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Abstract Eotaxin family (Eotaxin 1,2 and 3) recruits and

activates CCR3-bearing cells such as eosinophil, mast

cells, and Th2 lymphocytes that play a major role in

allergic disorders. We examined the polygenetic effects of

the Eotaxin gene family in a Korean population. Gene–

gene interactions were tested using a multistep approach

with multifactor dimensionality reduction (MDR) method

between asthmatics and normal controls. The overall best

MDR model of the main effect single nucleotide poly-

morphisms (SNPs) included EOT2 + 1272A [ G and

EOT3 + 77C [ T (model 1) [testing accuracy 0.597,

cross-validation consistency (CVC) 10/10, P \ 0.001]. The

overall best MDR model of the SNPs with no main effects

included EOT2 + 304C [ A, EOT3 + 716A [ G, and

EOT3 + 1579G [ A (model 2) (testing accuracy 0.616,

CVC 10/10, P \ 0.001). Model 3 was obtained by

including the MDR variables for models 1 and 2. This new

composite model predicted asthma with better accuracy

than either model 1 or model 2 (testing accuracy 0.643,

CVC 10/10, P \ 0.001). The detection of statistical inter-

action models is one evidence of gene–gene interactions

among Eotaxin genes, and this interaction is thought to

influence the development of asthma. Although the models

are limited to determining statistical interactions within a

population, they may be useful for identifying groups at

high risk of developing asthma.
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Abbreviations

MDR multifactor dimensionality reduction

CVC cross-validation consistency
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Introduction

Asthma is a common respiratory disease characterized by

intermittent airway obstruction, chronic airway inflamma-

tion, and airway remodeling (Davies et al. 2003). Asthma

results from and progresses via a complex interaction of

genetic and environmental factors (Steinke et al. 2008).

Eotaxin is a member of a family of CC chemokines that

coordinates the recruitment of inflammatory cells bearing

the CCR3 receptor to sites of allergic inflammation (Rankin

et al. 2000). Eotaxin 1, 2, and 3 messenger ribonucleic acid

(mRNA) and proteins are expressed in the airways of asth-

matics and normal controls. Eotaxin 1 may be important for

eosinophilic inflammation in the early phase of the asthmatic

response, whereas eotaxin 2 and eotaxin 3 may control

eosinophil recruitment in the later stages of the allergic
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response (Berkman et al. 2001; Brown et al. 1998; Papado-

poulos et al. 2001; Ying et al. 1999). The human Eotaxin

gene families are located on chromosomes 17 and 7.

EOT2 + 1272A [ G is associated with asthma development

and EOT1 + 123G [ A with serum total immunoglobulin E

(IgE) levels (Shin et al. 2003). Asthmatics exhibit a gene–

dose effect between EOT2 + 1272A [ G and plasma eo-

taxin 2 levels (Min et al. 2005).

Given that asthma is a multifactorial disease, numerous

genes may control its development, each playing only a

small role in conferring a genetic predisposition to the

disease phenotype. These genes may act independently or

interact with other genes that exist in same biological

pathway to produce a variable effect (Carlson et al. 2004).

Gene–gene and gene–environment interactions are dif-

ficult to detect and characterize using traditional parametric

statistical methods such as logistic regression due to the

sparseness of the data in high dimensions (Hahn et al.

2003). The multifactor dimensionality reduction (MDR)

algorithm is a powerful tool for detecting gene–gene

interactions. It uses an exhaustive search and a single

classifier to identify the optimal combination of polymor-

phisms for predicting a discrete disease endpoint (Hahn

et al. 2003; Ritchie et al. 2001). Recently, a flexible

framework and MDR provided visualization of the infor-

mation gained through incorporating the interactions of

genetic factors (Moore et al. 2006). Furthermore, odds ratio

(OR) based MDR provide more information regarding the

effect of a certain genotype combination on the disease risk

(Chung et al. 2007). A new generalized MDR, a framework

based on the score of the generalized linear model, permits

adjustment for covariates and handling both dichotomous

and quantitative phenotypes (Lou et al. 2007).

