair_aff|1)¼c2(K2+0.5Va),
P(sib_pair_aff)¼c2(K2+0.5Va+0.25Vd) with the mean disease frequency
cK¼p2cg2+2pqcg+q2c¼c(pg+q)2 and the variance partitioning c2V¼
(mean of squares)�(square of mean)¼p2c2g4+2pqc2g2+q2c2�c2K2¼
c2 (pg2+q)2�c2K2¼c2(p(1�p)g2+p2g2+2pqg�2pqg+q(1�q)+q2)2 �c2K2

¼c2(K+pq(g�1)2)2�c2K2¼c22pq(g�1)2K+c2p2q2(g�1)4¼c2Va+c
2Vd,

where c is a constant. With P(j¼0)¼0.25, P(j¼1)¼0.5, P(j¼2)¼0.25
and z2¼1�z0�z1, the zj and Y¼

P
j j z(j)/2 can be calculated from

Equation (10). The ASP analysis thus resulted in

m ¼ 2Y � 1; s2 ¼ 4Yð1� YÞwithY ¼ ð1+wÞ=ð2+wÞ

wherew ¼ pqðg� 1Þ2=ðpg+qÞ2 ð11Þ

For the examination of the association test (TDT), Risch and
Merikangas5 used the probability h that a parent of an affected child
is a heterozygote and scored B¼1/Oh if the parent is heterozygous
and transmitted the risk allele A, B¼�1/Oh if the parent is hetero-

zygous and transmitted allele a, and B¼0 if the parent is homozygous.
(The weighting factor 1/Oh has not been explained by the authors,
but it can be understood in analogy to Penrose’s square root principle
of representative voting:11 Transmissions at different loci should
have the same a priori influence on the TDT. The influence of a
transmission can be quantified as its probability to be deciding
on a split result at the respective locus. This probability is propor-
tional to the square root of the number of informative transmissions
at that locus as can be derived by calculating the height of (that is,
infinitesimal area under) the peak of a binomial distribution
using Stirling’s approximation. Of note, Penrose8 had encountered
the problem of weighting according to informativeness in
genetics already.)
To calculate m and s2 as m¼hG(1/Oh)+h(1�G)(�1/Oh)+0¼

(2G�1)Oh and s2¼hG(1/Oh�m)2+h(1�G)(�1/Oh�m)2+(1�h)
(0�m)2¼1�(2G�1)2h, respectively, Risch and Merikangas5 used
the probability G for an affected child of a heterozygote parent
to have received the risk allele from this parent. Under the
multiplicative model with random mating, Bayes’ theorem
yielded G¼P(trans|affhet_par)¼P(trans)P(affhet_par|trans)/P(affhet_par)¼
0.5g(pg+q)c/(0.5g(pg+q)c+0.5(pg+q)c)¼g/(g+1), where c is a
constant. Bayes’ theorem also yielded h¼P(het_par|aff)¼
2pq[0.5(g+1)pg+0.5(g+1)q]/(pg+q)2¼pq(g+1)/(pg+q) (see their
footnote 4 that contains a typing error of the [y] bracketing,
however). Thus, for the TDT on affected singletons,

m ¼ p
hðg� 1Þ=ðg+1Þ;

s2 ¼ 1� hðg� 1Þ2=ðg+1Þ2
with hsingletons ¼ pqðg+1Þ=ðpg+qÞ ð12Þ

In case of the null hypothesis with g0¼1, mean and variance are
given as m0¼0 and s02¼1, respectively.
For the TDT on families with affected sib-pairs (TDTsibs),

h has to be adapted. Risch and Merikangas5 indicated the
formula hsibs¼pq(g+1)2/(2(pg+q)2+pq(g�1)2) without further
explanation. P(het_par|sib-pair_aff)¼hsibs can be derived using
Bayes’ theorem and the list of parental matings types, which
implies P(sib_pair_aff|het_par)¼0.25c2(g+1)2(K+0.5pq(g�1)2) and
P(sib_pair_aff)¼c2(K+0.5pq(g�1)2)2, where K¼(pg+q)2 and c is a
constant (compare ASP analysis above).
For rare variants (p-0), Equations (11) and (12) can be simplified

substantially. Because with Equation (11) wEp(g�1)2 {1 for p-0,
we get m¼w/(2+w)Ew/2 and s2¼4(1+w)/(2+w)2E1. Thus, with
Equation (9) the number of families NASP¼M/2 is

