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Concordance of two multiple analytical approaches
demonstrate that interaction between BMI and
ADIPOQ haplotypes is a determinant of LDL
cholesterol in a general French population

Francis Vasseur1, Thomas Caeyseele2, Mouna Barat-Houari3, Stéphane Lobbens3, Aline Meirhaeghe4,
David Meyre3, Philippe Froguel3, Philippe Amouyel4 and Nicole Helbecque4

Genetic and environmental factors are involved in insulin resistance (IR). IR and dyslipidemia associate with increased risk

of cardiovascular diseases. Plasma low-density lipoprotein cholesterol (LDL-C) level is a marker of cardiovascular risk. In a

Caucasian general population we aimed at determining the multifactorial components of LDL-C levels using 10 genes and

3 phenotypes. In the PPARG, UCP3, ADIPOQ, TNF, LIPC, CARTPT, PCSK9, SCAP, SCARB1 and ENPP1 genes known to be

associated with IR or dyslipidemia we genotyped 19 single nucleotide polymorphisms (SNPs) in 846 subjects. When several

SNPs were genotyped for a given gene we constructed haplotypes. Including genetic and environmental variables (gender, body

mass index (BMI) and adiponectin level) we used (1) the multifactor dimensionality reduction method to explain clusters of high

and low LDL-C, and (2) the restricted partition method to explain LDL-C levels. Both methods showed that BMI and haplotypes

at the ADIPOQ adiponectin encoding gene but not adiponectin level itself, were discriminant regarding to LDL-C. Subjects

bearing an at-risk combination of BMI and ADIPOQ genotypes were prone to have a higher LDL-C (OR¼3.13, 95%

CI¼2.20–4.46, Po0.0001). Our results suggest that in interaction with BMI, ADIPOQ haplotypes capture genetic variation(s)

from neighboring gene(s) that would modulate LDL-C level.
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INTRODUCTION

Genetic and nongenetic (so-called environmental) factors are involved
in the insulin resistance (IR) metabolic syndrome. IR and dyslipidemia
are associated with increased risk of cardiovascular diseases. Among
the various blood variables, plasma low-density lipoprotein cholesterol
(LDL-C) is used as a marker of cardiovascular risk. Numerous papers
report associations between genetic variants and IR, features of the
metabolic syndrome and dyslipidemia. Several recent genome-wide
association studies reported many loci that may modulate dyslipide-
mia.1–5 In this study, we selected genetic variants distributed on
various human chromosomes and previously reported to be associated
with either IR or dyslipidemia and searched for those explaining
LDL-C level. PPARG P12A is associated with IR,6 and LDL-C.7

UCP3 �55C4T has been reported to be associated with type 2
diabetes and atherogenic lipid profile.8 Haplotypes of the promoter
(�11391G4A, �11377C4G) and of the exon 2 intron 2 region

(+45T4G, +276G4T) of the ADIPOQ gene (also called ACDC,
APM1, GBP28) encoding the adiponectin protein are associated with
IR and adiponectin level,9,10 and decreased adiponectin levels were
reported to contribute to the atherogenic lipid profile.11 TNF
�308G4A has been reported to be associated with IR.12 The func-
tional LIPC �514C4T single nucleotide polymorphism (SNP) has
been associated with plasma lipids levels.13 CARTPT �3608C4T has
been associated with obesity14 and plasma lipid levels.15 PCSK9 E670G
was reported to be associated with plasma LDL-C.16 The functional
ENPP1 K121Q has been associated with IR and atherogenic pheno-
types.17 Moreover, the K121Q and the IVS8 +27T4G, IVS20 �11
delT, +828 13 bp insertion, +1044A4G define haplotypes associated
with IR and obesity.18 The SCAP I796V is involved in cholesterol
homeostasis.19 Several SNPs (G2S, c.795C4T, c.1119C4T) from
SCARB1 are associated with plasma lipid levels and LDL-C.20 Athero-
genesis, for which LDL-C level may be considered as a marker, is a
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complex trait resulting from potential multiple gene–gene and gene–
environment interactions. In dissecting multifactorial traits, conven-
tional statistical approaches as multivariate logistic regression have
been proved to be limited by a lack of power, or would require huge
populations.21 To circumvent these limitations, we used both the
multifactor dimensionality reduction (MDR)21 and the restricted
partition methods (RPM).22 MDR is designed to detect high-order
gene–gene or gene–environment interactions in relatively small sam-
ples. The method defines a new Boolean (high risk/low risk) variable
summarizing information related to the multiloci and environmental
informations. The new Boolean variable is then evaluated for its ability
to classify and predict high- or low-risk status using cross validation
testing. MDR analysis already showed its ability to detect susceptibility
loci in various diseases.20,23–25 The RPM method uses a partitioning
algorithm for determining predictors of a quantitative trait. In this
study including 846 subjects from a general population, among 19
SNPs from 10 genes and 3 phenotypic traits (gender, adiponectinemia
and body mass index (BMI)) we aimed at determining the relevant
genetic and environmental variables combinations involved in the
modulation of plasma LDL-C level.

