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Abstract The multiple comparison problem arises in

population-based studies when the association between

phenotypes and multilocus genotypes is examined.

Although Bonferroni’s correction is often used to cope with

such a problem, it may yield too conservative conclusions

because all of the tests are assumed to be independent. We

have developed new correction algorithms for the test of

independence between phenotypes and multilocus geno-

types at loci in linkage disequilibrium. In one of the

algorithms, the exact type I error rate is calculated for the

independency test. We found that such exact probabilities

can be calculated using a 128 CPU PC cluster if the

numbers of cases and controls are not more than 50. As an

alternative method, we developed algorithms to calculate

asymptotically the type I error rates using a Markov-chain

Monte Carlo sampler that provided a good approximation

to values calculated by the exact method. When the new

algorithms were applied to both simulation and real data,

the real overall type I error rates for the loci in linkage

disequilibrium were from one-third to half as high as those

obtained by Bonferroni’s correction. These algorithms are

likely to be useful for multilocus association studies for

data obtained by case–control and cohort studies.
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Introduction

Various genotyping technologies targeted at single-nucle-

otide polymorphism (SNP) have been introduced. Thus, the

Taqman technique (Rickert et al. 2004), the Invader

method (Ohnishi et al. 2001), matrix-assisted laser

desorption/ionization (MALDI) time-of-flight (TOF) mass

spectrometry (MS) (Jurinke et al. 2004), BeadArray tech-

nology (Oliphant et al. 2002), and oligonucleotide arrays

(Cutler et al. 2001) have been very efficient for high-

throughput genotyping of a large number of single-nucle-

otide polymorphism (SNP) loci at reasonable costs. Such

high throughput, low-cost, and accurate technologies have

made genome-wide association studies feasible. For

example, over 50,000 SNPs have been selected from the
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entire human genome and used for the identification of the

genes related to diseases such as cardiac infarction (Ozaki

et al. 2002, 2004), rheumatoid arthritis (Suzuki et al. 2003;

Tokuhiro et al. 2003), osteoarthritis (Kizawa et al. 2005),

and diabetes mellitus (Kanazawa et al. 2004).

The analyses of these data involve statistical tests on

hundreds of thousands of SNP loci in the genome. One of

the crucial problems in such tests is correction for multiple

comparisons (Cardon and Bell 2001; Lander and Kruglyak

1995; Seaman and Muller-Myhsok 2005; Thakkinstian

et al. 2004). Thus, even though the type I error rate may be

0.05 for a SNP, the global type I error rate for all SNPs is

much higher. Bonferroni’s correction is commonly used for

the multiple-comparison problem. However, this method is

known to be too conservative and may drop truly signifi-

cant SNPs (type II error). In Bonferroni’s correction, all of

the multiple tests are assumed to be independent. In the

case of SNP-based association studies, however, this

assumption does not hold. Thus, several SNP loci are likely

to be in linkage disequilibrium, and association tests using

SNPs that are in linkage disequilibrium with each other are

not independent. Thus, if one of the multiple SNPs that are

in linkage disequilibrium with each other is judged to be

significantly associated with a disease by a statistical test,

then the other SNPs are more likely to be judged to be

significant by the same test, compared to independent

SNPs, regardless of whether the association is true or

merely sample-dependent. This problem arises not only in

genome-wide association studies, but also in various

association tests in which multiple linked loci are tested.

Several approaches have been proposed for the multiple

comparison problem in association studies based on mul-

tilocus genotypes. Sabatti et al. (2003) applied the false

discovery rate (FDR) proposed by Benjamini and Hoch-

berg (1995), and succeeded in increasing the power.

Cheverud (2001) introduced a method for the correction of

multiple comparisons in genome scans through the use of

the variance of the eigenvalues of the observed marker

correlation matrix. Subsequently, Nyholt (2004) proposed a

simple correction for multiple testing on the basis of the

spectral decomposition of matrices of pairwise linkage

disequilibrium between SNPs. However, no standard cor-

rection method has been established for the multiple

comparisons for association studies in such a context.