NASP � 2ðZa;link � Z1�bÞ2=ðp2ðg� 1Þ4Þ if p � 1 ð13Þ

For the TDT on singletons, Equation (12) yields hEp(g+1) if
p-0. Therefore, mE(g�1)(p/(g+1))1/2 and s2E1�p(g�1)2/(g+1)E
1�m2E1, because m2{1 for small p. Hence, with Equation (9),
the number of families (each with two independently transmitting
parents) can be approximated as

NTDT;singletons � ðZa;assoc � Z1�bÞ2=ð2pðg� 1Þ2=ðg+1ÞÞ
if p � 1

ð14Þ

where—as Risch and Merikangas5 apparently also have done—
it is assumed that the risk allele can be identified a priori
(that is, one-sided test). In case of rare variants this assumption
is warranted.
The approximation for the TDTon sib-pairs implies hEp(g+1)2/2,

and consequently, mE(g�1)(p/2)1/2, s2E1. Considering that two
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parents transmit to two cases each and ignoring the small nonran-
domness error due to the sibs’ relatedness,

NTDT;sibs � ðZa;assoc � Z1�bÞ2=ð2pðg� 1Þ2Þ if p � 1 ð15Þ

Equations (13–15), that is, the powers of their denominators, directly
show the conclusion of Risch and Merikangas5 that in linkage analysis
the necessary sample size is much more sensitive to a decline of risk
allele frequency p or effect size g (also see Figure 1). An allele’s
association with a trait (that is, preferential transmission in case of an
affected child) may still be noticeable when the correlation of its
transmissions to two or more affected relatives is already obscured by
noise (that is, by incomplete penetrance, genocopies and phenocopies).

FREQUENCY DISTRIBUTION OF GENETIC VARIANTS

Mutation rate, selection and random drift determine the frequency
distribution of genetic variants. Generalizing previous results of
Wright, Kimura6 derived the number of heterozygous sites due to
the steady flux of mutations from a diffusion theoretical approach.
The number of sites with a variant of frequency p and selection
coefficient s is given as

Fðs; pÞ ¼ 4NeuðsÞ=ðpð1� pÞÞðe�2Nesð1�pÞ � 1Þ=ðe�2Nes � 1Þ ð16Þ

where Ne is the ‘variance effective population size’ and u(s) the rate per
gamete and generation of mutations with selection coefficient s. In this
‘infinite sites model’, each novel mutation occurs at a site in which a
previous mutation is not still segregating. Moreover, the mutated sites
are assumed to segregate independently of each other. Equation (16)
was derived as stationary solution of the Kolmogorov backward
equation modeling the temporal change in allele frequency as a result
of selection and gamete sampling variance (drift). With Equation (16),
the number of binary sites (for example, single-nucleotide poly-
morphisms, SNPs) is

Cðs; pÞ ¼ Fðs; pÞ+Fðs; 1� pÞ ð17Þ

Handling of Equation (16) is tedious but some of its characteristics
are detected easily. With the first-order approximation e�ksE1�ks,
the frequency of neutral mutants (s-0) simplifies to

