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Abstract The number of published genetic association

studies (GASs) is increasing tremendously due to the avail-

ability of mapped single-nucleotide polymorphisms (SNPs)

and advances in genotyping technologies. A search in Hu-

GENet illustrates the rapid accumulation of evidence for

major diseases. Recently, there has been a lot of activity

regarding genome-wide association studies (GWASs), and a

growing number of forthcoming studies is expected. GASs

and GWASs are usually underpowered to detect significant

associations, and the varying quality of reporting publica-

tions befuddles researchers. A meta-analysis can increase

power and provide standards of reporting results. However,

the conduct of a meta-analysis of GASs faces a major

obstacle, which is the structure and diversity of stored

information in databases. Similar problems are expected for

GWASs, though the data are not yet publicly available. The

development of a Web-based system for the detailed and

structured recording of GAS or GWAS data, accompanied

by an estimation of the overall genetic risk effects, would

enable scientists to keep track of evidence for gene–disease

associations.
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Introduction

Genetic association studies (GASs), or candidate–gene

studies, assess the association between disease status and

genetic variants (gene polymorphisms) in a population.

They have been particularly popular for investigating

complex diseases and the number of papers on GASs has

increased tremendously. This trend is expected to accel-

erate because of the rapidly increasing availability of

mapped single-nucleotide polymorphisms (SNPs) and

advances in genotyping technologies (Donahue and Allen

2005). Dealing with all of the accumulated evidence,

especially when studies frequently produce controversial

or inconclusive results, is a major challenge. Meta-anal-

ysis provides a tool to estimate population-wide genetic

risk effects for pertinent gene–disease associations,

therefore, helping to resolve contradictory results and to

decrease the uncertainty of the estimated risk. Since 2002,

the molecular research of genotype–phenotype associa-

tions has entered the genome-wide era, as a consequence

of the completion of the Human Genome and HapMap

projects and the development of ultra-high-volume

genotyping chip technologies. In contrast to GASs, the

genome-wide association studies (GWASs) are hypothe-

sis-free (i.e., unbiased) and involve a massive scan of the

genome with a dense set of SNPs (up to 500,000) in a

single experiment, in search of causal variants. Thus,

GWASs represent a comprehensive option to GASs when

there is a lack of evidence regarding the function or the

location of the causal genes. However, the vast amount of

data produced by GWASs represent a major methodo-

logical challenge both in their primary analysis and in

their meta-analysis (Thomas and Witte 2002; Hirschhorn

and Daly 2005; Zintzaras and Lau 2007).
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Accumulation of evidence

A search in HuGENet (http://www.cdc.gov/genomics/

hugenet/default.htm) conducted for the period January

2000 to December 2006 found 535, 887, 351, 694, and 249

GASs published in hypertension (Zintzaras et al. 2006a,

2006b), schizophrenia (Zintzaras 2006a, 2006b, 2007),

Parkinson’s disease (Zintzaras and Hadjigeorgiou 2004,

2005), breast cancer (Zintzaras 2006a, 2006b), and alco-

holism (Zintzaras et al. 2006a, 2006b), respectively (see

Fig. 1). These five topics are among many other common

complex diseases with a major impact in public health, and

whose underlining pathogenetic mechanisms are not

clearly understood. In breast cancer and Parkinson’s dis-

ease, the number of studies published each year after 2002

is consistently above 100 and 50 studies, respectively, and

in schizophrenia, there is an upward trend, with an average

growth rate of 75% per year. In hypertension and alco-

holism, the annual number of published studies on average

is 76 and 35, respectively. Therefore, the same or even a

larger number of publications of GASs in these topics in

the coming years can be expected, and the pattern of

published GASs is likely to be similar for other topics.

A search in PubMed for GWASs (August 2007) has

yielded 36 articles describing 42 studies for various mul-

tifactorial diseases, such as coronary artery disease,

Crohn’s disease, Parkinson’s disease, age-related macular

degeneration, and Alzheimer’s disease. Moreover, an

increasing number of funded NIH and European initiatives

have been undertaken in this direction during the last few

years, leading to a growing number of forthcoming and

promising studies (Thomas and Witte 2002).

Validity of genotype–phenotype associations

The published literature has demonstrated a plethora of

questionable gene–disease associations, based on both the

candidate gene and the genome-wide approach, the repli-

cation of which has often failed in independent studies

(NCI-NHGRI Working Group on Replication in Associa-

tion Studies 2007). Although replication is essential for

establishing the credibility of a genotype–phenotype asso-

ciation, a number of methodological and design issues in

the initial studies are hampering research.

