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Abstract Haplotype inference is an indispensable tech-

nique in medical science, especially in genome-wide

association studies. Although the conventional method of

inference using the expectation-maximization (EM) algo-

rithm by Excoffier and Slatkin is one standard approach, as

its calculation cost is an exponential function of the max-

imum number of heterozygous loci, it has not been widely

applied. We propose a method of haplotype inference that

can empirically accommodate up to several tens of single

nucleotide polymorphism loci in a single haplotype block

while maintaining criteria that are exactly equivalent

to those of the EM algorithm. The idea is to reduce the

cost of calculating the EM algorithm by using a haplotype-

grouping preprocess exploiting the symmetrical and

inclusive relationships of haplotypes based on the

Hardy–Weinberg equilibrium. Testing of the proposed

method using real data sets revealed that it has a wider

range of applications than the EM algorithm.

Keywords Haplotype inference � Single nucleotide

polymorphisms (SNPs) � Expectation-maximization

(EM) algorithm � Genome-wide association study �
Hardy–Weinberg equilibrium (HWE) � Haplotype phase

Introduction

A haplotype, generally described by a DNA sequence, is a

single genetic constituent of an individual chromosome

inherited from the father or mother. Haplotype information

is invaluable for various gene-based studies and applica-

tions, e.g., gene-disease association studies, evolutionary

genetics, personalized medicine, and drug development

(Risch and Merikangas 1996; Hodge et al. 1999; Johnson

et al. 2001). Because of current technological limitations,

however, homologous chromosomes in a pair are usually

determined in mixed form. That is, the diplotype cannot be

determined with certainty from multilocus genotype

information. Even though experimental haplotyping is

technically possible (Tost et al. 2002; Ding and Cantor

2003), it is too difficult, expensive, and time-consuming.

Statistical and computational methods are alternatively

used to infer diplotypes from the set of genotype data for a

population. Personalized medicine is one of the most

important applications of haplotype inference because

humans have a wide variety of polymorphic sites (Venter

et al. 2001; Daly et al. 2001).

Various methods have been proposed for haplotype

inference (Clark 1990; Excoffier and Slatkin 1995; Ste-

phens et al. 2001; Niu et al. 2002; Qin et al. 2002; Scheet

H. Shindo � H. Chigira � M. Inoue (&)

Department of Electrical Engineering and Bioscience,

Waseda University, 3-4-1, Okubo,

Shinjuku-ku, Tokyo 1698555, Japan

e-mail: masato.inoue@eb.waseda.ac.jp

H. Shindo

e-mail: foma@ruri.waseda.jp

H. Chigira

e-mail: h-chigira@ruri.waseda.jp

J. Tanaka

Digital Information Technologies Corporation,

daVinci Sakurabashi Bldg., 4-5-4 Hatchobori,

Chuo-ku, Tokyo 1040032, Japan

e-mail: tanaka.junji@hq.ditgroup.jp

N. Kamatani

Institute of Rheumatology,

Tokyo Women’s Medical University,

10-22, Kawada-cho, Shinjuku-ku, Tokyo 1620054, Japan

e-mail: kamatani@ior.twmu.ac.jp

123

J Hum Genet (2008) 53:747–756

DOI 10.1007/s10038-008-0308-9



and Stephens 2006; Xing et al. 2007). The probabilistic

model of haplotype frequencies or of individual diplotypes

mainly consists of heredity and selection. Two major

models have been proposed; the first is Hardy–Weinberg

equilibrium (HWE) based, and the second is coalescence

based. HWE could be the simplest model to define all of

them. Moreover, the only parameters are the haplotype

frequencies in the population. The expectation-maximiza-

tion (EM) algorithm is usually used to determine the

optimal solution with this model (Excoffier and Slatkin

1995). The EM algorithm guarantees convergence to a

locally optimal solution and, depending on the initial val-

ues, converges to one of several globally optimal solutions

with high probability. Furthermore, it provides a suffi-

ciently accurate result even if the HWE assumption is

violated (Niu et al. 2002). However, it cannot handle more

than about 20 heterozygous loci because of the exponen-

tially increasing cost of calculation. The coalescence model

is also widely used and can explain more about heredity—

recombination and point mutation. Although this is con-

sidered to be appropriate for stable populations, it is less

suitable for those that are unstable. Because the model has

a great deal of redundancy, even small deviations in the

samples from the true distribution of the population easily

result in an over-fitted inference to a given data set.