Fð0; pÞ ¼ 4Neuð0Þ=p; Cð0; pÞ ¼ 4Neuð0Þ=ðpð1� pÞÞ ð18Þ
C(0,p) is minimal at p¼0.5. The relative number C(s,p)/C(0,p)
also has a single extremum at p¼0.5; its approximation for
p-0 is u(s)/u(0)((1+2Nesp)/(1�e�2Nes)). These values predict the
frequency relation of variants with different selection coefficients;
for example, for u(s1)pu(s2) and s1os2p0 the frequency distribu-
tion of the more deleterious s1 variants is shifted toward lower
frequencies as compared to the s2 variants. In accordance with this
prediction, Figure 2 displays the analysis of a recently updated SNP
database showing that the relation of nonsynonymous (that is, more
or less deleterious) SNPs to synonymous (that is, mostly neutral) SNPs
increases with declining allele frequency.12,13 Moreover, nonsense muta-
tions appear to rise in a lower frequency interval as compared to
missense mutations, fitting the expectation that, on average, nonsense
mutations should be more deleterious than missense mutations and,
therefore, less likely to reach higher allele frequencies.
The distribution of variants depends on the effects of drift and

selection but also on the distribution of new mutations u(s). Kimura14

argued that advantageous mutations are very rare whereas nearly
neutral mutations predominate. Therefore, he modeled u(s) as a
reflected gamma distribution that can accommodate enough prob-
ability mass in the region of nearly neutral mutations. Eyre-Walker
and Keightley15 recommended to model u(s) by the composition of
more than one gamma function to account for the differences in
selective relevance of different genome regions (for example, coding
versus noncoding).
For the further analysis (see below), u(s) is assumed to be composed

of two reflected gamma functions with shape parameters derived from
the available evidence as outlined in the legend of Figure 3.

ASSOCIATION ANALYSIS OF A DISEASE MODEL BASED

ON THE INFINITE SITES MODEL

I now construct a disease model caused by variants with a distribution
proportional to infinite sites model of Kimura6 (see above). In reality,

Figure 1 Necessary sample sizes (number of families) in a linkage test

on affected sib-pairs (ASP) and in an association test (transmission

disequilibrium test, TDT, with singletons or sibs) as a function of the

allele frequency according to Risch and Merikangas5. Sample sizes were

calculated for two different genotypic relative risks using a multiplicative

disease model. Calculations were carried out as approximations for rare

variants (thick lines; see text) and as exact solutions (thin lines). Also see

Risch and Merikangas26 for a correction of their ASP calculation.

Figure 2 Fraction of missense and nonsense mutations as compared to

synonymous base exchanges in different ranges of the minor allele

frequency. dbSNPs (build 129) were downloaded from the UCSC browser

using the corresponding filters for class (single), average heterozygosity and

function. All pairwise comparisons (cross-tab test) between the ranges were

highly significant except for the comparison of nonsense and synonymous

mutations between the 0.1–3%-range and the 43%-range.

A remark on rare variants
K Oexle

222

Journal of Human Genetics



of course, the relation between the evolutionary effect and the disease-
causing potential of an allele is not that simple. Deleterious alleles may
affect fertility without causing a disease and disease-causing alleles do
not necessarily inflict a selective disadvantage. Nonetheless, in general,
a positive correlation may be assumed. The stronger a disease-causing
effect, the more likely is an early onset of the disease with an impact on
fertility. Moreover, even if the average age of onset is late, disease
susceptibility genes may be associated with a selective disadvantage if
the variance in the age of onset is large enough. The latter explains
why causative alleles in late-onset diseases, such as certain familial
forms of cancer, coronary artery diseases and Alzheimer dementia, are
typically recent and rare.16

To construct the genetic architecture of the disease model, a relation
is needed between the selection coefficient s and the effect size. I derive
a simple version of this relation using some approximations; that is,
P(D|aa)EP(D) (prevalence in the absence of the variant is close to the
general prevalence of the multifactorial disorder) and ORERR (OR is
close to RR). In keeping with Kimura6,17, dominance effects are
neglected, that is, the selective advantage, WAA�Waa, of homozygote
mutants over the preexisting form is considered to be twice as large as
the corresponding advantage, WAa�Waa, of heterozygotes

WAA �Waa ¼ s
WAa �Waa ¼ s=2

ð19Þ

With frequency normalization after selection, p2WAA+2p(1�p)
WAa+(1�p)2Waa¼1, Equation (19) yields Waa¼1�ps, and the
change in frequency of the variant is Dp¼(2freq(AA after selection)+
freq(Aa after selection))/2�p¼p(pWAA+(1�p)WAa�1)¼0.5sp(1�p)
as indicated by Kimura6 (his equation 2 with h¼1/2).