Small sample size is a frequent problem and can result

in insufficient power to detect minor contributing roles of

one or more alleles. The most realistic genetic association

between a polymorphic locus and a disease has been

claimed to yield an odds ratio of between 1.1 and 1.5.

Therefore, to achieve a satisfactory power ([80%) to

identify a modest genetic effect (odds ratio 1.2) of a

polymorphism present in 10% of individuals, a sample size

of 10,000 subjects or more would be needed for a GAS.

Likewise, for GWASs, testing for 500,000 SNP associa-

tions in a case–control study at a 5% significant level, a

Bonferroni correction would require significance at

p = 0.05/500,000 = 10-7. Then, to attain a 95% power for

OR = 1.2 and minor allele frequency of 10%, 15,000 case–

control pairs are required in a single study, leading to a

significant financial burden (Thomas and Witte 2002;

Wang et al. 2005). The meta-analysis of multiple studies

clearly has a role in offering an analysis with the potential

for higher probability to detect significant results (Munafò

and Flint 2004).

Population stratification can be a confounding factor in

gene–disease associations and arises when differences in

the genetic structure of the underlying population are not

taken into account (Zintzaras and Sakelaridis 2007). Then,

the cases and controls are not matched for their genetic

background, which can lead to biased or spurious results

(Cardon and Palmer 2003). Moreover, the quality design

issues of individual studies, such as the definition of a

phenotype, validity of the genotyping method, and heter-

ogeneity in exposure to environmental challenges, can

increase the risk of biases (Zintzaras and Stefanidis 2005;

Zintzaras et al. 2007). A meta-analysis provides a robust

tool to investigate discrepant results, to decrease the

uncertainty of the effect size of estimated risk, and to

explore the heterogeneity between studies (Zintzaras and

Ioannidis 2005; Zintzaras and Lau 2007).
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Fig. 1 Cumulative frequency of published genetic association studies

in HuGENet for five main complex diseases
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The role of meta-analysis

The number of meta-analyses appearing in HuGENet is 9,

36, 10, 19, and 7, for hypertension, schizophrenia, Par-

kinson’s disease, breast cancer, and alcoholism,

respectively. These meta-analyses can provide answers to

the question of whether there is evidence of an association

between gene polymorphism and disease. Table 1 shows

the meta-analyses’ summary risk effects (odds ratios) for

investigating associations between various gene polymor-

phisms and the five diseases of interest. The meta-analyses

were based on all of the available studies at the time of

performing the meta-analysis. In total, 96 gene polymor-

phisms were examined, and the number of studies included

in the meta-analyses ranged from 2 to 48. Significant

associations under any genetic contrast were found for four

polymorphisms in hypertension, 26 in schizophrenia, four

in Parkinson’s disease, 11 in breast cancer, and six in

alcoholism. An association was considered to be significant

when the p-value was less than 0.05 or the 95% confidence

interval of the odds ratio did not include 1.0. So far

(PubMed accessed August 2007), one meta-analysis in the

field of GWASs for Parkinson’s disease has been pub-

lished, synthesizing only three studies (Evangelou et al.

2007), but there is still a need for establishing a proper

methodology for the meta-analysis of genome-wide rich

data (Zintzaras and Ioannidis 2007).

The methodological issues relating to meta-analyses

have been previously described in detail (Munafò and Flint

2004; Zintzaras and Lau 2007), and are beyond the scope

of this paper. However, the benefit of getting an assessment

of the overall risk effects from a meta-analysis is obvious.

As evidence is accumulating rapidly, the updating of

genetic risk effects can provide information on whether an

association is real, or that more evidence is needed in order

to draw reliable conclusions on the association (Neale and

Sham 2004). However, a meta-analysis requires a large

amount of labor and effort, since it involves systematic

searches in databases, article retrieval, data extraction, data

entry, and data analysis (Hirschhorn et al. 2002).

Obstacles in meta-analysis

The major obstacle in undertaking a meta-analysis of GASs

is the structure and diversity of stored information in dat-

abases, such as the Genetic Association Database

(http://geneticassociationdb.nih.gov/cgi-bin/index.cgi),

PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?

db=PubMed), EMBASE (http://www.embase.com/), Hu-

GENet, and OMIM (http://www.ncbi.nlm.nih.gov/entrez/

query.fcgi?db=OMIM). The information provided in the

databases is not structured and standardized appropriately

for meta-analysis use, and they are not comprehensive.

These databases, though important for promoting research,

do not claim to be and are not a substitute for the meta-

analysis of GASs. Thus, gathering and meta-analyzing data

related to an SNP association with a disease/disorder is not

straightforward. The minimum information that the articles

should provide for meta-analysis is the genotype frequen-

cies, the ‘race’ of samples, the study design, the demographic

characteristics, and possible effect modifiers or confounders.