MATERIALS AND METHODS

Subjects
Participants were recruited in the framework of the World Health Organization-

Multinational mONItoring of trends and determinants of CArdiovascular

diseases (WHO-MONICA) population survey conducted from 1995 to 1997

in the urban community of Lille in the North of France. The sample included

1195 representative subjects (601 men/594 women) aged 35–64 years, stratified

by town size and randomly selected from the electoral rolls to obtain 200

participants for each gender and 10-year age group (WHO-MONICA Project

protocol). The Ethical Committee of Lille University Hospital (CHRU) approved

the protocol. After signing an informed consent, participants were administered a

standard questionnaire including personal medical history. Physical measure-

ments were taken by a specially trained nurse. A fasting blood sample was drawn

for 1170 participants (590 men and 580 women). The studied sample consisted

of a subgroup of 846 subjects (424 men and 422 women; mean age¼49±8 years,

range 35–66; mean BMI¼25.7±4.4 kg m�2, range 16.1–44.1) who were not

treated for hypercholesterolemia, hypertension or type 2 diabetes mellitus.

Adiponectinemia was measured using a commercial assay kit (LINCO Research,

St Charles, MO, USA) as previously reported.10 Plasma LDL-C concentrations

were calculated by the Friedewald formula.26 The population was divided into

four BMI classes: class 1—BMIo25 kg m�2; class 2—25pBMIo27 kg m�2; class

3—27pBMIo30 kg m�2; and class 4—BMIX30 kg m�2.

Genotyping
We genotyped SNPs with LightCycler LightTyper (Roche Diagnostics, Basel,

Switzerland), or with TaqMan (Applied Biosystems, Foster City, CA, USA) or

by direct sequencing. To avoid SNP genotyping errors, we systematically

regenotyped 10% of DNA samples for further verification. We found con-

cordance rates of 100% for all SNPs. All genotypes fitted the Hardy–Weinberg

equilibrium.

Haplotyping
Linkage disequilibrium (LD) and haplotype blocks were determined with the

Haploview software.27 Phase 2.128,29 was used to construct haplotypes. Phase

2.1 implements a Bayesian statistical method to infer phase and to construct

haplotypes from population genetics by Markov Chain–Monte Carlo algorithm

and coalescent theory. It was shown to infer haplotypes more accurately than

other Bayesian-based methods in real data sets.29

MDR analysis
For evaluation of high-order interactions among genetic and environmental

variables with a relatively small sample size and a large variable number we used

the MDR method.21 It includes a combined cross-validation procedure divid-

ing the data into a training set and a testing set and thus minimizes false-

positive results by multiple examinations of the data. With 10-fold cross-

validations, the data are divided into 10 equal parts, and the model is developed

on 9/10 of the data (training set). A set of n candidate variables is selected

representing data in an n-dimensional space. The ratio number of cases/

number of control subjects is evaluated within each multifactor cell in the n-

dimensional space and thus cells are labeled as high or low risk according to the

ratio of cases and controls. This reduces the n-dimensional model to one

dimension (that is one variable with two multifactor classes: low risk and high

risk). All possible combinations of n factors are evaluated sequentially for their

ability to classify affected and unaffected subjects in the training set and the best

n-variable model is then tested on the remaining 1/10 of the data (testing set).