Statistical epistasis is difficult to detect and distinguish

in human studies due to its inherent nonlinearity. In its

extreme form, epistasis can occur in the absence of

detectable independent effects of any one polymorphism.

This presents several computational and statistical chal-

lenges, especially in the context of genome-wide

association studies (Moore and Ritchie 2004; Moore et al.

2006). We examined the polygenetic effects of the eotaxin

gene family in a Korean population using a multistep

approach and MDR analysis.

Materials and methods

Patients and controls

Three hundred asthmatics were enrolled from among

patients at the Asthma Genome Research Center at Soon-

chunhyang University Bucheon Hospital and Seoul

Hospital, Korea. Ethical approval was obtained from the

institutional review board of the hospital. All asthma

patients had current symptoms, such as wheezing, dyspnea,

or cough, and met the criteria for asthma as determined by

the American Thoracic Society (Robert et al. 1987). Each

patient showed airway reversibility as documented by an

inhalant bronchodilator-induced improvement of forced

expiratory in one second (FEV1) of more than 15% (Robert

et al. 1999) and/or airway hyperresponsiveness as pro-

vocative concentration of methacholine required to cause a

20% decrease in FEV1 (PC20) less than 8 mg/ml (Robert

et al. 1999). Three hundred normal subjects were recruited

from the general population or among the spouses of

asthmatic patients based on the following criteria: a neg-

ative screening questionnaire for respiratory symptoms

(Ferris 1978), a predicted FEV1 [ 75%, PC20 C 8 mg/ml,

total serum IgE \ 300 IU/ml, and a normal chest X-ray.

The clinical characteristics of all asthmatic and control

subjects are presented in Table 1.

Genotyping by single-base extension

and electrophoresis

To genotype polymorphic sites, amplifying and extension

primers were designed for single-base extension (SBE).

Primer extension reactions were performed with the

SNaPshot dideoxynucleotide triphosphate (ddNTP) Primer

Extension kit (Applied Biosystems, Foster City, CA, USA)

according to the manufacturer’s instructions.

Selection of polymorphisms

Single nucleotide polymorphisms (SNPs) with a rare allele

frequency below 0.1 were excluded from the analysis.

Between the two SNPs that linked completely (|D0| = 1)

(Shin et al. 2003), the SNP that showed higher rare allele

Table 1 Clinical manifestations of asthma and control subjects

Asthma Control P value

Number of subjects 300 300

Age, year: median (range) 43 (8–70) 27 (8–71) \0.0001

Gender (male/female) 124/176 136/164 0.16

Smoker (%) 26.4 41.4 0.0003

FVC%, pred 87.2 ± 1.1 88.8 ± 0.9 0.28

FEV1%, pred 79.7 ± 1.3 96.4 ± 0.9 \0.0001

% changes of FEV1

by bronchodilator

11.8 ± 0.9 2.8 ± 0.4 \0.0001

PC20 (mg/ml) 2.6 ± 0.3 24.8 ± 0.0 \0.0001

Total IgE (IU/ml) 436 ± 40.4 138 ± 10.5 \0.0001

Chi-square test was used for comparisons of categorical variables,

Student’s t test for continuous variables

FVC forced vital capacity, FEV1 forced expiratory volume in one

second , IgE immunoglobulin E, pred predicted value
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frequency was selected. Hardy–Weinberg equilibrium and

calculation of D0 for linkage disequilibrium (LD) were

performed using PHASE v2.0.2 (Stephan et al. 2001) and

Arelquin v2.0 (Hedric 1978). A total of 14 SNPs in Eotaxin

1, 2 and 3 genes were included in the analysis (six SNPs in

Eotaxin 1 , five in Eotaxin 2, and three in Eotaxin 3).