In addition, the literature is filled with alternative, idiosyn-

cratic, and arbitral gene and SNP names and symbols,

making cross-comparison and meta-analysis difficult

[e.g., an SNP can be found with more than one arbitral

name, designating amino acid or nucleotide substitutions or

else, and rarely with the official dbSNP ID rs-number

(http://www.ncbi.nlm.nih.gov/projects/SNP/)] (Kitsios and

Zintzaras 2007; Zdoukopoulos and Zintzaras 2007). Much of

the information that the biological researcher is interested in

is available in public reference databases and in the millions

of articles of the scientific research literature, mostly

accessible via the Internet. It is estimated that about 80% of

biological data are in text form, and even the abstracts are

written in free text utilizing a complex biological vocabu-

lary, which may vary significantly in different areas of

research. Thus, despite their wide availability, these data are

not generally machine-searchable. Consequently, no prom-

ising or significant increase in the efficiency of data

integration may be expected, for example, from the auto-

mation of PubMed data retrieval (Teufel et al. 2006; Lacroix

2002; Colhoun 2003). Regarding GWASs, no publicly

available database is currently storing the enormous amount

of accumulating data.

Improving the quality of reporting

genotype–phenotype association

The situation of GASs is similar to the problem clinical

medicine faced more than 10 years ago, where the large

number of randomized control trials of varying quality

befuddled clinicians (Lau et al. 1992). Then, concerted

efforts by the medical community were initiated to improve

the quality of reporting research publications. For example,

the CONSORT statement (Begg et al. 1996) was published

with a view to improving the quality of the reporting of

randomized controlled trials, the QUOROM statement

(Moher et al. 1999) was focused on the reporting of meta-

analyses, and the STARD initiative (Bossuyt et al. 2003)

was developed to improve the reporting of studies of

diagnostic accuracy. The Cochrane Collaboration was

created in response to the need for collecting, synthesizing,

and disseminating the effect of health care in prevention.

This is a successful model that should be emulated by other
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Table 1 Results of 81 meta-analyses of genetic association studies shown in HuGENet. The conclusive pooled odds ratio (OR) and the

corresponding 95% confidence interval (CI) as provided by individual meta-analyses are shown. When the OR was not applicable, the p-value for

testing the association is shown

Disease Author (year) No. of

studies

Gene polymorphism; contrast OR (95%CI) or p-value

Hypertension Sookoian (2007) 42 CYP11B2 C-344T; CC vs. TT 0.83 (0.76–0.91)

Zintzaras (2006) 16 eNOS G894T; G vs. T 1.00 (0.95–1.06)

20 eNOS G894T; (GG + GT) vs. TT 0.98 (0.92–1.05)

15 eNOS G894T; GG vs. (GT + TT) 0.97 (0.84–1.12)

12 eNOS 4a/b; b vs. a 0.85 (0.74–0.98)

15 eNOS 4a/b; (bb + ba) vs. aa 0.78 (0.68–0.90)

11 eNOS 4a/b; bb vs. (ba + aa) 1.38 (0.85–2.24)

6 eNOS T786C; T vs. C 0.92 (0.82–1.02)

7 eNOS T786C; (TT + TC) vs. CC 0.93 (0.82–1.05)

6 eNOS T786C; TT vs. (TC + CC) 0.87 (0.66–1.16)

3 eNOS G23T; G vs. T 0.88 (0.72–1.08)

3 eNOS G23T; (GG + GT) vs. TT 0.84 (0.64–1.11)

3 eNOS G23T; GG vs. (GT + TT) 0.88 (0.58–1.35)

Andersen (2006) 11 GNB3 C825T; TT vs. (TC + CC) 1.08 (1.01–1.17)

11 GNB3 C825T; TC vs. CC 1.07 (1.01–1.13)

Mondry (2005) 25 AGT M235T; TT vs. MM 1.21(1.11–1.32)

Sethi (2003) 22 AGT M235T; MT vs. MM 1.08 (1.01–1.15)

22 AGT M235T; TT vs. MM 1.19 (1.10–1.30

12 AGT M235T; TT vs. MM 1.29 (0.96–1.74)

12 AGT M235T; MT vs. MM 1.60 (1.19–2.15)

6 AGT M235T; TT vs. MM 0.94 (0.45–1.96)

6 AGT M235T; MT vs. MM 1.16 (0.56–2.56)

Chen (2003) 10 AGT M235T; TT vs. (TM + MM) 1.76 (1.44– 2.16)