Steps are repeated 10 times with the data split into 10 different training and

testing sets. In addition to the prediction error it is of interest to use cross-

validation consistency as a measure of evidence for a particular model; that is

how often were the same variables selected across the 10 cross-validations. We

developed Perl scripts to perform repeated MDR analyses with numerous

random partitions of the data between training and testing sets to better

evaluate the reproducibility of the results.

RPM analysis
Conversely to MDR, RPM is an iterative algorithm devoted to the study of a

quantitative trait. As reported by Culverhouse et al.30 RPM searches among

multiple genetic and environmental factors the combination that explains the

highest part of the variance of a quantitative trait. It attempts to find the most

reasonable partition for evaluation, balancing maximization of the between-

group variation with minimization of the number of groups and the within-

group variation. In RPM analyses, interaction between variables may be

evidenced when R-square of a combined model is at least 15% higher than

the sum of R-squares of the variables taken individually (R Culverhouse,

personal communication).

RESULTS

Summarization of genetic variables using haplotype structures
In the general population studied here SNPs of the ADIPOQ gene
showed strong LD defining two haplotype blocks: �11391G4
A/�11377C4G (D¢¼0.997) and +45T4G/+276G4T (D¢¼0.990)
as previously reported in other populations.10,31–33 For each block,
the haplotypes including both rare variant alleles were never observed
(theoretical frequencies of the �11391A_�11377G and +45G_+276T
haplotypes were 0.000029 and 0.000072, respectively). To include
haplotypic information in further analyses, haplotypes at the ADIPOQ
locus were inferred to each subject using the Phase 2.1 software. Only
diplotypes configurations inferred with a posterior probability 40.95
were retained defining six diplotypes configurations for each haplo-
type block, thus, defining two variables. In agreement with previous
studies reporting for the ADIPOQ gene, the presence of two LD blocks
(in the promoter and the exon 2–intron 2) showing independent
associations with adjusted adiponectin level,31,32,34 in our sample from
a general population adiponectin level was modulated by ADIPOQ
haplotypes from the above mentioned LD blocks (P¼0.0013 and
0.0058, respectively). Among the other genes included in our study
only ENPP1 was genotyped for several SNPs. The five ENPP1 SNPs
defined two haplotype blocks, K121Q/IVS8+27T4G (D¢¼0.999) and
+828 13 bp insertion/+1044A4G (D¢¼0.999) and one ‘independent’
IVS20-11delT not included in any of the haplotype blocks. Haplotypes
were inferred for each block using the Phase 2.1 software. Diplotypes
configurations inferred with a posterior probability 40.95 were
retained defining six diplotypes configurations for each haplotype
block. Thus, three variables were used for the ENPP1 gene in analyses:
SNP IVS20-11delT, diplotypes of the K121Q/IVS8+27T4G and +828
13 bp insertion/+1044 A4G blocks. Regarding the SCARB1 gene, LD
between the three SNPs was considered as weak (D¢ between 0.2 and
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0.7) thus they were included as three independent variables in the
analyses.

MDR analysis of the LDL-C level
We divided our population in two clusters using a combination of
HDL-C and LDL-C as a marker of dyslipidemia. High- and low-risk
clusters for dyslipidemia were separately defined for men and for
women according to the median for each subgroup. Subjects were
considered as at risk if they had simultaneously HDL-Cpmedian of
the subgroup and LDL-CXmedian of the subgroup. In a less stringent
way we classified the subjects in two clusters according to the median
of LDL-C alone in our population. Both classifications were in total
concordance (k¼0.999), thus we opted to use the LDL-C criteria alone
as a marker of dyslipidemia. For a greater contrast, instead using two
groups according to the median, analyses were performed between the
1st and 3rd tertiles of LDL-C level as MDR requires a binary trait.

Table 1 summarizes the results of an exhaustive MDR analysis that
evaluated all possible one, two and three variables model from gender,
BMI, adiponectin level and the 15 genetic variables summarizing 19
SNPs from 10 genes. Although the model including BMI as only
variable showed a cross-validation consistency of 10/10, the overall
best model included BMI and diplotypes of ADIPOQ +45T4G/
+276G4T with a cross-validation consistency of 10/10 and a slightly
better testing accuracy than BMI alone (0.590 vs 0.575). This two
variables model was significant at the 0.0004 level. The OR was 3.13
(95% CI, 2.20–4.46]. One thousand repeated MDR analyses with
random partitions of the data between training and testing sets
showed BMI as the best one variable model, and BMI diplotypes of
ADIPOQ +45T4G/+276G4T, as the best two variables model with
100% reproducibility. Moreover, the interaction dendogram of the
MDR software showed an interaction between BMI and diplotypes of
ADIPOQ +45T4G/+276G4T (data not shown).