Multifactor dimensionality reduction analysis

Data were randomly divided as follows: 9/10 were used as

a training set, and the remaining 1/10 was used for inde-

pendent testing for cross-validation consistency (CVC).

Cross-validation is a measure of the number of times a

particular set of loci is identified in each possible 9/10 of

the subjects. The threshold ratio is defined as the ratio of

the number of affected individuals to that of unaffected

individuals. The subjects are at high risk only when the

threshold ratio exceeds 1.0.

A set of n genetic factors was selected, and all possible

multifactor classes or cells were represented in n-dimen-

sional space. Each multifactor class was labeled as either

high or low risk, depending on the threshold ratio. This

process was repeated for each possible cross-validation

interval. When the final best model was selected, a model

for high- and low-risk genotype combinations was formed

using an adjusted threshold that was equal to the ratio of

cases and controls in a model that maximizes the CVC and

minimizes the prediction error (Hahn et al. 2003; Moore

and Ritchie 2004; Ritchie et al. 2001).

Accuracy is defined as the proportion of subjects that are

grouped correctly according to their status. When the CVC

was maximal for one model and accuracy was maximal for

another, statistical parsimony was used to choose the best

model. Thus, when CVC and accuracy supported different

models, the model with fewest loci/factors was selected

(Hahn et al. 2003; Moore and Ritchie 2004; Ritchie et al.

2001).

Multistep approach using MDR, interaction

information, and dendrogram

Gene–gene interactions were evaluated using the flexible

four-step computational strategy (Moore et al. 2006). First,

we applied a chi-square test of independence to obtain a list

of SNPs with statistically significant main effects

(P B 0.05) and a list of SNPs without significant main

effects (P [ 0.05). Second, we determined all possible

combinations of SNPs from the main-effects list and no-

main-effects list up to a maximum order of five using the

MDR constructive induction algorithm (Hahn et al. 2003;

Hahn and Moore 2004; Moore and Ritchie 2004; Moore

et al. 2006, 2007; Ritchie et al. 2001, 2003). Third, we used

a naı̈ve Bayes classifier in the context of a tenfold cross

validation to estimate the testing accuracy of each best

two-, three-, and four-factor model. A single best model

from the main-effects analysis and the no-main-effects

analysis that maximized the testing accuracy was selected.

These models are the most likely to generalize to inde-

pendent data sets. Statistical significance was evaluated

using a sign test to compare the observed testing accuracies

to those expected under the null hypothesis of no associ-

ation. Models were considered significant at P \ 0.05.

We then selected the best model derived from the list of

SNPs with significant main effects, the best model from

SNPs with no main effects, created new MDR attributes for

each model, and placed these back into the data set in a

process referred to as interleaving (Moore et al. 2006). We

reran MDR with these new constructed attributes and

reported the best final model. To estimate the contribution

of associated genotype combination, we calculated the OR

of each genotype combination in final model using OR-

based MDR (OR-MDR) (Chung et al. 2007). Covariate

analysis for the final model was performed using general-

ized MDR (GMDR) (Lou et al. 2007). Age and gender

were used as covariates. Age was the continuous variable

and gender was the discrete variable. Finally, we used the

measure of interactions information to provide a statistical

interpretation of the gene–gene interaction models

(Andrew et al. 2006; Moore et al. 2006). Interaction

information was measured among two given loci and case-

control status using Shannon entropy (Jakulin et al. 2003).

Let H(X) be the Shannon entropy of X. The information

gain (IG) was derived as follows:

IG ABCð Þ ¼ I A; BjCð Þ � I A; Bð Þ
I A; BjCð Þ ¼ H AjCð Þ þ H BjCð Þ � H A; BjCð Þ
I A; Bð Þ ¼ H Að Þ þ H Bð Þ � H A; Bð Þ

where I (A;B) denotes the dependency of correlation

between A and B, and I (A; B|C) denotes the interaction of

A and B given C (Andrew et al. 2006). When the difference

between these two parameters, IG (ABC), is positive, it is

defined as synergy or evidence of an attribute interaction,

whereas when interaction information is negative, it is

defined as redundant or evidence of an independency. An

interaction dendrogram is presented in which interactions

between two loci are indicated by different colors. These

analyses were implemented using MDR (version 10.0;

http://www.epistasis.org), OR-MDR (v1.2), and GMDR

software (v0.7).

