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Abstract Epigenetic regulation including DNA methyl-

ation plays an important role in several differentiation

processes. We profiled global DNA methylation in the

neural differentiation of P19 embryonic carcinoma cells

using a microarray-based method called MIAMI. We found

a genome-wide demethylation of genes. This suggests

demethylation rather than methylation is important in

neural differentiation.
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Introduction

5-Methylcytosine is the only covalent DNA modification

known in vertebrates (Jeltsch 2002). This epigenetic

modification is essential for differentiation, embryonic

development (Li et al. 1992), genomic imprinting (Li et al.

1993), and X-chromosome inactivation (Heard et al. 1997).

Changes of DNA methylation are also important in human

diseases, including cancer (Egger et al. 2004).

In mammals, DNA methylation mainly occurs at CpG

dinucleotides, with approximately 60–90% of cytosines at

these sites methylated (Razin et al. 1984). CpG-rich DNA

fragments, or CpG islands (Bird 1987), are preferentially

located at the transcription start site of genes. It has been

thought that most CpG islands remain unmethylated, even

in cell types that do not express genes (Bird 2002). How-

ever, changes in DNA methylation linked to tissue-specific

gene expression have been seen sporadically in CpG-rich

promoters (Ohgane et al. 1998; Song et al. 2005).

Previously, we developed a genome-wide DNA meth-

ylation analysis called MIAMI using a microarray (Hatada

et al. 2006). With this method, we detected DNA meth-

ylation using the methylation-sensitive restriction enzyme

HpaII and its methylation-insensitive isoschizomer MspI.

Although HpaII cleavage differences are usually related to

methylation differences of two samples, restriction-site

polymorphisms and/or incomplete digestion of one of the

sample DNA results in false positives. We utilized

methylation-insensitive restriction enzyme MspI to judge

the false positive results for HpaII cleavage differences. If

two samples have a restriction site polymorphism at a

HpaII site and/or one of the samples has incomplete

digestion at a HpaII site, they will differ in HpaII

cleavage. However, in this case, the methylation-insensi-

tive MspI cleavage at this site will also differ between

samples because both enzymes recognize the same rec-

ognition site: CCGG. Therefore, we can treat such

changes as false positives based on MspI cleavage dif-

ference. We detected both HpaII and MspI cleavage

difference by polymerase chain reaction (PCR) amplifi-

cation of both HpaII and MspI cleavable DNA. Detection

of both HpaII and MspI cleavage difference was
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performed using two identical oligonucleotide microarrays

made by Agilent inkjet technology.

Both DNA methylation and demethylation occur during

development (Kremenskoy et al. 2003). However, it is

unclear which is important in differentiation. To clarify

this, we studied DNA methylation in a model of neural

differentiation using P19 embryonic carcinoma cells. These

cells differentiate into neural cells when exposed to retinoic

acids (Runnicki and Mcbruney 1987). To study the changes

in DNA methylation with neural differentiation, we pro-

filed the methylation changes during neural differentiation

of P19 cells using MIAMI.

Materials and methods

Methylation profiling by MIAMI

The MIAMI method was performed using 1 lg of genomic

DNA as previously described (Hatada et al. 2006). The

complete experimental procedure can be obtained at

http://grc.dept.med.gunma-u.ac.jp/*gene/image/MIAMI%

20Protocol%20V4.pdf. The analysis of microarray data

was improved by using a new threshold to remove spots

and employing an additional model for judging changes in

methylation. The previous threshold used was 0.001% for

the sum of all the spot signals. This definition cannot be

applied to microarrays with different numbers of spots.

Therefore, we adopted a new definition: a fixed ratio of the

average of the larger half of all spot signals. This definition

is applicable to microarrays with different spot numbers.

The reason we do not use a fixed ratio of the average of all

spot signals is that it results in too low a threshold when

there are many spots with weak signals. We used 5% of the

average of the larger half of all spot signals and found that

it worked well (Fig. 1, and data not shown).

For judging changes in methylation, we used the dif-

ference in methylation-sensitive HpaII cleavage and

methylation-insensitive MspI cleavage between the sam-

ples. Previously, we only used a model in which spots

with methylation changes had different values for HpaII

and MspI cleavage. However, this model had the risk of

false positives in cases of large MspI cleavage differ-

ences. So we also adopted an additional model in which

spots with methylation changes have a large HpaII

cleavage difference (more than five) and a small MspI

cleavage difference (less than two). We confirmed that the

spots fit both models and found that all 15 spots that fit

the models actually had methylation changes (Fig. 1, and

data not shown). The reproducibility of the experiment

was analyzed with 885 triplicated probes. These tripli-

cated probes showed high R values ranging from 0.96 to

0.99.

Bisulfite genomic analysis

Bisulfite treatment of genomic DNA was performed using a

CpGenome DNA modification kit (INTERGEN). The

modified DNA was amplified with the primers described in

electronic supplementary material (ESM) 1.

Combined bisulfite restriction analysis (COBRA)

Combined bisulfite restriction analysis (COBRA) was

performed as described (Xiong et al. 1997). PCR primers

and restriction enzymes used were described in ESM 1.