RPM analysis of the LDL-C level
To analyze the determinants of LDL-C with another method we opted
for the RPM algorithm able to use a quantitative trait. We first
explored the models including one explaining variable. Among the
18 variables tested only 5 significantly partitioned our population in
groups of different mean LDL-C (Table 2). As expected, BMI was the
best explaining variable as the proportion of variation attributable to
the partition (R-square) was the highest observed. We further explored

the two variable models. Among the 153 possible models including
two variables, the combination of BMI and diplotypes of ADIPOQ
+45T4G/+276G4T showed the best R-square and was therefore
assumed to be the best two variable model (Table 3). This model
partitioned our population between a low (mean¼3.57, s.d.¼0.95)
and a high LDL-C (mean¼4.12, s.d.¼1.02) group. The R-square of
each variable alone was 0.0365 for BMI (Table 2) and was not different
from zero for the diplotypes of ADIPOQ +45T4G/+276G4T (data
not shown). Thus, R-square of the combined two variable model
(R-square¼0.0601) was 64% higher than the sum of R-squares
(0.0365+0.000) of the variables taken individually, in agreement
with an interaction between BMI and diplotypes of ADIPOQ
+45T4G/+276G4T. A three variable model implies 816 combina-
tions of variables for the 18 variables included. As our population
consists of 846 subjects there is an obvious overfitting of the data and
the results of the three variable models should not be taken into
account.

We compared the classifications obtained using both methods. The
results are summarized in Table 4. There was a good concordance
between both methods (k¼0.83; 95% CI, 0.61–1.00). Moreover,
knowing the best combination of variables and their interaction, we
included BMI, diplotypes of ADIPOQ +45T4G/+276G4T and their
interaction term in a general linear model and observed a statistically
significant model (Po0.0001) and a significant interaction (P¼0.04).
There was no significant difference between adiponectin levels
adjusted by gender and BMI between the clusters of high and low
LDL-C defined by MDR or RPM (P40.05).

DISCUSSION

Our data using two mining methods show that among the variables
included, BMI and a particular genetic status at the ADIPOQ
adiponectin encoding gene locus appear as the best variables explain-
ing LDL-C level. LDL-C was chosen as it is, among others, a
well established marker of atherogenesis. Moreover, in most

Table 1 Results of MDR analyses with 3 phenotypic and 15 genetic

variables summarizing 19 SNPs from 10 genes

Model CVC

Testing

accuracy P-value

BMI 10 0.575 0.0009

BMI 10 0.590 0.0004

Diplotypes of ADIPOQ +45T4G/+276G4T

BMI 7 0.576 0.002

Diplotypes of ADIPOQ +45T4G/+276G4T

Diplotypes of ADIPOQ –11391G4A/�11377C4G

BMI 6 0.500 0.119

Diplotypes of ADIPOQ +45T4G/+276G4T

diplotypes of ADIPOQ –11391G4A/�11377C4G

Diplotypes of ENPP1 ins13bp+828 /A4G+1044

Table 2 Results of univariate RPM analyses with 3 phenotypic and

15 genetic variables summarizing 19 SNPs from 10 genes

Variable R-square P-value

BMI 0.0365 0.000001

Gender 0.0188 0.000083

UCP3 0.0180 0.001

CARTPT 0.0113 0.008

Adiponectin level (tertiles) 0.0080 0.034

Only variables that significantly partitioned our population in groups of different mean LDL-C
are displayed. Empirical P-values were determined following 10000 Monte Carlo permutations.