Results

Genotype distributions of the 14 SNPs were in Hardy–

Weinberg equilibrium (P [ 0.05, data not shown) in
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asthmatics and control subjects. The two statistically sig-

nificant SNPs selected by the chi-square test of

independence included EOT2 + 1272A [ G (P = 0.003)

and EOT3 + 77C [ T (P = 0.018, data not shown). These

two SNPs were included in the first list of SNPs with

significant main effects. The other 12 SNPs were not sig-

nificant and were included in the second list. Table 2

summarizes the results of an exhaustive MDR analysis that

evaluated the pairwise combinations for the two main-

effects SNPs. Table 3 summarizes the results of an

exhaustive MDR analysis that evaluated all possible two-,

three-, and four-SNP models from the list of SNPs without

main effects. In each table, the best model for each order is

shown, along with its testing accuracy, CVC, and signifi-

cance level as determined by the sign test. The overall best

MDR model for the main-effects SNPs included

EOT2 + 1272A [ G and EOT3 + 77C [ T. This model

(model 1) had a maximum testing accuracy of 0.597 and a

maximum CVC of 10/10 (Fig. 1). This model was signif-

icant at the level of 0.001, indicating that all ten testing

accuracies were greater than 0.5 during cross validation.

Therefore, it is unlikely that these results fall under the null

hypothesis of no association. The OR for model 1 was

2.439 [95% confidence interval (CI), 1.732–3.433]. The

distribution of asthmatics and controls for model 1 is

illustrated in Fig. 1 for all genotype combinations and for

the new MDR-constructed variable. The overall best MDR

model for SNPs with no main effects included EOT2 +

304C [ A, EOT3 + 716A [ G, and EOT3 + 1579G [ A

(Table 3). This model (model 2) had a maximum testing

accuracy of 0.616 and a maximum CVC of 10/10. Model 2

was significant at the level of 0.001, which indicates that all

ten testing accuracies were greater than 0.5 during cross

validation. Therefore, it is unlikely that this result falls

under the null hypothesis of no association (Fig. 2). The

OR for model 2 was 3.360 (95% CI, 2.318–4.871). The

distribution of asthmatics and controls for model 2 is

illustrated in Fig. 2 for all genotype combinations and for

the new MDR-constructed variable. Model 2 was a better

predictor of asthma than the significant main effects model.

Model 3 was obtained by including the MDR variables for

models 1 and 2 in the data set (Fig. 3). This new composite

model had a testing accuracy of 0.643 (P = 0.001) and was

a better predictor than either model 1 or 2. The global OR

for model 3 was 3.287 (95% CI, 2.349–4.600). Among 243

possible genotype combinations of five SNPs in model 3,

eight genotype combinations had relatively high OR ([1),

and we could find out which genotype combinations of

model 3 contributed more to case-control status (Table 5).

In covariate analysis using GMDR, testing accuracies were

similar between model 3 with and without age and gender

adjustment (0.6075 vs. 0.6062, respectively) (Table 6).