DNA fragments were separated on a 5% polyacrylamide

gel.

Real-time quantitative PCR

Real-time quantitative PCR was performed using CYBR

Green system using ABI PRISM 7700 (Applied Biosys-

tems). The primers used are described in ESM 1.

Expression microarray analysis

Expression microarray analysis was performed using the

Agilent mouse whole genome array and the procedure

provided by Agilent technologies. A signal ratio of more

than two with a P value of less than 0.01 was judged as

upregulated. A signal ratio of less than 0.5 with a P value

of less than 0.01 was judged as downregulated.

Neuronal differentiation of P19 cells

The P19 EC cells were monodispersed and seeded at a

density of 105 cells/ml in medium containing 0.3 lM ret-

inoic acid in 60 mm bacteriological grade Petri dishes.

After 4 days, the aggregates were transferred into 100 mm

tissue-culture-grade Petri dishes in medium without reti-

noic acid. After 2 days, cells were collected.

Gene ontology (GO) annotation

The information on gene ontology (GO) (Harris et al. 2004)

was obtained from the loc2go table in the National Center

for Biotechnology Information (NCBI). The GO slim

information in the European Bioinformatics Institute (EBI)

was used to simplify the annotation by obtaining top-level

GO terms. We calculated a P value for each term when a

hypergeometric distribution was assumed.
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Results

Genome-wide profiling of changes in DNA methylation

during the neuronal differentiation of P19 cells

Changes in methylation during neuronal differentiation

were analyzed by comparing undifferentiated and differ-

entiated P19 cells using the MIAMI method. The

microarray used consisted of probes chosen from the Agi-

lent promoter array using an eArray system (http://earray.

chem.agilent.com/earray/). The probes are located on HpaII

fragments of less than 1 kb and cover 14,543 genes. The

changes mostly involved demethylation in differentiated

P19 cells: 414 probes (390 genes) were demethylated,

and ten probes (ten genes) were hypermethylated in

differentiated P19 cells (Fig. 2a, b, ESM 2). Reliability of

the analysis was examined for nine hypomethylated genes

with various HpaII signal intensities by bisulfite sequencing

(Fig. 1a) and six hypomethylated genes by COBRA (data

not shown). All genes except for Arpp21 and Src clearly

showed demethylation. Demethylation levels of Arpp21

and Src seems not to be obvious by bisulfite sequencing

method; however, slight demethylation of these genes could

be confirmed by COBRA (Fig. 1b). HpaII signal intensities

of Arpp21 and Src are closed to the threshold level (indi-

cated in the bottom of bisulfite sequence pattern). One the

other hand, those of other genes such as Lrrtm2 and Calml4

are high. As shown in Fig. 1a, the extent of methylation

changes seems to be related to the HpaII signal intensity of

each gene. This could mean that the reliability of the data
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Fig. 1 a Bisulfite sequencing of nine demethylated genes in undif-

ferentiated and differentiated P19 cells. Closed circles indicate

methylated CpG, and open circles indicate unmethylated CpG.

Circles in the blue areas indicate methylation of undifferentiated P19

cells, and circles in the pink areas indicate methylation of

differentiated P19 cells. HpaII sites are indicated by arrows. Higher

HpaII intensity of each gene (Cy3 for hypermethylated genes and Cy5

for hypomethylated genes) is indicated in the bottom of the bisulfite

sequence pattern. b Combined bisulfite restriction analysis (COBRA)

analysis of HpaII sites of Arpp21 and Src
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depends on the signal intensity. Thus, we concluded that 15

of the 15 hypomethylated genes actually have methylation

changes. We also performed bisulfite sequencing the hy-

permethylated genes and found the methylation status

showed good agreement with that of MIAMI results. To see

whether the CpG methylation changes in HpaII and non-

HpaII sites are different or not, we calculated the number of

changes in both sites and found that there is no difference

between them (P = 0.96).

The correlation between demethylation and upregulation

of expression of the nine genes was analyzed by real-time

quantitative PCR and with the expression microarray

(Fig. 3). A microRNA, miR-338, could not be used for this

experiment because the expression microarray we used did

not contain this gene. The real-time quantitative PCR

analysis revealed all of the nine demethylated genes to be

upregulated in differentiated P19 cells (Fig. 3a). Expres-

sion microarray analysis failed to show upregulation of

three genes (Fig. 3b). This discrepancy can be explained by

the detection limit of the expression microarray because

two demethylated genes whose upregulation was not

detected in the expression microarray analysis had weak

signals (Fig. 3b).

Expression changes during neuronal differentiation

of P19 cells

Changes in expression during neuronal differentiation were

analyzed by comparing undifferentiated and differentiated

P19 cells in an expression microarray analysis (Fig. 2c,

ESM 3). Neuron-specific genes, such as Map2 and Tubb3,
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were upregulated in differentiated P19. On the other hand,

an astrocyte-specific gene, Gfap, was not upregulated.

Thus, neuronal differentiation of P19 cells was confirmed.