Table 3 Results of bivariate RPM analyses with 3 phenotypic and 15

genetic variables summarizing 19 SNPs from 10 genes

Variables in model R-square P-value

BMI, diplotypes of ADIPOQ +45T4G/+276G4T 0.0601 0.00003

BMI, diplotypes of ENPP1 +828 13 bp ins /+1044A4G 0.0592 0.00010

BMI, diplotypes of ADIPOQ �11391G4A/�11377C4G 0.0573 0.00004

BMI, gender 0.0529 0.00002

BMI, CARTPT �3608C4T 0.0517 0.00002

BMI, SCARB1 G2S 0.0501 0.00002

From the 153 possible two variable models only the six best ones that significantly partitioned
our population in groups of different mean LDL-C are displayed. Empirical P-values were
determined following 100 000 Monte Carlo permutations.
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epidemio-genetic studies related to cardiovascular disorders or to
dyslipidemia, the LDL-C phenotype is systematically investigated in
view of its potential association with genetic determinants. Therefore,
in this study besides gender, BMI and adiponectinemia we focused our
attention on 19 SNPs from the PPARG, UCP3, ADIPOQ, TNF, LIPC,
CARTPT, PCSK9, SCAP, SCARB1 and ENPP1 genes that have all been
reported to be associated with IR and/or plasma lipid levels. For the
ADIPOQ and ENPP1 genes where several SNPs were genotyped, we
opted to use haplotypic structures as they better reflect the genetic
architecture of the genes.18,32 In haplotype analyses the population is
partitioned into a larger number of strata than in SNP analyses and
could be associated with a lower power. Nevertheless, when haplotypes
better capture the genetic variation at a given locus they are more
efficient in analyses than SNPs alone. It is commonly admitted and
largely previously reported that haplotypes at the ADIPOQ and at the
ENPP1 loci used in our study, better capture the genetic information
than SNPs alone.9,18 LDL-C phenotype is a complex trait resulting
from potential multiple gene–gene and gene–environment interac-
tions. Most of previously reported association studies report investi-
gations of one SNP or one gene at a time. Multigenic and
multifactorial conventional approaches as multivariate logistic regres-
sion including many explaining variables have been proved to be
limited by a lack of statistical power,21 or would require huge
populations and only investigate a limited number of interactions.
MDR and RPM methods allow determining the best combination of
variables and interactions that explain either a binary trait (MDR) or a
quantitative trait (RPM). The MDR method is nonparametric and
does not presuppose any mathematical relation between the variables
(that is linear relation in the logistic regression). The RPM method is a

robust method to examine quantitative phenotypes even if the loci
have no single locus effect. Both independent methods showed quite
similar results both on explaining variables and on the results of
classification in low and high LDL-C groups. The best models with
MDR and RPM classifications both included BMI and the genetic
status at the ADIPOQ locus and their interaction. This model was
ascertained at posteriori using a conventional statistical method.
Regarding MDR analyses, improvement in testing accuracies scores
when adding ADIPOQ diplotypes in the model was weak; this is not
surprising as LDL-C is a multifactorial trait modulated among other
by many genetic factors, each of them exhibiting a weak effect.
Nevertheless, this weak effect was ascertained by RPM and by con-
ventional statistical methods.

A slight discrepancy between MDR and RPM methods occurred for
subjects with a BMI 430 kg m�2 (class 4) and a T_G/T_G ADIPOQ
+45 +276 diplotype. It is noteworthy that this discrepancy only relies
on 3 out of 47 subjects differently classified in MDR. Likewise, a
discrepancy involving 3 subjects out of 25 occurred for subjects with a
BMI under 25 kg m�2 (class 1) and a T_T/G_G ADIPOQ +45 +276
diplotype. Regarding the variance explained as expected in one
variable models, BMI was the best predictor with twice as more
variance explained as the best genetic variable (UCP3). It is note-
worthy that ADIPOQ +45 +276 diplotypes alone had no detectable
effect on LDL-C. This was ascertained in classical ANOVA (data not
shown). Including this genetic variable (diplotypes of ADIPOQ) and
BMI in the same model allows to quite double the variance explained.
This increase only relies on interaction between the two variables. To
disclose similar findings with classical statistical methods would have
required to test 306 analyses: 153 including two explaining variables
and 153 including the interaction term as additional variable. In this
context it is unlikely that a significant result would have been disclosed
according to corrections for multiple testing. In this context these
RPM and MDR methods appear as suitable opportunities to perform
data mining to dissect complex diseases where multiple genetic
determinants, environmental factors and their interactions may be
involved.