Table 2 Summary of multifactor dimensionality reduction (MDR)

analysis for the single nucleotide polymorphisms with significant

main effects

Model Testing

accuracy

CVC P value

EOT2 + 1272A [ G 0.577 10 0.172

EOT2 + 1272A [ G, EOT3 + 77C [ T 0.597 10 0.001a

P values were determined by sign test

CVC cross-validation consistency
a Overall best MDR model

Table 3 Summary of multifactor dimensionality reduction (MDR)

analysis for the single nucleotide polymorphisms with no significant

main effects

Model Testing

accuracy

CVC P
value

EOT2 + 1916A [ C 0.531 4 0.989

EOT2 + 304C [ A, EOT3 + 716A [ G 0.577 10 0.172

EOT2 + 304C [ A, EOT3 + 716A [ G,
EOT3 + 1579G [ A

0.616 10 0.001a

EOT2 + 304C [ A,
EOT2 + 447C [ T, EOT3 + 716A [ G,
EOT3 + 1579G [ A

0.599 6 0.172

P values were determined by sign test

CVC cross-validation consistency
a Overall best MDR model

Fig. 1 Distribution of asthmatics (left bars) and controls (right bars)

for each genotype combination from the two single nucleotide

polymorphisms (SNPs) that had statistically significant main effects.

High-risk genotype combinations are shaded dark grey and low-risk

are shaded light grey. The new variable constructed by multifactor

dimensionality reduction (MDR) is shown on the right. High high-risk

group, Low low-risk group, CVC cross-validation consistency, OR
odds ratio, CI confidence interval
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The values of |D0| for LD among SNPs in model 3 are

presented in Table 4. EOT3 + 1579G [ A showed strong

LD with EOT2 + 1272A [ G (|D0| = 0.56, P \ 0.001)

and with EOT3 + 716A [ G (|D0| = 0.72, P \ 0.001) in

asthmatics. EOT + 304C [ A also showed strong LD with

EOT3 + 716A [ G (|D0| = 0.51, P \ 0.001) and with

EOT3 + 1579G [ A (|D0| = 0.53, P \ 0.001) in controls.

Figure 4 summarizes the interaction information analy-

sis (Moore et al. 2006). An interaction dendrogram is

presented that highlights the amount of information gained

about case-control status by putting two polymorphisms

together using MDR. The interaction information analysis

indicates that EOT2 + 1272A [ G and EOT3 + 77C [ T

from model 1 have independent effects from one another

and are independent from the SNPs in model 2.

Discussion

It is difficult to obtain clear statistical and biological evi-

dence to determine the causes of complex polygenic

diseases such as asthma. The MDR algorithm provides a

nonparametric and genetic model-free alternative to

logistic regression and is useful for detecting and charac-

terizing nonlinear interactions among discrete genetic and

environmental factors (Hahn et al. 2003; Moore and

Ritchie 2004; Ritchie et al. 2001). This method uses data

mining to identify new variables and so-called high-risk

and low-risk groups from raw data. We applied MDR

algorithms using a flexible multistep approach to identify

genetic interactions that contribute to asthmatic pheno-

types. We defined the main effect as an effect that any

individual SNP associates with the subject’s disease status.

This main effect is difficult to replicate (Ioannidis 2007).

When the single SNP effect is not present alone or is not

strong enough, gene–gene interaction or gene–environ-

mental interaction can be considered to characterize and

identify the susceptibility of genes for disease risk. Epis-

tasis is a description of the masking of the expression of

one locus by alleles at another locus and quantitative dif-

ferences among genotypes, calling any deviation from the

additive combination of sing-locus genotypes (Wolf et al.

2000). Epistasis can occur in the absence of detectable

independent effects of any one SNP.

An individual attribute was defined as a main effect

contributing to disease when an SNP was determined to be

significantly associated with the asthmatic phenotype by a

Fig. 2 Distribution of

asthmatics (left bars) and

controls (right bars) for each

genotype combination from the

best combination of three single

nucleotide polymorphisms

(SNPs) that had no significant

main effects. High-risk

genotype combinations are

shaded dark grey and low-risk

are shaded light grey. White
cells indicate no data was

observed for that combination.