Assuming that selection behaves by reduced fertility of those who
have the disease, the genotypic fitness parameters may be approxi-
mated as

WAA ¼ 1� PðDjAAÞð1� kÞ
WAa ¼ 1� PðDjAaÞð1� kÞ
Waa ¼ 1� PðDjaaÞð1� kÞ

� 1� PðDÞð1� kÞ if PðDjaaÞ � PðDÞ

ð20Þ

with k indicating the relative fertility of those who have the disease
(0pkp1). Comparison of Equations (19) and (20) yields the homo-
zygote and heterozygote OR

ORhom � PðDjAAÞ=PðDÞ � 1� s=ðPðDÞð1� kÞÞ
if PðDjaaÞ � PðDÞ ð21Þ

ORhet � PðDjAaÞ=PðDÞ � 1� s=ð2PðDÞð1� kÞÞ
if PðDjaaÞ � PðDÞ ð22Þ

For small values of s, Equations (21) and (22) are compatible with
ORhomE(ORhet)

2 as can be shown by first-order expansion using
dORhom/ds¼2ORhet dORhet/ds¼�1/(P(D)(1�k)) for s¼0.
In the following delineation, we will use only the heterozygote OR,

that is, OREORhet, because we perform an approximation that
neglects homozygote states in keeping with Bodmer and Bonilla.4

Moreover, we will calculate a specific example with disease prevalence
P(D)¼1% and fertility reduction in affecteds by 50% (that is, k¼1/2).
Thus,

OR � 1� s=ð2PðDÞð1� kÞÞ ¼ 1� 100s ð23Þ
which is larger than 1 for s o 0. Equation (23) can now be used to
calculate the PAR according to Equation (7) as

PARðs; pÞ � 2cCðs; pÞðORðsÞ � 1Þp
with so� 1=ð2NeÞ ð24Þ

where c is a proportionality constant and np has been replaced by cC(s,p)
according to Equations (16) and (17) with a mutation rate as outlined in
Figure 3. Thus, we finally arrive at the genetic architecture of the disease
model by assuming that the frequency spectrum of the variants involved
in the disease is proportional to the frequency spectrum of the set of all
deleterious variants. The normalization condition is

1 ¼
Z 0:5

0

Z �1=ð2NeÞ

�1

PARðs; pÞds dp ð25Þ

where the integration runs up to the limit of effective neutrality,
that is, so1/(2Ne), and across the whole frequency spectrum,
0pp¼p(A)p0.5.
Of course, this model is simplistic because it assumes a simple

relation between the selective effect of a variant and its contribution to
the disease. Moreover, following Bodmer and Bonilla4, it assumes only
two alleles per locus, absence of linkage between loci, calculation and
summation of the PAR across the whole frequency spectrum as in
Equations (24) and (25), respectively, and neglectability of homo-
zygosity. Nonetheless, it may allow for some general considerations.
As an example, let us assume a disease frequency P(D)¼1%, a relative
fertility k¼0.5 and a constant effective population size of Ne¼10000.
With these values, the numeric integration of Equation (25) yields the
normalization factor c¼1/492.9. We now form classes of variants with
different effect size, that is, a class with very weak effect (�1/20 000Xs
4�1/2000), a class with weak effect (�1/2000 Xs 4�1/200, that is,
1.05oORo1.5), a class with moderately strong effect (�1/200 Xs
4�1/20, that is, 1.5oORo6) and a class with strong effect

Figure 3 Semiempirical cumulative distribution (thick line) of new

mutations according to their selection coefficient s, ignoring the small

fraction of advantageous mutations with sX0. The distribution density

u(s) was modeled by the weighted sum of two reflected gamma distributions

(thin lines), u(s)*¼0.01g1(s)+0.99g2(s), with g(s)¼bb(�s)b�1e�bs/ŝ/(�ŝ bG(b)).