10 AGT M235T; T vs. M 1.54 (1.31– 1.81)

Qu (2001) 18 ACE I/D; DD vs. DI + II 1.37 (1.15–1.63)

Kato (1999) 6 AGT M235T; T vs. M 1.22 (1.05–1.42)

Staessen (1999) 32 AGT M235T; TT vs. MM 1.31 p \ 0.01

32 AGT M235T; MT vs. MM 1.11 p = 0.03

28 ACE I/D; DD vs. (DI + II) 1.10 (0.95–1.27)

28 ACE I/D; DI vs. II 1.06 (0.93–1.22)

Schizophrenia Dawei (2007) 6 GRIN2B 2664C/T; C vs. T 0.92 (0.81–1.04)

6 GRIN2B 2664C/T; (CC + CT) vs. TT 0.95 (0.76–1.20)

6 GRIN2B 2664C/T; CC vs. (CT + TT) 0.85 (0.70–1.03)

6 GRINB2 366C/G; C vs. G 0.96 (0.83–1.10)

6 GRINB2 366C/G; (CC + CG) vs. GG 1.00 (0.66–1.51)

6 GRINB2 366C/G; CC vs. (CG + GG) 0.89 (0.72–1.11)

Gilbody (2006) 12 MTHFR C677T; T vs. C 1.17 (1.08–1.26)

12 MTHFR C677T; TT vs. CC 1.44 (1.21–1.70)

12 MTHFR C677T; TC vs. CC 1.07 (0.96–1.20)

Guo (2006) 7 RGS4 rs10917670; G vs. A 1.03 (0.92–1.16)

7 RGS4 rs951436; G vs. T 1.00 (0.89–1.12)

7 RGS4 rs951439; A vs. G 1.02 (0.90–1.15)

7 RGS4 rs2661319; G vs. A 1.02 (0.95–1.10)

Detera-Waldeigh (2006) 2 G72/G30 rs746187; T vs. C p = 0.60

3 G72/G30 rs3916964; T vs. C p = 0.11

4 G72/G30 rs3916965; G vs. A p \ 0.01
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Table 1 continued

Disease Author (year) No. of

studies

Gene polymorphism; contrast OR (95%CI) or p-value

2 G72/G30 rs3916966; C vs. A p = 0.07

4 G72/G30 rs3916967; G vs. A p = 0.07

5 G72/G30 rs2391191; G vs. A p \ 0.01

2 G72/G30 rs3918341; G vs. A p = 0.60

3 G72/G30 rs778294; G vs. A p = 0.94

3 G72/G30 rs3916971; T vs. C p = 0.09

5 G72/G30 rs778293; G vs. A p \ 0.01

5 G72/G30 rs3918342; T vs. C p \ 0.01

3 G72/G30 rs1421292; T vs. A p \ 0.01

Talkowski (2006) 13 RGS4 rs10917670; G vs. A 1.26 (0.97–1.64)

13 RGS4 rs951436; G vs. T 1.20 (1.04–1.39)

13 RGS4 rs951439; A vs. G 1.25 (1.06–1.48)

13 RGS4 rs2661319; G vs. A 1.171 (1.01–1.36)

Jonsson (2006) 6 BDNF 270 C/T; T vs. C 1.35 (1.03–1.77)

11 BDNF Val66Met; Val vs. Met 1.02 (0.93–1.11)

11 BDNF Val66Met; ValVal vs. MetVal 1.16 (1.04–1.30)

Jonsson (2006) 5 XBP1 116C/G; GG vs. (GC + CC) 1.04 (0.91–1.19)

5 XBP1 116C/G; G vs. C 1.08 (0.98–1.19)

5 XBP1 116C/G; (GG + GC) vs. CC 1.26 (1.01–1.57)

Xu (2006) 17 APOE e4; e4-alleles vs. others 1.08 (0.88–1.33)

17 APOE e4; e4-carriers vs. non-carriers 1.09 (0.87–1.36)

Jeong (2006) 4 FZD3 rs960914; C vs. T 1.079 (0.88–1.32)

6 FZD3 rs2241802; A vs. G 1.142 (0.95–1.38)

Munafò (2006) 19 NRG1 SNP8NRG221533; T vs. C 1.04 (0.99–1.10)

Li (2006) 3 NRG1 SNP8NRG221132; G vs. A 1.27 (1.06–1.51)

12 NRG1 SNP8NRG221533; T vs. C 1.09 (1.02–1.16)

8 SNP8NRG241930; G vs. A 1.18 (1.08–1.29)

8 SNP8NRG243177; T vs. C 1.1 (1.02–1.19)

Zintzaras (2006) 10 MTHFR C677T; T vs. C 1.13 (1.04–1.23)