Moreover, it is not easy to find the optimal solution using

this model. The Markov-chain Monte Carlo (MCMC)

method, which is usually employed to determine an opti-

mal guess for this model, neither guarantees local nor

global optimality and is not quick to converge. Intrinsi-

cally, its solution is an approximation, and its accuracy

depends on the number of Monte Carlo steps. Some

approximation is generally introduced to save calculation

cost.

We propose a method that combines a grouping pre-

process and the EM algorithm (the ‘‘GrEM’’ method) to

reduce the cost of calculation, and that produces a solution

that is theoretically equivalent to the EM solution without

any approximation. The cost is reduced by making use of

the symmetrical and inclusive haplotype relationships in

the likelihood function. If a haplotype group is found in

which every haplotype is equivalent to every other haplo-

type in the sense of haplotype frequency likelihood, these

haplotypes are handled as one group. If a constant superi-

ority–inferiority relationship is found between two

haplotypes in the sense of haplotype frequency likelihood,

the inferior one is dropped. This simple preprocessing

greatly reduces the number of haplotype and diplotype

candidates that are considered when the EM algorithm is

subsequently run. The optimal solution in some data sets

may not be unique. Even in these cases, the GrEM method

can find the solution in the form of two optimal haplotype

groups and not in the form of two optimal haplotypes for

each subject.

Materials and methods

Probabilistic model

The data available are assumed to be on non-genealogical

unphased multilocus genotypes such as those on single

nucleotide polymorphism (SNP), on short tandem repeat

polymorphism, or on a variable number of tandem repeats in a

single haplotype block. This assumption is reasonable given

that these data, especially the SNP data, represent the most

frequent forms of human genetic variations and are less

expensive to obtain than genealogical data and phased data.

Moreover, SNP data have a higher density and are less

mutable (Wang et al. 1998; Kruglyak 1999). The International

HAPMAP Project has collected and stored a great deal of SNP

data in a database for use in developing a haplotype map of the

human genome (Altshuler et al. 2005; Frazer et al. 2007).

The data model and inference framework are as follows.

The given data set consists of data for I subjects, and the

data for the ith subject, gi, specifies a sequence of observed

genotypes of N polymorphic loci. What we infer is the

most probable diplotype for each subject, di � di;1; di;2

� �
;

where each di,j denotes haplotype identification. To prevent

permutation symmetry, di,1 and di,2 are always sorted in a

certain order; this has been written as di,1 B di,2 here. We

carry out inference using the maximum likelihood (ML)

inference of the haplotype frequencies h:

ĥ � arg max
h

P gif g hjð Þ; ð1Þ

^
di

� �
� arg max

dif g
P dif g gif gj ; ĥ
� �

: ð2Þ

For simplicity, we have limited the given data to those for

SNP, but extension to more general polymorphism data

would be easy.

The model assumes HWE,

P gif g; dif g hjð Þ�
YI

i

ddi;1�di;2; di;1�di;2¼gi
1þddi;1 6¼di;2

� �
hdi;1

hdi;2
;

ð3Þ

where d denotes an indicator function, which yields 1 when

the given condition is true and 0 otherwise. HWE implies

that the relationship between any two haplotypes is pri-

marily equal. In other words, recombination and point

mutation are not explicitly considered.

The specific EM algorithm in this inference problem is

given by the following update equation starting from ran-

domly set h(0):
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h tþ1ð Þ � arg max
h

X

dif g
P dif g gif gj ; h tð Þ
� �

ln P gif g; dif g hjð Þ

¼ 1

2I

XI

i

P
di;1 � di;2; di;1�di;2¼gi

h tð Þ
di;1

h tð Þ
di;2

ddi;1¼h þ ddi;2¼h

� �

P
di;1 � di;2; di;1�di;2¼gi

h tð Þ
di;1

h tð Þ
di;2

:

ð4Þ

However, this approach in the EM algorithm quickly

breaks down due to the huge number of candidate

diplotypes.

Methods

Here we explain the symmetrical and inclusive relationship

between haplotypes regarding the likelihood function. By

exploiting this relationship, candidate haplotypes can be

grouped or dropped, hopefully resulting in a small number

of haplotype groups that concern the succeeding EM

algorithm.