The new variable constructed by

multifactor dimensionality

reduction (MDR) is shown

below. High high-risk group,

Low low-risk group, CVC cross-

validation consistency, OR odds

ratio, CI confidence interval

Fig. 3 Distribution of asthmatics (left bars) and controls (right bars)

for the composite multifactor dimensionality reduction (MDR) model

that combined the MDR variable for model 1 and the MDR variable

for model 2. The number above on the bar indicates the frequency of

asthmatics or controls. High-risk genotype combinations are shaded

dark grey and low-risk are shaded light grey. The final variable

constructed by MDR is shown on the right. High high-risk group; Low
low-risk group, CVC cross-validation consistency, OR odds ratio,

CI confidence interval
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chi-square test (P \ 0.05) (Moore et al. 2006). In main-

effects analysis, of the 14 SNPs, EOT2 + 1272A [ G and

EOT3 + 77C [ T were selected, and combination of these

two made up model 1 (accuracy 0.597, CVC 10/10, OR

2.44, P = 0.001). Therefore, this combination accounted

for one of the best models to predict asthma within the 14

SNPs of the Eotaxin genes examined. It was already

reported that EOT2 + 1272A [ G was associated with

asthma in three alternative models (dominant, recessive,

and codominant) (Shin et al. 2003). We found that an

EOT2 + 1272A [ G SNP contributes to one of the best

two-loci models identified using MDR. The genotype

combinations consisted of AA genotype of EOT2 +

1272A [ G and CT or TT genotypes of EOT3 + 77C [ T

and were the high-risk group for asthma (Fig. 1).

Model 2 consisted of EOT2 + 304C [ A, EOT3 +

716A [ G, and EOT3 + 1579G [ A (accuracy 0.616, CV

10/10, OR 3.36, P = 0.001; Fig. 2). These were charac-

terized as no-main-effect SNPs because they were not

significantly associated with the disease phenotype in the

first step of the analysis. Interaction dendrogram is used to

visualize the nature of the dependencies. Interestingly,

EOT2 + 304C [ A, EOT3 + 716A [ G, and EOT3 +

1579G [ A exhibited strong synergistic effects, suggesting

nonadditive interactions (Fig. 4). We found that an

EOT2 + 1272A [ G SNP contributes to one of the best

two-loci models identified using MDR. These results

indicate that our final model (model 3) comprised a pair of

polymorphisms that had independent main effects and

three polymorphisms with synergistic effects that were

Table 4 Linkage disequilibrium among five single nucleotide polymorphisms (SNPs) of model 3

EOT2 + 304C [ A EOT 2 + 1272A [ G EOT3 + 77C [ T EOT3 + 716A [ G EOT3 + 1579G [ A

EOT2 + 304C [ A * 0.07 0.24* 0.03 0.31*

EOT2 + 1272A [ G 0.12 * 0.12 0.13* 0.56*

EOT3 + 77C [ T 0.21* 0.27* * 0.18* 0.05

EOT3 + 716A [ G 0.51* 0.21* 0.17 * 0.72*

EOT3 + 1579G [ A 0.53* 0.48* 0.22 0.82* *

The values of Lewontin’s |D0 | in asthma is in upright and those in control is in down-left area

*P value \ 0.001 of D0 from 0 by chi-square test

Fig. 4 Interactions dendrogram for the 14 polymorphisms modeled by

MDR. A black or gray line (red or orange for online) suggests a positive

information gain and can be interpreted as synergistic or non-additive

relationship. Stripes lines suggest a loss of information and can be

interpreted as redundancy or correlation. Dot lines indicate

independence or additivity. Independent effects of EOT2 + 1272A [ G
and EOT3 + 77C [ T is comprised in model 1 and the strong

synergistic effects of EOT2 + 304C [ A, EOT3 + 716A [ G and

EOT3 + 1579G [ A are comprised in model 2. Five polymorphisms

of model 1 and model 2 are comprised in hierarchical model 3
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independent of the two main-effects polymorphisms. Thus,

model 3 was a hierarchical model consisting of a mix of

main effects and interaction effects. We compared model 3

with the five-loci model gained from exhaustive MDR

analysis, which was composed of EOT1-329A [ G,

EOT2 + 304C [ A, EOT2 + 447C [ T, EOT3 + 77C [
T, and EOT3 + 716A [ G. Accuracy was 0.672 and OR