10 MTHFR C677T; TT vs. CC 1.34 (1.12–1.60)

10 MTHFR C677T; TT + TC vs. CC 1.21 (1.00–1.25)

10 MTHFR C677T; TT vs. TC + CC 1.32 (1.12–1.56)

4 MTHFR A1298C; C vs. A 1.16 (1.03–1.31)

4 MTHFR A1298C; CC vs. AA 1.37 (1.03–1.82)

4 MTHFR A1298C; CC + AC vs. AA 1.19 (1.02–1.40)

4 MTHFR A1298C; CC vs. AC + AA 1.27 (0.97–1.67)

Glatt (2006) 27 DRD2 Ser311Cys; Cys/Ser vs. Ser/Ser 1.38 (1.11–1.72)

27 DRD2 Ser311Cys; Cys/Cys vs. Cys/Ser 1.03 (0.35–3.05)

Muntjewerff (2006) 8 MTHFR C677T; TT vs. TC + CC 1.70 (1.27–2.29)

Li (2006) 48 5-HT2A T102C; T vs. C 0.94 (0.87–1.02)

42 5-HT2A T102C; TT + TC vs. CC 0.91 (0.8–1.03)

44 5-HT2A T102C; TT vs. TC + CC 0.97 (0.9–1.05)

Fan (2005) 19 SLC6A4 S/L; S vs. L 0.99 (0.92–1.07)

12 SLC6A4 in2 VNTR; allele 12 vs. others 1.24 (1.11–1.38)

Munafo (2005) 18 COMT Val158Met; Met vs. Val 1.06 (0.99–1.13)

Lewis (2005) 6 MTHFR C677T; TT vs. TC + CC 1.48 (1.18–1.86)

6 MTHFR C677T; TC vs. CC 1.04 (0.87–1.25)

Glatt (2005) 15 NOTCH4 (TAA)n8; n8 vs. other alleles 1.02 (0.87–1.21)
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Table 1 continued

Disease Author (year) No. of

studies

Gene polymorphism; contrast OR (95%CI) or p-value

10 NOTCH4 (CTG)n10; n10 vs. other alleles 0.98 (0.89 1.08)

6 NOTCH4 MspI (1); T vs. C 0.99 (0.87–1.13)

9 NOTCH4 MspI (2); G vs. A 0.98 (0.89–1.08)

Gamma (2005) 6 SLC6A3 (40 bp)n; n9 vs. other alleles 0.90 (0.70–1.10)

6 SLC6A3 (40 bp)n; n10 vs. other alleles 1.00 (0.80–1.30)

Fan (2005) 23 COMT Val158Met; Met vs. Val 1.03 (0.94–1.11)

Lin (2004) 8 NT3 (CA)n; A3 vs. other alleles 1.16 (0.95–1.43)

9 CNTF G [ A; A vs. G 1.05 (0.90–1.23)

Duan (2004) 10 TNFa G308A; A vs. G 1.00 (p \ 0.01)

Glatt (2004) 10 DRD2 141C ins/del; ins vs. del 1.10 (0.80–1.40)

Abdolmaleky (2004) 31 5HT2a receptor T102C; C vs. T 1.10 (1.00–1.20)

31 5HT2a receptor T102C; CC vs. TC + TT 1.30 (1.00 –1.60)

Glatt (2003) 24 DRD2 Cys311Ser; Cys vs. Ser 1.30 (p \ 0.01)

Uchida (2003) 3 SIGMAR1 Gln2Pro; Pro vs. Gln p = 0.06

Glatt (2003) 17 DRD4 exon 3 VNTR; A2 vs. other 0.90 (0.80–1.00)

17 DRD4 exon 3 VNTR; A4 vs. other 1.00 (0.90–1.10)

17 DRD4 exon 3 VNTR; A7 vs. other 1.10 (0.90–1.30)

Glatt (2003) 11 KCNN3 CAG-Repeat; S vs. L 1.20 (1.00–1.50)

Jonsson (2003) 25 DRD2 Ser311Cys; Cys vs. Ser 1.43 (1.16–1.78)

Schurhoff (2003) 15 APOE e2; e2-carriers vs. others (0.77–1.10)

15 APOE e3; e3-carriers vs. others (0.88–1.11)

15 APOE e4; e4-carriers vs. non carriers (0.92–1.22)

Jonsson (2003) 20 DRD4 exon 3 VNTR; L vs. S 0.95 (0.85 – 1.07)