We start with the simplest case shown in Fig. 1a, in

which only one subject is in a data set. ‘‘g1: [1112]’’

represents observed genotype data consisting of four

SNP loci with this subject, and ‘‘[1112]’’ within the

circle of g1 represents all possible haplotype(s) this

subject may have. The genotype datum for each SNP

locus could be two major alleles ‘‘1’’, two minor alleles

‘‘2’’, both alleles ‘‘3’’, or missing ‘‘0’’. The haplotype

datum for each SNP locus could be a major allele ‘‘1’’

or a minor allele ‘‘2’’. The bidirectional arrow represents

a possible haplotype combination, or simply a diplotype,

this subject may have. In this case, there is no other

possibility than this subject having two identical haplo-

types [1112].

In Fig. 1b, only subject g1 has genotype data of [1113],

which means this subject has only one possibility regarding

diplotypes, i.e., [1111] and [1112].

In Fig. 1c, also, only subject g1 has genotype data of

[1333], which means this subject has four possibilities

regarding diplotypes, (1) [1111] and [1222], (2) [1112] and

[1221], (3) [1121] and [1212], and (4) [1122] and [1211].

These four possible diplotypes are also represented by the

bidirectional arrows. In this case, the likelihood function is

given by

P gif g hjð Þ ¼ h½1111�h½1222� þ h½1112�h½1221� þ h½1121�h½1212�
þ h½1122�h½1211�;

ð5Þ

and there are four ML solutions, i.e., h½1111�; h½1222�;
�

h½1112�; h½1221�; h½1121�; h½1212�; h½1122�; h½1211�Þ is (1) (1/2, 1/2,

0, 0, 0, 0, 0, 0), (2) (0, 0, 1/2, 1/2, 0, 0, 0, 0), (3) (0, 0, 0, 0,

1/2, 1/2, 0, 0), and (4) (0, 0, 0, 0, 0, 0, 1/2, 1/2). Here, note

two characteristics of the likelihood function: the first is

that four possible diplotypes are symmetrical, e.g., the

exchange of two sets of theta values, h½1111�; h½1222�
� �

,
h½1112�; h½1221�
� �

does not affect the likelihood under any

arbitrary h. Neither do exchanges of h½1111�; h½1222�
� �

,
h½1121�; h½1212�
� �

; h½1112�; h½1221�
� �

, h½1121�; h½1212�
� �

; etc.

This characteristic is obvious due to the symmetry of

diplotypes in the likelihood function. The second

characteristic is that optimal solutions are only given

when three diplotype possibilities are zero, e.g., h½1112�;
�

h½1221�Þ ¼ h½1121�; h½1212�
� �

¼ h½1122�; h½1211�
� �

¼ 0; 0ð Þ: This

characteristic is also easily proven using simple inequality

g1:[1333]

[1111]

[1112]

[1121][1122]

[1211][1212]

[1221]

[1222]

g2:[3111]

[2111]

g1:[1112]

[1112]

[1111]

g1:[1113]

[1112]

g1:[1333]

[1111]

[1112]

[1121][1122]

[1211][1212]

[1221]

[1222]

g1:[1333]

[1111]

[1112]

[1121][1122]

[1211][1212]

[1221]

[1222]

g2:[3111]

[2111]

g1:[1112]

[1112]

[1111]

g1:[1113]

[1112]

g1:[1333]

[1111]

[1112]

[1121][1122]

[1211][1212]

[1221]

[1222]

(a)

(c)

(b)

(d)

Fig. 1 Four examples of data sets shown by Venn diagrams of

haplotypes. [1111], [1112], [1121], [1122], [1211], [1212], [1221],

[1222], and [2111] represent haplotypes with four SNP loci. g1:[1333]

represents genotype data of the first subject enclosing all possible

haplotypes the subject may have. Each bidirectional arrow represents

a diplotype of a subject specifying two haplotypes. Only one subject

is in a data set. a The subject has no heterozygous loci, so the

diplotype is [1112] and [1112]. b The subject has one heterozygous

locus, so the diplotype is [1111] and [1112]. c The subject has three

heterozygous loci, and there are four equally possible diplotypes.