Weighting followed the percentage (1%) of coding sequence in the

genome. The shape parameter (b1¼0.2) of g1(s) was chosen according

to the analyses of Eyre-Walker and Keightley.15,27 Choosing an average
of ŝ1¼�0.001, only 40% of the mutations under g1(s) were neutral

(s4�1/(2Ne)) accounting for the fact that a large fraction of nonsynonymous

mutations are mildly deleterious.27,28 For g2(s) an even more leptokurtic

shape parameter (b2¼0.1) and an effectively neutral average (ŝ2¼�0.1/(2Ne))

were chosen to account for the overwhelming part of the genome that does

not appear to be relevant for fitness. With these parameters, 3% of the

mutations under u(s) were deleterious (in keeping with Eyre-Walker and

Keightley29). Of these 3%, 80% belong to g2(s) but almost all of the

strongly deleterious mutations belong to g1(s). The total number of new

mutations per gamete was estimated to be 50 by indirect and direct

analyses30–32; that is, u(s)¼50u(s)*.
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(�1/20Xs). Figure 4 shows the contributions,
R s2
s1 PAR(s,p)ds, of

these variants to the PAR density distribution as a function of their
frequency p. The largest part of the PAR sum is contributed by very
weak effect variants.
In the next step, the frequency range is also subdivided into several

groups; that is, from common to rare. The analysis shown in Figure 5
comprised seven frequency segments crossed with seven groups of
variants of different effect sizes. For each of the 7�7¼49 cells the
number of variants, their average effect and their average frequency
were determined. These numbers were used to calculate the sample
size NTDT,singletons that is required for an association analysis of
the disease model according to Equations (9), (12) or (14; for an
approximation). The number of contributing variants in the cell
delimited by pi, pj, sm and sn is given as

Oijmn ¼
Z pj

pi

Z sn

sm

cCðs; PÞds dp ð26Þ

according to Equations (16) and (17) and which is derived by numeric
integration. Also by numeric integration, the average frequency and
the average selection coefficient in each cell were derived as harmonic
means (ph, sh)

phijmn
¼ Oijmn

Z pj

pi

Z sn

sm

cCðs; pÞ=p ds dp
 !�1

shijmn
¼ Oijmn

Z pj

pi

Z sn

sm

cCðs; pÞ=s ds dp
 !�1

ð27Þ

(The use of arithmetic means leads to qualitatively similar results.)
The genotypic relative risk g used in Equations (9), (12) and (14)

was approximated by the OR (ERR) calculated from the average
selection coefficient sh according to Equation (23):

gðshÞ ¼ 1� 0:5sh=PðDÞð1� kÞ ð28Þ

The aim of the association analysis was set to identify at least one
contributing variant with a power of 80%; that is, the probability that
all truly associated variants test negative had to be less than 20%.
Thus, besides the significance level a¼0.05 that was adapted to the

genome-wide multiple testing scheme, the power 1�b¼0.8 was
adapted to the fact that there is not exactly one true positive. For
correction of a the total number Lij of variants in the frequency range
[i,j] was calculated. It can be approximated from above using Equation
(18) by assuming that all novel mutations are neutral

Lij ¼
Z pj

pi

Z 0

�1

Cðs; pÞ ds dp � 4Neun

Z pj

pi

1=ðpð1� pÞÞdp ð29Þ

with un¼�1

R
0 u(s) ds. The Bonferroni–Sidak correction of a then was

given as

a ! aij; a ¼ 1� ð1� aijÞLij ð30Þ
with aijEa/Lij. Analogously, the power level was corrected using the
number of contributing variants as calculated in Equation (26),

b ! bijmn; b ¼ ðbijmnÞOijmn ð31Þ

Here, (1�aij)Lij is the probability that no test is false positive, and
ðbijmnÞOijmn is the probability that none of the true positives is detected
in the analysis (if there is no statistical interference among them).
Thus, the necessary sample size NTDT,singletons for an association

analysis on variants in the effect size interval [sm,sn] and the frequency
segment [pi,pj] can be approximated with Equations (14), (28), (30)
and (31):