7 DRD4 exon 1 VNTR; L vs. S 1.03 (0.74 – 1.42)

3 DRD4 521C/T; C vs. T 1.22 (1.04 – 1.42)

Glatt (2003) 14 COMT Val158Met; Met vs. Val 1.00 (0.90–1.10)

Jonsson (2003) 8 DRD3 Ser9Gly; SerSer vs. SerGly + Glygly 1.10 (1.01–1.20)

Lung (2002) 12 DRD4 exon 3 VNTR; L vs. S 6.24 (p \ 0.01)

Philibert (2006) 4 (male) HOPA 12 bp(ins); 12 bp(ins) vs. Wt 1.89 (1.03–3.47)

4 (female) HOPA 12 bp(ins); 12 bp(ins) vs. Wt 1.93 (1.01–3.67)

Parkinson’s disease Borlak (2006) 5 NAT2 G509A; A vs. G 0.94 (0.79–1.12)

5 NAT2 G509A; AA vs. (AG + GG) 0.94 (0.78–1.43)

Healy (2006) 8 UCHL-1 S18Y; (YY + SY) vs. SS 1.01 (0.76–1.35)

8 UCHL-1 S18Y; YY vs. (SY+SS) 0.96 (0.86–1.08)

8 UCHL-1 S18Y; YY vs. SS 1.00 (0.74 –1.33)

Zintzaras (2005) 6 BDNF G196A; A vs. G 1.00 (0.90 1.12)

6 BDNF G196A; AA vs. GG 0.91 (0.58 1.41)

6 BDNF G196A; AA vs. (AG + GG) 1.08 (0.89 1.31)

6 BDNF G196A; (AG + AA) vs. GG 0.94 (0.80 1.12)

Mellick (2005) 7 NACP-Rep1 (0, +1); 0 vs. +1 0.79 (0.70–0.89)

Zhang (2005) 14 tau gene haplotype h1 ; H1H1 vs. others 1.42 (1.23–1.65)

14 tau gene haplotype h1 ; H1-carriers vs. others 1.52 (1.12–2.04)

Zintzaras (2005) 4 PON1-55M/L; M vs. L 1.32 (1.10–1.59)

4 PON1-55M/L; (MM + LM) vs. LL 1.45 (1.13–1.86)

4 PON1-55M/L; MM vs. LL 1.64 (1.10–2.46)

4 PON1-55M/L; MM vs. (LM + LL) 1.34 (0.92–1.94)

5 PON1-192Q/R; R vs. Q 1.09 (0.93–1.26)

5 PON1-192Q/R; RR vs. (QR + QQ) 1.15 (0.90–1.49)
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Table 1 continued

Disease Author (year) No. of

studies

Gene polymorphism; contrast OR (95%CI) or p-value

5 PON1-192Q/R; RR vs. QQ 1.11 (0.78–1.56)

5 PON1-192Q/R; (RR + QR) vs. QQ 1.08 (0.86–1.36)

Huang (2004) 22 APOE e2; e2-carriers vs. others 1.2 (1.02–1.42)

22 APOE e3; e3-carriers vs. others 0.83 (0.63–1.09)

22 APOE e4; e4-carriers vs. non carriers 0.99 (0.87–1.14)

Persad (2003) 9 CYP2D6; 4*A vs. 4*G 0.84 (0.66–1.08)

Christensen (1998) 15 CYP2D6; 4*A vs. 4*G 1.48 (1.10–1.99)

Rostami (1998) 18 CYP2D6; 4*A vs. 4*G 1.32 (0.98–1.78)

Breast cancer Masson (2005) 17 CYP1A1 3801T?C; C/C vs. TT 0.97 (0.52–1.80)

17 CYP1A1 3801T?C; TC vs. TT 0.91 (0.70–1.19)

17 CYP1A1 Ile462Val; ValVal vs. IleIle 1.04 (0.63–1.74)

17 CYP1A1 Ile462Val; IleVal vs. IleIle 0.92 (0.76–1.10)

17 CYP1A1 Thr461Asp; AspAsp vs. ThrThr 0.95 (0.20–4.49)

17 CYP1A1 Thr461Asp; TheAsp vs. ThrThr 1.12 (0.87–1.43)

Zintzaras (2006) 18 MTHFR C677T; T vs. C 1.02 (0.95–1.10)

18 MTHFR C677T; TT vs. CC 1.07 (0.90–1.27)

18 MTHFR C677T; TT vs. (TC + CC) 1.06 (0.91–1.24)

18 MTHFR C677T; (TT + TC) vs. CC 1.02 (0.94–1.11)

18 MTHFR A1298C; A vs. C 0.98 (0.89–1.07)

18 MTHFR A1298C; AA vs. CC 1.04 (0.81–1.33)

18 MTHFR A1298C; AA vs. (AC + CC) 0.95 (0.87–1.03)

18 MTHFR A1298C; (AA + AC) vs. CC 1.06 (0.84–1.35)

Terry (2006) 14 NAT2 rapid acetylators 1.20 (1.00–1.50)