d Two subjects are in a data set. Only the haplotype [1111] has the

possibility of being shared by two subjects. The paired haplotype with

[1111] regarding the first subject, [1222], and the one regarding the

second subject, [2111], are also special haplotypes in the sense of the

likelihood. The paired haplotypes have been enclosed by dashed
borderlines for convenience
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h½1111�h½1222� þh½1112�h½1221� þh½1121�h½1212� þh½1122�h½1211�

� h½1111� þh½1112� þh½1121� þh½1122�
� �

h½1222� þh½1221� þh½1212� þh½1211�
� �

þ0� 0þ0�0þ0�0;

ð6Þ

which always holds (the equality mainly holds when three

diplotype possibilities are zero). These two characteristics

suggest that the concentration of haplotype frequencies to

one of diplotypes, e.g.,

h½1111�  h½1111� þ h½1112� þ h½1121� þ h½1122�;

h½1222�  h½1222� þ h½1221� þ h½1212� þ h½1211�;

h½1112�  0; h½1121�  0; h½1122�  0;

h½1221�  0; h½1212�  0; h½1211�  0;

ð7Þ

is always necessary to obtain an optimal solution. We have

called this type of concentration intra-group concentration.

After this intra-group concentration, the EM algorithm can

derive the best values for not-zero-assigned thetas (h[1111]

and h[1222]). If we remember that an occasionally chosen

diplotype (h[1111] and h[1222]) represents all four diplotypes,

we can reconstruct four optimal solutions after the EM

algorithm is run.

Next, let consider the case of two subjects in Fig. 1d.

Here, the likelihood function is given as

P gif g hjð Þ ¼
�
h½1111�h½1222� þ h½1112�h½1221� þ h½1121�h½1212�

þh½1122�h½1211�
�
� h½1111�h½2112�
� �

; ð8Þ

and there is only one ML solution, i.e., h½1111�; h½1222�;
�

h½2111�Þ ¼ 1=2; 1=4; 1=4ð Þ where other unspecified

haplotype frequencies are zero. Here, also note two

characteristics: the first is that regarding g1, concentrating

haplotype frequencies to the diplotype [1111] and [1222] is

always a better strategy than concentrating them to other

diplotypes [1112] and [1221], [1121] and [1212], or [1122]

and [1211]. This is because haplotype [1111] is the one

both subjects may have, and this shared haplotype is

always a better choice than non-shared haplotypes. More

rigorously, the following inequality

h½1111�h½1222� þ h½1112�h½1221� þ h½1121�h½1212� þ h½1122�h½1211�
� �

� h½1111�h½2112�
� �

� h½1111� þ h½1112� þ h½1121� þ h½1122�
� ��

� h½1222� þ h½1221� þ h½1212� þ h½1211�
� ��

� h½1111�h½2112�
� �

;

ð9Þ

always holds (the equality mainly holds when thetas

of h½1112�; h½1221�; h½1121�; h½1212�; h½1122�; and h½1211� are zero).

The second characteristic is that if some haplotype is

shared, the paired haplotype regarding each subject is also

an important haplotype, i.e., the paired haplotypes of

[1222] regarding g1 and those of [2111] regarding g2.

These two characteristics suggest that the concentration of

haplotype frequencies to the diplotype involving the shared

haplotype,

h½1111�  h½1111� þ h½1112� þ h½1121� þ h½1122�;

h½1222�  h½1222� þ h½1221� þ h½1212� þ h½1211�;

h½1112�  0; h½1121�  0; h½1122�  0;

h½1221�  0; h½1212�  0; h½1211�  0;

ð10Þ

is always necessary to obtain an optimal solution. We call

this type of concentration inter-group concentration. After

inter-group concentration, the EM algorithm can derive the

best values for not-zero-assigned thetas (h[1111], h[1222], and

h[2111]).

These two types of concentrations can be combined into

a grouping preprocess of haplotypes. Consider the case of

two subjects shown in Fig. 2a. Here, there are two ML

solutions, i.e., h½1111�; h½1222�; h½2112�
� �

¼ 1=2; 1=4; 1=4ð Þ and

h½1112�; h½1221�; h½2111�
� �

¼ 1=2; 1=4; 1=4ð Þ: where unspeci-

fied haplotype frequencies are zero. We determine these

ML solutions as follows. First, we draw a borderline to

distinguish haplotypes the first subject may have from the

other haplotypes. Similarly, we draw borderlines (solid

lines) for every subject. Each borderline defines each ter-

ritory. Some territories are overlapped; the haplotypes in

such areas are haplotypes shared by more than one subject.