In contrast with the methylation analysis, upregulation and

downregulation were equally observed. The correlation

between demethylation and upregulation at various posi-

tions was highest in the demethylated sequence located

near the transcription start site (Fig. 4). Probes located

between 0 and 1,000 base pairs from the transcription start

sites showed a significant P value (P = 0.01). Thus,

demethylation near the transcription start site is better

correlated to changes in expression.

Ontology of demethylated genes in differentiated

P19 cells

An ontology-based analysis of demethylated genes using

4,057 GO terms revealed no significant enrichment of any

terms; however, ‘‘intercellular junction’’ was relatively

overrepresented, and ‘‘nucleus’’ was relatively underrep-

resented (Table 1). Next, we used the annotation GO slim,

which is a cutdown version of the GO ontology containing

only a subset of the terms. It gives a broad overview of the

ontology without details of specific terms. The analysis

using 74 GO slim terms revealed no significant overrep-

resentation; however, terms such as ‘‘membrane’’ and

‘‘signal transducer activity’’ were relatively overrepre-

sented (Table 1). On the other hand, terms such as

‘‘nucleus’’ and ‘‘metabolism’’ were significantly under-

represented. Taken together, terms related to the interaction

between cells were relatively overrepresented and terms

related to housekeeping processes such as metabolism were

significantly underrepresented.

Discussion

A genome-wide comparison of DNA methylation between

undifferentiated and differentiated P19 embryonal carci-

noma cells revealed that most changes involved

demethylation (Fig. 2b). We also observed global

demethylation and only a few hypermethylated genes

during neural differentiation of P19 cells by a methyl-

cytosine antibody-based microarray method (unpublished

data). Thus, our results were confirmed by another method.

These suggest that DNA demethylation rather than meth-

ylation is important for neural differentiation. Some of the

demethylated genes found in our study could have impor-

tant roles in inducing neural differentiation or maintaining

the neural phenotype (ESM 2). Embryonal carcinoma cells

are thought to resemble methylation status at the blastula

stage, which is followed by the differentiation stage with

global demethylation (Yeivin et al. 1996). From this point

of view, it is reasonable that embryonal carcinoma cells are

globally demethylated during differentiation.
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Fig. 3 Expression of nine demethylated genes in differentiated P19

cells analyzed using real-time polymerase chain reaction (PCR) or the

expression microarray. Blue bars indicate undifferentiated P19 cells,

and pink bars indicate differentiated P19 cells. a Real-time PCR

analysis. Gapdh was used for standardization of the results. P values

less than 0.01 are indicated by asterisks. b Expression microarray

analysis. P values less than 0.01 are indicated by asterisks
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On the other hand, the expression microarray analysis

revealed numerous genes whose expression was upregu-

lated or downregulated (Fig. 2c). This discrepancy could

be explained by the fact that the number of changes in

expression was ten times larger. Also, the upregulated

genes slightly outnumbered the downregulated genes,

suggesting that this difference contributes to the upregu-

lated demethylated genes. Therefore, most genes are not

regulated by DNA methylation but by other mechanisms.

However, the small number of genes that are regulated by

DNA methylation might be more stable in terms of

expression and play an important role in differentiation

because they include relatively many in signal transducer

genes, which might play an important role in differentia-

tion (Table 1).

Comparison of the expression of demethylated genes

using real-time PCR and expression microarray revealed

that the latter was unable to detect changes in the expres-

sion of some demethylated genes, whereas real-time PCR

detected the upregulated expression of all genes examined

(Fig. 3). The methylation microarray analysis could be

better for detecting changes in low-expression genes than

the expression microarray analysis. In fact, no upregulated

gene discovered with the expression microarray showed a

signal of less than 10; however, 17% of the demethylated

genes in the differentiated P19 cells showed a signal of less

than 10 in the expression microarray analysis (data not

shown). This advantage could be valuable in detecting

changes in upstream regulator genes whose expression is

weak or human samples such as cancers whose mRNA is

sometimes degraded.

Genes involved in the interaction between cells were

relatively overrepresented, whereas housekeeping genes

were significantly underrepresented (Table 1). It is rea-

sonable that housekeeping genes are underrepresented

because they function in every cell all the same time. It is

also reasonable that genes involved in the interaction

between cells are relatively overrepresented because

interaction via signal transducer molecules is an important

aspect of differentiation.

Although term cell differentiation was not overrepre-

sented in GO analysis, several genes belonging to this

category were found to be demethylated in differentiated

P19 cells. Some of these genes, such as Ctnb1 and Fyn, are

known to be involved in differentiation of neurons. Beta-

catenin (Ctnnb1) signaling is required for neural differen-

tiation of embryonic stem cells (Otero et al. 2004). Fyn

tyrosine kinase is involved in regulation of dendritic

branching and spine maturation by semaphorin3A-Fyn

signaling pathway. This gene is also required for migration

of cortical neurons through the Reelin signaling pathway

(Yuasa et al. 2004).

In conclusion, genome-wide demethylation was

observed during the neural differentiation of P19 embryo-

nal carcinoma cells, suggesting that demethylation rather

than methylation is important to the differentiation process.

Overrepresented gene criteria in demethylated sequences,

such as signal transducers, could have important roles in

neural differentiation and maintaining the neural

phenotype.
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