14 NAT2 slow acetylators 1.50 (1.20–1.80)

14 GSTM1 D/I; D/D vs. (D/I + I/I) 1.50 (1.10–2.10)

Wen (2005) 4 CYP1B2 Ala119Ser; Ala/Ser vs. Ala/Ala 1.07 (0.91–1.25)

4 CYP1B2 Ala119Ser; Ser/Ser vs. Ala/Ala 0.98 (0.81–1.19)

9 CYP1B2 Leu432Val; Leu/Val vs. Leu 1.06 (0.90–1.26)

9 CYP1B2 Leu432Val; Val/Val vs. Leu/Leu 1.01 (0.88–1.15)

3 CYP1B2 Asn453Ser; Asn/Ser vs. Asn/Asn 0.91 (0.79–1.04)

3 CYP1B2 Asn453Ser; Ser/Ser vs. Asn/Asn 0.85 (0.54–1.34)

14 COMT Val158Met; Val/Met vs. Val/Val 0.96 (0.83–1.12)

14 COMT Val158Met; Met/Met vs. Val/Val 0.89 (0.74–1.07)

Sull (2004) 30 GSTM1; D/D vs. (D/I + I/I) 1.03 (0.94–1.12)

Egan (2004) 19 GSTM1; D/D vs. (D/I + I/I) 1.05 (0.98–1.13)

15 GSTT1; D/D vs. (D/I + I/I) 1.11 (1.01–1.22)

10 GSTP1 Ile105Val; Val/Val vs. Ile/Ile 1.04 (0.87–1.25)

Ye (2002) 15 CYP17 MspA1; (A1/A2 + A2/A2) vs. A1/A1 0.98 (0.89–1.07)

15 CYP17 MspA2; A2/A2 vs. A1/A1 1.05 (0.87–1.21)

Han (2006) 48 XRCC3 Thr(241)Met; Met/Met vs. Thr/Thr 1.14 (1.06–1.23)

Garcia-Closas (2006) 11 XRCC3 Thr(241)Met; Thr/Met vs. Thr/Thr 1.03 (0.97–1.09)

11 XRCC3 Thr(241)Met; Met/Met vs. Thr/Thr 1.16 (1.04–1.30)

10 BRCA2 N372H; His/His vs. Asn/Asn 1.13 (1.01–1.28)

10 XRCC2 R188H; His/His vs. Arg/Arg 1.06 (0.59–1.91)

Kaklamani (2003) 7 TGFBR1, *6A-carriers vs. others 1.48 (1.11–1.96)

Hung (2005) 9 XRCC1 Arg194Trp; Arg/Trp vs. Arg/Arg 0.94 (0.77–1.15)

5 XRCC1 Arg194Trp; Trp/Trp vs. Arg/Arg 1.07 (0.64–1.84)

9 XRCC1 Arg194Trp; (Arg/Trp + Trp/Trp) vs. Arg/Arg 0.95 (0.78–1.16)
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Table 1 continued

Disease Author (year) No. of

studies

Gene polymorphism; contrast OR (95%CI) or p-value

11 XRCC1 Arg399Gln; Arg/Gln vs. Arg/Arg 1.06 (0.94–1.20)

11 XRCC1 Arg399Gln; Gln/Gln vs. Arg/Arg 1.17 (0.98–1.39)

11 XRCC1 Arg399Gln; (Arg/Gln + Gln/Gln) vs. Arg/rg 1.07 (0.96–1.20)

Paracchini (2006) 13 CYP1B1 Leu432Val; Val/Val vs. Leu/Leu 1.00 (0.60–1.60)

13 CYP1B1 Leu432Val; Val/Leu vs. Leu/Leu 1.00 (0.80–1.20)

13 CYP1B1 Leu432Val; (Val/Val + Val/Leu) vs. Leu/Leu 1.00 (0.80–1.20)

Spinola (2004) 3 L-myc EcoRI; S/S vs. L/L 1.90 (1.10–3.10)

Cox (2006) 5 AURKA F31I; I/I vs. F/F 1.28 (1.08–1.53)

Manuguerra (2006) 3 XPD/ERCC2 Asp312Asn (C/A); AA vs. GG 0.87 (0.34–2.23)