We also define such overlapped areas as new territories.

Second, we also draw borderlines to distinguish paired

haplotypes regarding each subject. Specifically, if the ter-

ritory of the first subject includes some other territory, we

draw a new borderline to distinguish the paired haplotypes.

g2:[3113]

[2111]

[2112]

g1:[1333]

[1111]

[1112]

[1121][1122]

[1211][1212]

[1221]

[1222]

[2113][1113][1223]

(a)

(b)

g2:[3113]g1:[1333]

Fig. 2 An example of a data set showing a a Venn diagram of

haplotypes, and b the resulting three territories the grouping

preprocess determines. The territory [1113] is shared by two subjects.

[1223] and [2113] correspond to the paired territories with [1113]

regarding the first and second subjects, respectively
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We also define such areas as new territories. Similarly, we

draw complete borderlines (dashed lines) for every subject.

Note that any overlapped haplotype groups and any paired

haplotype groups also form new territories, so a new ter-

ritory may produce another new territory, one after another.

This manipulation usually takes a lot of time. Last, we

delete every territory that includes any other territories or is

intersected by any other territories. In another words, we

leave only the most nested territories.

The grouping preprocess above finally yields the three

territories shown in Fig. 2b. According to inter-group

concentration, only the most nested territories are inter-

esting. According to intra-group concentration, every

haplotype is equal in a territory and one of these haplotypes

should be left if that territory has more than one haplotype.

Consequently, the grouping preprocess precisely deter-

mines all territories that are worth leaving. After the

grouping preprocess, we run the EM algorithm with only

three territories, i.e., three thetas corresponding to each

territory, which are the so-to-speak territory frequencies, to

determine the optimal values. Compared to the original EM

algorithm that needs to deal with numerous haplotypes (ten

haplotypes in this case), the number of territories is usually

quite smaller. The EM algorithm will derive the territory

frequencies as h½1113�; h½1223�; h½2113�
� �

¼ 1=2; 1=4; 1=4ð Þ:
Then, we can easily determine there are two ML solu-

tions: h½1111�; h½1222�; h½2112�
� �

¼ 1=2; 1=4; 1=4ð Þ and h½1112�;
�

h½1221�; h½2111�Þ ¼ 1=2; 1=4; 1=4ð Þ by referring to the given

genotypes data. However, we do not want to carry out this

expansion because it is too verbose and a territory occa-

sionally includes numerous haplotypes. The most probable

diplotypes for each subject can also be easily determined

by using inferred territory frequencies.

From the computational point of view, each territory is

expressed like genotype data, e.g., [1113], which means a

set of haplotypes [1111] and [1112]. This single-sequence

expression greatly reduces the computational cost because

a territory sometimes includes an exponential number of

haplotypes. If some territory happens to include [1111] and

[1122], it is not convex and we cannot express this area as a

single sequence, but this is never the case. This is because

the initial territory of each subject is convex and an

intersection of any two convex territories is also convex.

Also, any paired territory is convex if the referred-to ter-

ritory is convex.

One exception should be noted regarding intra-group

concentration here. Consider the case in Fig. 3a, in which

the third subject has been added to the previous case. The

grouping preprocess derives the territories in Fig. 3b,

where three territories ([1113], [1223], and [2113]) form a

loop through the three bidirectional arrows. In such loopy

cases, especially when the number of the territories is odd

in a loop, intra-group concentration is not fully possible.

This problem is like a Möbius strip. If we concentrate

haplotype frequencies to [1111] in the territory of [1113],

we should also concentrate haplotype frequencies to [1222]

in the territory of [1223], and consequently, [2111], [1112],

[1221], and [2112] through the bidirectional arrows in

Fig. 3a. Therefore, we cannot concentrate haplotype fre-

quencies to one haplotype in each territory; at least two

haplotypes in each territory are needed. Fortunately, find-

ing the territories forming a loop with an odd number of

territories is computationally easy, and we can effectively

manage to solve this problem.

The grouping preprocess is also effective where a

genotype data set includes some missing values. Consider

the case in Fig. 4a, in which the first subject has one

missing value. Here, regarding the first subject, the paired

haplotype with [1111] corresponds to either [1222] or

[1221] because of the ambiguity of the missing value. By

using the symmetry between these two paired haplotypes,

we find they are equal and we do not need to distinguish

them. Therefore, the paired territory with [1111] is [1223].