Together with gender, BMI and genetic variables, adiponectin level
was included in analyses. Surprisingly, if genotypes at the ADIPOQ
adiponectin encoding gene were among the factors that associated
with LDL-C level, adiponectin level itself was not. This is not amazing
as only 3% of the variance of serum adiponectin level is explained by
haplotypes at the ADIPOQ locus.9 As adiponectin levels adjusted by
gender and BMI were similar in the clusters of high and low LDL-C
defined by MDR or RPM, ADIPOQ genotypes classified as at risk for
LDL-C level do not reflect a significant variation of adjusted adipo-
nectin level and we can exclude that genotypes at the ADIPOQ locus
influence LDL-C level through a modulation of adiponectin level. This
is in agreement with previous results showing that if genetic variants
of the ADIPOQ gene modulate adiponectin level, they are not
contributing to the genetic linkage with the metabolic syndrome at
the 3q27 locus.9,35 In addition, as adiponectin level is not a determi-
nant of LDL-C level, it seems logical that the PPARG gene was not
among the factors that modulated LDL-C level although the adipo-
nectin gene contains a PPARgamma responsive element. Genetic
variations in the remaining genes included in this study (UCP3,
TNF, LIPC, CARTPT, PCSK9, SCAP, SCARB1 and ENPP1), although
individually associated with IR, metabolic syndrome and/or plasma
LDL-C level, are not discriminant for LDL-C level in our multi-
factorial analyses.

As genome-wide scans and one meta-analysis reported highly
significant linkage with coronary heart disease and LDL-C level at

Table 4 Comparison of the classifications obtained with the MDR and

the RPM methods as low and high LDL-C with the two variable models

BMI

class

diplotypes of ADIPOQ

+45T4G/+276G4T

RPM

classification

MDR

classification

Number

of subjects

1 T_G / T_G LOW LOW 175

1 T_G / T_T LOW LOW 126

2 T_G / T_G LOW LOW 65

4 T_G / T_G LOW HIGHa 47

2 T_G / T_T LOW LOW 47

1 T_T / G_G LOW HIGHa 25

1 T_G / G_G LOW LOW 40

1 T_T / T_T LOW LOW 39

4 T_T / T_T LOW LOW 8

4 T_T / G_G LOW LOW 8

3 T_G / G_G LOW LOW 8

4 T_G / T_T HIGH HIGH 27

3 T_G / T_G HIGH HIGH 63

4 G_G / G_G HIGH HIGH 4

1 G_G / G_G HIGH HIGH 6

2 T_T / T_T HIGH HIGH 14

3 T_G / T_T HIGH HIGH 34

4 T_G /G_G HIGH HIGH 18

2 T_G / G_G HIGH HIGH 14

2 T_T / G_G HIGH HIGH 7

3 T_T /G_G HIGH HIGH 10

3 T_T / T_T HIGH HIGH 12

2 G_G / G_G HIGH HIGH 2

3 G_G / G_G HIGH HIGH 2

aThe discrepancies only rely on 3 subjects differently classified in MDR.
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the 3q27 locus36–39 we hypothesize that haplotype blocks of the
ADIPOQ gene would capture genetic variation(s) from neighboring
gene(s) that would be modulating metabolic syndrome, coronary
heart disease and LDL-C level. More than 20 genes map to the 3q27
locus. If most do not appear as putative candidate (FETUB, DNAJB11,
CRYGS, RTP4, DGKGy) several have already been reported to be
associated with phenotypes of the metabolic syndrome; that is the
alpha 2 Heremans–Schmid glycoprotein (AHSG) gene is associated
with type 2 diabetes,40 kininogen encoded by the KNG1 gene is
involved in insulin sensitivity at least in rodents,41 the eukaryotic
translation initiation factor 4 alpha 2 (EIF4A2) gene contributes to the
linkage with type 2 diabetes.42 Additional investigations including at
least genetic variants from these genes will be required to better define
the 3q27 contribution to metabolic syndrome, coronary heart disease
and LDL-C level. Moreover, a similar analysis in another independent
population sample would be very instructive. Anyway our data show
that data mining methods such as MDR and RPM are quite suitable to
dissect multifactorial traits in relatively small samples, and detect the
most prominent determinants among numerous genetic and environ-
mental variables and their complex interactions.
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