Nijmn � ðZaij � Z1�bijmn
Þ2=ð2phijmn

ðgðshijmn
Þ � 1Þ2=ðgðshijmn

Þ+ 1ÞÞ ð32Þ

For the analysis shown in Figure 5, the precise solutions were used
as indicated by Equations (9) and (12). Figure 5 shows that the

Figure 4 Density of the cumulative population attributable risk (PAR)

(‘‘PAR contribution’’) of variants as a function of the allele frequency

for four different groups of effect size; that is, variants with very weak

(a, 1.005 oOR o1.05), weak (b, 1.05 o OR o1.5), moderately strong

(c, 1.5 o OR o6) and strong (d, OR46) effects. Calculation followed the

example delineated in the main text assuming a distribution of new mutations

as described in Figure 3. The largest contribution (86%) is provided by the very

weak variants whereas strong effect variants contribute little to the PAR. Among

the rare variants, however, the moderately strong variants (c) may reach a PAR
contribution that equals those of the weak (b) and very weak (a) variants.

Figure 5 Sample size N necessary for a transmission disequilibrium (TDT)

association analysis of a disease model to detect at least one contributing

variant with a genome-wide significance of 0.05 and a power of 0.8 in

different segments of allele frequency p. Variants are assumed to be

distributed according to the infinite sites model (see Figure 3 and main

text for more details). The graphs a–g indicate classes of variants with

different effect sizes as in Figure 4 but with a finer subdivision (a, 1.005o
ORo1.01; b, 1.01oORo1.05; c, 1.05oORo1.1; d, 1.1oORo1.5; e,

1.5oORo2; f, 2oORo6; g, 6oOR). The minimum is reached by

moderately strong variants (graphs e and f) in the 1% frequency range. Up

to this range, at least about one of such variants can be expected to

contribute to the disease. Above this range, the expected number of

contributing variants is low ({1) as is revealed by the steep increase of the
necessary sample size. Strong variants (g) do not reach a sufficiently large

number at frequencies above 0.01% due to strong selective repression.
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necessary sample sizes are smallest for variants with moderately strong
effect in the 1% allele frequency range.

DISCUSSION

Detecting rare variants demands large samples, a well-known fact that
is made obvious once more in the approximations for the association
(TDT) and linkage (ASP) tests provided here (Equations (13–15),
Figure 1). Less well-known, perhaps, is the fact that the rareness
of the variants itself inflates the sample size if the analysis is extended
to ever more rare variants, and not the multiple testing correction
due to the increasing number of variants. This is evident for linkage
analysis where the number of tests has an upper limit due to linkage
disequilibrium across long genome segments, but it is also true
for association tests with linkage disequilibrium being ignored:
Because almost all new mutations are neutral or nearly neutral (cf.
Figure 3), the number of variants can be approximated with Equation
(29) as LðpÞ �

R 0:5
p 4Neun/(p(1�p))dp¼4Neunln(1/p)¼2�106ln(1/p),

where the number un of new mutations is approximated by 50 neutral
mutations per gamete. The a level in an association test is thus
corrected to a¢(p)E0.05/L(p)¼0.25�10�7ln(1/p)�1. Because this is
very small, the quantile Za¢ (see Equations (8) and (9)) can be
approximated18 as Za¢(p)E�(2ln(1/a¢))1/2¼(35+2ln(ln(1/p)))1/2 being
in the range of 6.2–6.4 for 10�2 o po10�10 and, thus, almost constant
for all realistic levels of rare variants. Candidate space reduction
strategies must be ever more stringent, therefore, to substantially
ameliorate the sample size problem, and genomic enrichment schemes
such as exome sequencing may need to imply further measures such as
the formation of equivalence classes of variants, for example.
The approximations (Equations (13–15), Figure 1) also show that