After the grouping preprocess with this extended definition

of the paired territory, we obtain the result in Fig. 4b. The

succeeding EM algorithm will derive h½1111�; h½1223�;
�

h½2111�Þ ¼ 1=2; 1=4; 1=4ð Þ; and we can determine there are

[2111]

[2112]

g1:[1333]

[1111]

[1121][1122]

[1211][1212]

[1221]

[1222]

[2113][1113][1223]

[2121] [2122]

[2211] [2212] [2221][2222]

g2:[3113]

[1112]

[2223]

(a)

(b)

g2:[3113]

g3:[3333]

g1:[1333]

Fig. 3 An example of a data set showing a a Venn diagram of

haplotypes and b the resulting four territories the grouping preprocess

determines. Only the diplotypes the third subject may have are

indicated by the dotted bidirectional arrows for convenience. The

territories [1113], [1223], and [2113] form a loop through three

bidirectional arrows
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two ML solutions: h½1111�; h½1222�; h½2111�
� �

¼ 1=2; 1=4; 1=4ð Þ
and h½1111�; h½1221�; h½2111�

� �
¼ 1=2; 1=4; 1=4ð Þ:

Regarding validation, we compared how well the GrEM

method performed against both the original EM and other

conventional methods using real and artificial data sets.

First, we compared the number of candidate diplotypes

between the GrEM method and the original EM algorithm.

Note that the GrEM method combined the grouping pre-

process and the original EM algorithm, so we could

evaluate the performance of the grouping preprocess itself.

Also note that the number of candidate diplotypes was

more appropriate for evaluating the computational cost

than that of the candidate haplotypes (see Eq. 4). Second,

we compared the diplotype likelihood or error rates of

inferred diplotypes for real data sets and artificial data sets,

respectively. Note that the diplotype likelihood is a useful

estimate when the correct answer is not available in real

data sets. We used rather small data sets for the comparison

with the original EM so that it could handle them. We used

rather large data sets for the comparisons with the con-

ventional methods, i.e., SNPHAP (see Clayton Website),

PL-EM (Qin et al. 2002), fastPHASE (Scheet and Stephens

2006), PHASE (Scheet and Stephens 2003), 2SNP (Brinza

and Zelikovsky 2006), HaploRec (Eronen et al. 2006)

and Beagle (Browning and Browning 2007). SNPHAP,

PL-EM, and HaploRec were roughly based on the HWE

and EM algorithm, while fastPHASE was based on the

coalescence model and the MCMC method (Stephens and

Donnelly 2003; Marchini et al. 2006). PHASE uses a prior

distribution based on the coalescence model with a Gibbs

sampler while PL-EM and SNPHAP are based on a uni-

form Dirichlet prior. Beagle uses a hidden Markov model

(HMM) and implements the EM algorithm to fit the model.

2SNP is based on the consideration of two haplotypes.

Third, we measured the coincidence rates of inferred

diplotypes between the GrEM method and the conventional

methods and all running times.

Materials and computer system

The real data sets we used were sampled from the Tokyo

Women’s Medical University with the approval of their

Ethical Review Board and with appropriate informed con-

sent by the subjects (Kamatani et al. 2004). Autosomal SNP

data from 1,032 normal volunteers were used, and DNA

samples were obtained from 752 randomly selected subjects.

We chose 21 regions (R01-21) for the SNPs, each of which

was considered to be a single or a few haplotype block(s).

The artificial data sets were created according to Niu et al.

(2002), i.e., we generated the data sets by using HWE, single

point mutation, and recombination criteria. More specifi-

cally, we first randomly prepared each allele of 30 ancestors

and then mated them randomly to create successive gener-

ations with a point mutation rate of 10-5 a single miosis and a

crossing-over rate of 10-3 a single miosis (it may happen

between every neighboring SNP loci). The growth rate for

the first two generations was 2.0, and that for the remaining

generations was 1.05. Each artificial data set was constructed

by random sampling from the 101st generation.

The computer system we used had an Intel� CoreTM 2

Duo T7200 (2.0 GHz and 4-MB cache) CPU and a 2-GB

main memory. The program was developed using C# lan-

guage in the.NET Framework 2.0 environment under a

Microsoft� Windows� OS.