3.173. However, CVC was only 5/10.

There are two primary reasons to perform separate MDR

analyses on SNPs with and without significant independent

main effects. First, an exhaustive analysis, by definition,

looks at many more SNP combinations that a targeted

approach, such as the one used here. An important concern

in any combinatorial analysis is the risk of overfitting the

data. MDR controls for overfitting in larger models through

cross validation. Larger models that overfit the data are less

likely to generalize to independent data and thus should

have a lower testing accuracy. However, cross validation

does not control over fitting within, for example, two-way

or three-way models. The more two-way models that are

exhaustively evaluated, the greater the chance of finding

something interesting by chance. We reduced the total

number of MDR evaluations by only exhaustively evalu-

ating combinations among those SNPs with independent

main effects and those without. This approach uses statis-

tical knowledge about the nature of SNP univariate effects

to reduce the total number of MDR evaluations. There are

91 possible pairwise combinations of SNPs that could be

evaluated by an exhaustive search among the 14 eotaxin

SNPs. Reducing this to 12 based on their lack of a main

effect reduced the total number of SNP pairs evaluated

from 91 to 66. If we also consider all the three- and four-

way combinations, the total number of SNP models eval-

uated by MDR drops nearly in half from 1,456 to 781.

Second, organizing the analyses according whether SNPs

have a marginal effect significantly helps with the inter-

pretation of the MDR models. The ability to disentangle

the types of effects in an interaction model significantly

helps with the understanding of that model.

To determine which genotype combinations contribute

more to subject’s status, every OR of each genotype

combination of five SNPs in model 3 was calculated with

OR-MDR (Table 3). The case that both model 1 and 2

were high-risk had a higher OR than only one was

between two (4.267 vs. 1.625 or 1.18, respectively;

Fig. 3). Of the 243 combinations, eight genotype combi-

nations showed the OR [1. The combination of C-A-CT-

AG-G (in order of EOT2 + 304C [ A, EOT2 + 1272A [
G, EOT3 + 77C [ T, EOT3 +716A [ G, and EOT3 +

1579G [ A) was the best combination, and OR was 5.5

(Table 5). We performed the covariate analysis with

GMDR. Age and gender were adjusted. The accuracy of

model 3 without covariate adjustment was similar to that

with adjustment (Table 6). But it was slightly different

from the accuracy shown in Fig. 3, because GMDR uses

score values instead of numbers of cases and controls to

evaluate classification and prediction errors (Lou et al.

2007).

Table 5 The higher-risk genotype combinations and odds ratios (OR) in model 3

EOT2 +304C [ A EOT 2 +1272A [ G EOT 3 +77C [ T EOT 3 +716A [ G EOT 3 +1579G [ A Frequency

(case:control)

OR (95% CI)

A A C A G 28:21 1.24 (0.81–2.15)

CA A CT A G 37:33 1.12 (0.8–1.74)

A A CT A G 24:7 3.71 (1.77–8.43)

CA A T A G 22:5 3.4 (1.42–9.1)

A A T A G 4:2 1.5 (0.38–8.91)

C A C AG G 3:2 3.0 (0.75–14.75)

C A CT AG G 11:2 5.5 (1.38–24.6)

CA A CT AG G 15:4 2.5 (0.94–7.88)

The combinations that OR[1 were presented among 243 combinations of five SNPs in model 3. All combinations are in the high-risk group.