the inflation due to variants’ rareness is much stronger in case of
linkage tests such as the ASP. The sample size is proportional to (1/p)2

in case of the ASP while it is proportional to 1/p in case of
the association test (TDT). Similarly, linkage analysis is much more
sensitive to a decline in effect size g. This has led to the assumption
that linkage analysis cannot be helpful in localizing causative muta-
tions if their penetrance is incomplete as in case of variants that
contribute to common multifactorial traits. However, this rule
should be applied carefully: (1) Intermediate phenotypes that con-
tribute to a multifactorial trait may individually be determined
by factors that are detectable by linkage analysis. Smirnov et al.,19

for instance, identified linkage signals (mostly in trans) with genome-
wide significance for one third of 3280 molecular phenotypes defined
as 1.5-fold change of gene expression upon radiation. (2) Allelic
series of mutations may affect the same gene so that linkage analysis
of variants with high penetrance localizes genes that also comprise
low effect variants.20 (3) Linkage analysis of a recessive phenotype
may unravel a variant of low penetrance in the heterozygote state
(for example, the C282Y mutation of the hemochromatosis
gene HFE).21,22

The genetic architecture of traits and diseases thus governs
the method and the expenditure to be used for their analyses.
General assumptions on the architecture of multifactorial
diseases have been made before. Bodmer and Bonilla4, for instance,
inferred that moderately rare variants with moderately strong effect
sum up to a substantial PAR. The latter—which they used as a
measure of the contribution to the disease generation (PAR contribu-
tion)—was comparable to the contribution by common variants (see
Table 1). However, their study implied somewhat arbitrary assump-
tions on the numbers of contributing variants in different effect size
classes. Here, I analyzed a disease model with a distribution of such
contributing variants proportional to the evolutionary distribution of

non-neutral variants and with effect sizes being related in a simple
manner to the selection coefficients. In this model, the PAR contribu-
tion declined substantially with the effect size, with the largest
contribution being made by a large number of very weak variants
distributed over all frequency ranges (Figure 4).
With rare variants being included in the association analysis (for

example, by next-generation sequencing), the identification of a
moderately strong variant may be achievable with the comparatively
smallest sample size: My investigation indicated a sample size mini-
mum for this effect size class in the frequency range of about 1% (see
Figure 5). This minimum is due to a balance between frequency and
number of contributing variants. Figure 5 suggests that most con-
tributing variants are not accessible with reasonable sample sizes
whereas some harvesting of moderately rare, moderately strong
variants may be possible.
The genetic architecture of real disorders probably is not as simple

and uniform as delineated in the model presented here. The influence
of selection may vary substantially between traits. Moreover, the
dissection of complex traits in animal models using chromosome
substitution strains has shown that the number of strong effects may
be larger than previously assumed and that substantial epistatic
interactions account for the subadditivity of these effects.23

Nonetheless, the detection by association analysis of more than a
few effects contributing to a phenotype will demand very large
samples. To limit the sample size, several strategies have been pro-
posed. One, of course, is the formation of equivalence classes of
variants; for example, by treating different variants from the same gene
or the same pathway as units for the association test.24 Enrichment
strategies in proband selection might also be successful: Crow25

proposed to examine patients with old fathers because, as compared
to common variants or environmental factors, new mutations (as such
being of the rare and possibly strong type) may have a more
prominent function in these cases than in cases with young fathers.
Moreover, environmental factors might be of reduced relevance in
young cases because, in general, they need time to operate. Finally,
choosing controls and cases from subpopulations with and without
environmental risk factors, respectively, (for example, nonsmoking
lung cancer cases versus smoking controls) might also enrich for
causative and protective variants, respectively, in a way that increases
the power of an association analysis.
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