Results

The GrEM method successfully reduced the number of

candidate diplotypes (Fig. 5). The geometrical average

ratios of the numbers of candidate diplotypes were 0.139

for small real data sets and 0.236 for small artificial data

sets. The GrEM method reduced the numbers for large data

sets, which the original EM algorithm could not handle.

The reduction in the rate of haplotype candidates by using

the GrEM method was roughly the same as that of the

diplotype candidates.

The GrEM method generally performed as well as the

EM algorithm (Table 1) for both the small real data sets

and the small artificial data sets regarding diplotype like-

lihood and error rates, respectively. More specifically, the

GrEM method slightly outperformed the EM algorithm,

which will be discussed later.

g1:[1330]

[1111]

[1112]

[1121][1122]

[1211][1212]

[1221]

[1222]

[2111]

[1111]

[1223]

[2111]

(a)

(b)

g1:[1330]
g2:[3111]

Fig. 4 An example of a data set showing a a Venn diagram of

haplotypes and b the resulting three territories the grouping prepro-

cess determines. Because the fourth SNP datum of the first subject is

missing, either [1221] or [1222] corresponds to the paired haplotype

with [1111]
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The GrEM method also generally performed as well as

the conventional methods (Table 2) for both the real data

sets and the artificial data sets. More precisely, it performed

slightly better and this will also be discussed later.

The results for the average coincidence rate between the

GrEM method and the conventional methods reveal that

the inferred diplotypes were roughly the same, but about

1% were different (Table 3) although both 2SNP and

HaploRec showed large differences from other methods.

The running times for the GrEM method were generally

longer than those for the conventional methods (Table 3).

More precisely, PL-EM sometimes showed memory over-

flow in the real data sets. Also, PHASE sometimes showed

program errors in the artificial data sets. PHASE and

fastPHASE took a slightly longer time than the GrEM

method in the real data sets.

Discussion

We propose a haplotype inference approach, the GrEM

method, which combines a grouping preprocess with the

expectation-maximization (EM) algorithm. It reduces the

cost of calculation and produces a solution theoretically

equivalent to that of the EM algorithm based on the HWE

model. Although the EM algorithm was demonstrated to be

accurate in identifying common haplotypes, it could not

handle large data sets. The grouping preprocess in the

GrEM method extended the application of the EM algo-

rithm without the need for any approximation. Therefore,

the GrEM method can be used as an alternative to the EM

algorithm. In testing, the GrEM method actually reduced

the cost of calculation and output equivalent results to

those of the EM algorithm. In short, the GrEM method

reduced the limitations of the EM algorithm without

degrading performance. This result strongly supports its

alternative use to the EM algorithm.

The effects of inter-group concentration were usually

more dominant than those of intra-group concentration.

This is because the remaining territories with the grouping

preprocess answers tended to include only one haplotype.
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Fig. 5 Number of candidate diplotypes in a real data sets (R01-15)

and b artificial data sets including A101-200 in Table 1. Every

artificial data set consists of 256 subjects and has 1.0% missing

values. The error bars indicate ±1 standard deviation. The averages

and error bars were calculated on a logarithmic scale over 100

independent artificial data sets

Table 1 Comparison with EM results

Data set Loci Subjects Percentage

of missing

Diplotype likelihood/

percentage of error

GrEM EM

R01 10 752 0.72 -1,192.13 -1,192.13

R09 12 752 0.98 -852.194 -852.194

R12 14 752 0.82 -1,188.26 -1,188.26

R13 15 752 0.50 -1,007.27 -1,007.27

R14 16 752 0.62 -807.741 -807.741

R15 17 752 0.37 -1,108.85 -1,108.85

A001-100 20 128 1.00 0.994 1.06

A101-200 20 256 1.00 0.797 0.830

Results of comparing small data sets: Real data sets R01-15 (selected)

and artificial data sets A001-200. The diplotype likelihood for real

data sets denotes the log likelihood of inferred diplotypes,

ln P gif g dif gjð Þ þ const. The percent error for artificial data sets

denotes the rate of difference between true haplotypes and those

inferred including missing values. Each percent error for artificial data

sets is an arithmetic mean. The best results are indicated in bold
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The effect of inter-group concentration can generally be

considered to be dominant when the territories of

numerous subjects are overlapped, while the effect of

intra-group concentration can be considered to be domi-

nant when the territories of subjects are rarely overlapped.