Confidence interval (CI) is usual asymptotic

Table 6 Comparison between model 3 with and without adjustment for age and gender as covariates

Testing accuracy Sign test (P) CVC OR (95% CI)

Without adjustment 0.6062 10 (0.001) 10/10 2.57 (0.57–11.65)

With adjustment 0.6075 10 (0.001) 10/10 2.59 (0.55–12.18)

Age is continuous variable and gender is discrete variable

CVC cross-validation consistency, OR odds ratio, CI confidence interval
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Gene–gene interactions or epistasis can be defined bio-

logically or statistically. Biological epistasis occurs when

molecules such as deoxyribonucleic acid (DNA), RNA,

proteins, and enzymes interact at the cellular level. Many

of the important biological epistasis depends on specific

locus to locus interactions at the individual level. In con-

trast, statistical epistasis can be defined as interindividual

variation in DNA sequences detected at the population

level. Statistical epistasis has been detected as some aver-

age estimates at the population level (Moore et al. 2006;

Wolf et al. 2000). Recently, a concept of phenotypic

landscape in hyperspace has emerged. This new theory is

that the evolution of developmental interactions requires no

simplifying assumptions about the number of underlying

genetic and environmental factors. A landscape provides a

concise summary of the patterns of genetic effects, gene–

gene interactions, environmental effects, and gene–envi-

ronmental interactions that produce the relationship

between variation in underlying factors and phenotype

(Rice 2002; Wolf 2002). Evolution occurs in a multidi-

mensional genotypic space that cannot be justifiably

reduced to a one- or two-dimensional representation (Wolf

et al. 2000). Thus, analyses of gene–gene interactions are

important for genetic and epidemiological studies of

complex diseases such as asthma.

We previously reported that total IgE levels were

associated with EOT1 + 123G [ A in asthmatic subjects

(Shin et al. 2003). Here, we included both asthmatic and

normal subjects, but EOT1 + 123G [ A was not found to

be significantly associated with asthma in any epistatic

model. We therefore hypothesized that the epistatic models

reflected the effect of two or more SNPs that interacted

with each other between asthmatics and controls. There-

fore, the effect of EOT1 + 123G [ A at the level of total

IgE may be relatively weak in terms of its interactions with

other SNPs compared with its effect alone.

Most biochemical analyses are unable to evaluate more

than two factors at a time, and no biological method is

universally accepted for performing experiments with

multiple loci to reveal gene–gene interactions (Strohman

2002). Therefore, we are unable to provide biological

evidence supporting the epistatic models predicted here.

However, many studies have reported that eotaxin or Eo-

taxin genes are associated with other genes and cytokines.

For example, eotaxin-2 is involved in airway inflammation

and cooperates with interleukin-13 (IL-13) (Pompe et al.

2005). In addition, the IL-6-family cytokine oncostatin M

(OSM) causes a dose-dependent increase in eotaxin release

from murine fibroblasts (Langdon et al. 2003) and enhan-

ces IL-4 and IL-13-induced eotaxin-1 release from human

airway smooth muscle (Faffe et al. 2005). Furthermore,

interferon gamma (IFN-c) enhances eotaxin expression in

combination with tumor necrosis factor alpha (TNF-a)

mediated by a posttranscriptional mechanism (Matsukura

et al. 2003).

Another limitation of this study is lack of replication.

We did not provide the replication in an independent

population to study subjects. Therefore, it might be

required to test of usefulness of these models to other

Korean populations or other races.

These statistical interaction models are considered use-

ful for detecting groups that are genetically at high risk of

developing asthma. However, although the models can be

used to identify interactions between genetic variants that

confer a risk for asthma, this approach cannot be translated

into specific prevention and treatment strategies without

interpreting the results under the biological context of

asthma. Thus, further biological studies are needed before

we can apply these models.

In conclusion, we developed three epistatic models for

asthma by examining gene–gene interactions among

polymorphisms within the Eotaxin gene family using a

multistep approach with the MDR method. These models

suggest that interactions within the Eotaxin gene family

likely contribute to the development of asthma. Although

the models are limited to determining statistical interac-

tions within a population, they may be useful for

identifying groups at high risk of developing asthma.
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