3 XPD/ERCC2 Asp312Asn (C/A); (GA + AA) vs. GG 1.08 (0.44–2.65)

3 XPD/ERCC2 Asp312Asn (C/A); GA vs. GG 1.12 (0.46–2.74)

4 XPD/ERCC2 Lys751Gln (A/C); CA vs. AA 1.15 (1.00–1.32)

4 XPD/ERCC2 Lys751Gln (A/C); CC vs. AA 1.22 (1.00–1.48)

4 XPD/ERCC2 Lys751Gln (A/C); (CA + CC) vs. AA 1.17 (1.02–1.33)

3 XRCC3 Thr241Met (C/T); CT vs. CC 0.91 (0.80–1.03)

3 XRCC3 Thr241Met (C/T); TT vs. CC 1.11 (0.94–1.33)

3 XRCC3 Thr241Met (C/T); (CT + TT) vs. CC 0.95 (0.85–1.07)

Fletcher (2006) 6 STK15 F31I; Ile/Ile vs. Phe/Phe 1.19 (0.96–1.48)

Zhang (2006) 14 XRCC1 Q399R; cAG vs. GG 1.10 (1.00–1.20)

14 XRCC1 Q399R; AG vs. GG 1.10 (1.00–1.10)

11 XRCC1 R194W; CT/TT vs. CC 1.00 (0.80–1.20)

Pooley (2006) 4 PGR-12 V660L; VL vs. VV 1.13 (1.03–1.24)

4 PGR-12 V660L; LL vs. VV 1.30 (0.98–1.73)

Wen (2005) 4 IGF-I; (CA)17 or (CA)19-carriers vs. others 1.22 (1.06–1.41)

Alcoholism Gorwood (2004) 16 5-HTT (S/L); S vs. L 1.31

Whitfield (2002) 6 ADH1 (R/H); RR vs. RH 2.11 (1.32–3.44)

4 ADH1 (R/H); RH vs. HH 1.36 (1.07–1.72)

4 ADH1 (R/H); RH vs. HH 1.70 (1.34–2.17)

Noble (2003) 21 DRD2 (Taq1); A1 vs. A2 1.53 (1.31–1.77)

Luczak (2006) 22 ALDH2 (*1/*2); *1/*2 vs.*1/*1 0.22 (0.16–0.30)

22 ALDH2 (*1/*2); *2/*2 vs. *1/*1 0.12 (0.06–0.24)

22 ALDH2 (*1/*2); *2/*2 vs.*1/*2 0.49 (0.23–1.05)

Feinn (2005) 19 5-HTT (S/L); S vs. L 1.18 (1.03–1.33)

Zhu (2003) 4 NPY Leu7Pro; Pro vs. Leu 1.09 (0 81–1.33)

Zintzaras (2006) 33 ADH2 (*1/*2); 1 vs. 2 1.89 (1.56–2.28)

33 ADH2 (*1/*2); *1/*1 vs. (*1/*2 + *2/*2) 2.62 (1.88–3.66)

33 ADH2 (*1/*2); (*1/*1 + *1/*2) vs. (*2/*2) 1.87 (1.54–2.28)

21 CYP2E1 (*1/*2); 1 vs. 2 0.92 (0.82–1.04)

24 ADH3 (*1/*2); 1 vs. 2 1.32 (1.12–1.57)

24 ADH3 (*1/*2); *1/*1 vs. (*1/*2 + *2/*2) 1.35 (1.07–1.71)

24 ADH3 (*1/*2); (*1/*1 + *1/*2) vs. (*2/*2) 1.35 (1.08–1.67)

23 ALDH2 (*1/*2); *1 vs. *2 4.35 (3.04–6.23)

23 ALDH2 (*1/*2); *1/*1 vs. (*1/*2 + *2/*2) 4.16 (2.94–5.89)

23 ALDH2 (*1/*2); (*1/*1 + *1/*2) vs. (*2/*2) 39.77 (12.97–122)
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scientific disciplines that have similar needs to synthesize

evidence.

The need for data sharing has been highlighted by the

Genetic Association Information Network (GAIN) initia-

tive, in an effort to facilitate the subsequent and joint

analysis of GWASs data (Thomas and Witte 2002). All

genotypes will be made public as they are generated and

checked for quality. However, the sheer scale of GWAS

data will pose significant practical challenges regarding the

form of the stored statistical results and their suitability for

meta-analysis.

Conclusion

Given the rapid accumulation of evidence regarding gene–

disease associations, a Web-based system for data storage

and automated meta-analysis of genetic association studies

(GASs) and genome-wide association studies (GWASs)

results is essential to: (1) keep track of the evidence for

gene–disease associations, (2) improve the quality of

reporting, and (3) reduce effort and labor for performing

meta-analysis.
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