Thus, both the concentrations are considered to be

important.

The slightly better results with the GrEM method than

the original EM in artificial data sets could be due to the

generative model of the artificial data sets. We specifi-

cally adopted recombination hot spots between all

neighboring SNP loci with a constant recombination rate,

while in real data sets we chose a haplotype block or a

few haplotype blocks. Due to this difference, there were

many similar but not exactly the same local maxima

considered to be included in the artificial data sets, while

there were many exactly the same local maxima con-

sidered to be included in real data sets. This could be

because the parameter space the EM algorithm had to

explore was reduced with the grouping preprocess,

making it easier to find one of the ML solutions with a

smaller number of EM algorithm trials.

In the field of haplotype inference, both the probabilistic

model and the cost of calculation have been significant

issues. The actual situation is that finding the optimal

solution is quite difficult, even with the HWE model, which

is one of the simplest. The GrEM method makes this less

difficult, and roughly extends the feasible number of SNP

loci from 20 to 40 loci. In other probabilistic models used

by other conventional methods, finding the optimal solu-

tion could be more difficult. We found there was about a

1% difference between the diplotypes inferred by the

GrEM method and the conventional methods. This sug-

gests that the conventional methods infer diplotypes that

differ from those in the maximum likelihood (ML) solutionT
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Table 3 Average coincidence rates and running times

Method Percentage of coincidence Running time (s)

Real Artificial Real Artificial

GrEM 100 100 398 1,642

SNPHAP 99.75 98.63 1 3

PL-EM 99.97a 99.61 156a 1

fastPHASE 98.65 98.44 513 479

PHASE 99.56 98.73b 625 505b

2SNP 98.13 27.88 4 1

HaploRec 91.10 85.06 14 4

Beagle 99.50 98.53 1 7

The coincidence rates and running times are averages over the real

and artificial data sets listed in Table 2
a Excluding unreasonable cases
b Excluding program error cases
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based on HWE. The reasons explaining these differences

need to be clarified in detail. These differences might arise

from the differences in probabilistic models or some

deviation from the optimal inferences by using approxi-

mation. Excepting two quite different methods, 2SNP and

HaploRec, the inferred diplotypes by fastPHASE were

generally different from others; this might arise from the

difference of the probabilistic models: the coalescence

model and HWE model. Among SNPHAP, PL-EM, and the

GrEM method, there were less differences in inferring

diplotypes. This could be because of being based on the

same HWE model, and slight differences could be due to

the differences of the adopted approximations. Similarities

of the GrEM result to those of PHASE and Beagle are hard

to explain because they adopt different models and dif-

ferent optimizations.

Also, the slightly better results of diplotype likelihood

with the GrEM method than with the conventional methods

in real data sets could have been because the GrEM method

was aimed at maximizing the diplotype likelihood through

maximizing the haplotype likelihood, while the conven-

tional methods adopted different cost functions or various

approximations. The slightly lower error rates with the

GrEM method than with the conventional methods could

be because of using no approximation and/or the better

fitness of the probabilistic model to the artificial data sets,

although the data sets were not created to fit the model

intentionally. The differences in the number of candidate

diplotypes between real and artificial data sets might also

have arisen from the constant recombination rate of each

recombination hot spot.

Feasibility testing demonstrated that the GrEM method

could run even on ordinary laptop computers although we

occasionally encountered unreasonable calculation costs

or memory overflows for large data sets. Because the

grouping preprocess does not use any approximation, the

running time depends on the complexity of the data set

used. The limitation in data set size is estimated to be

about 40 loci from 250 subjects with 1% missing values;

this largely depends on variations in the corresponding

haplotype block and especially the rate of missing values.

From another point of view, the variety of human gen-

omes is not infinite; it is at most twice the whole human

population. Consequently, testing the GrEM method using

more powerful 64-bit CPUs or super computers with large

amount of memory could be worthwhile. Regarding the

feasibility of the conventional methods, they were

apparently capable of inferring haplotypes in these data

sets. However, the unreasonable cases in PL-EM and the

longer running times of PHASE and fastPHASE than the

GrEM method in the real data sets suggest both the

limitations of these methods and the difficulty of the

haplotype inference problem.
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