We have developed new algorithms to correct for the

multiple comparisons at multiple SNP loci in linkage dis-

equilibrium. In the present study, we calculated the exact

probability of the type I error under the condition that the

haplotype frequencies in the population are known. We

assumed Hardy–Weinberg’s equilibrium at the haplotype

level, and either the number of alleles or the number of

genotypes was assumed to follow a multinomial distribu-

tion. We found that the exact probability of the type I error

can be calculated for a case–control study in which the test

of independence between a phenotype and the genetic

information is performed for all linked SNP loci within a

chromosomal region. Since the new method incorporates

the inheritance model, the inheritance mode could be

incorporated into the calculation.

However, the calculation of the exact probability was

possible only when the numbers of the cases and controls

were small (n \ 50), even for the case in which a high-

speed machine was used. We devised a Markov-chain

Monte Carlo (MCMC) algorithm to calculate asymptoti-

cally the probability of the type I error for the above test.

We also devised an algorithm to calculate the exact prob-

ability of the type I error under the assumption of a

hypergeometric distribution for either the number of alleles

or the number of individuals. Although the exact proba-

bilities of the type I error under the assumption of the

hypergeometric distribution were difficult to calculate, a

MCMC algorithm was developed to calculate such values

asymptotically.

Methods

Notation

In the present study, a haplotype denotes a list of alleles

(one allele per locus) at multiple linked polymorphic loci

(only biallelic loci are considered in the present manu-

script), and a haplotype copy denotes a list of alleles

possessed in a gamete. Therefore, if a subject is homozy-

gous for a haplotype, then the subject possesses a

haplotype, but two haplotype copies. A combinational

diplotype configuration is defined as a combination of two

(unordered) haplotype copies possessed by an individual,

and an ordered diplotype configuration denotes an ordered

list of two haplotype copies arranged according to the

derivation (father and mother) (Shibata et al. 2004).

Calculation of type I error rate in allele frequency mode

when haplotype frequencies are known

Calculation of exact probability under the assumption

of a multinomial distribution

Let l denote the number of linked SNP loci and L the

number of possible haplotypes in the population. The

number of possible haplotypes will be L = 2l. Imagine that

the population frequencies of all L haplotypes are given,

and the frequency of the ith haplotype is hi (i = 1, 2,…, L),

where
PL

i¼1 hi ¼ 1: Let n1 and n2 denote the sizes of the

case and the control groups, respectively, that were inde-

pendently and randomly drawn from the population. We
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test whether the allele frequency in each SNP locus differs

between the case and the control groups. Let us next

consider an experiment in which 2n1 and 2n2 haplotype

copies are drawn as the case and control groups, respec-

tively, from the population. For the test of independence

between the phenotype and the allele frequency, the null

hypothesis (H0) is defined such that there is no allele fre-

quency difference between the case and control groups.

Suppose that the numbers of copies of the ith haplotype

from the first (case) and second (control) groups are

random variables X1i and X2i, respectively, where
PL

i¼1 X1i ¼ 2n1 and
PL

i¼1 X2i ¼ 2n2: Then, because the

two samplings are independent, both X1i and X2i are

binomially distributed, and the joint distributions of X11,

X12,…, X1L and X21, X22,…, X2L are multinomial. There-

fore, the probabilities can be given by

P X11 ¼ x11;X12 ¼ x12; . . .;X1L ¼ x1Lð Þ

¼ ð2n1Þ!
x11!x12!. . .x1L!

hx11

1 hx12

2 . . .hx1L
L ; ð1Þ

and

P X21 ¼ x21;X22 ¼ x22; . . .;X2L ¼ x2Lð Þ

¼ ð2n2Þ!
x21!x22!. . .x2L!

hx21

1 hx22

2 . . .hx2L
L : ð2Þ

Moreover, the joint distribution of X11, X12,…, X1L and

X21, X22,…, X2L is described as a product of Eqs. (1) and

(2):

P X11;X12; . . .;X1L;X21;X22; . . .;X2Lð Þ

¼ ð2n1Þ!ð2n2Þ!
QL

i¼1

Q2
j¼1 xji!

YL

i¼1

Y2

j¼1

h
xji

i : ð3Þ

A matrix, the elements of which are given by aik (i = 1,

2,…,L; k = 1, 2,…, l), is defined as aik = 1 if the kth locus

of the ith haplotype has a minor allele and as aik = 0 if the

kth locus of the ith haplotype has a major allele. Then, a

minor allele frequency (MAF) pk of the kth locus is given

by a function of the haplotype frequencies, as follows:

pk ¼
XL

i¼1

aikhi

The numbers of minor alleles at the kth locus for the first

and second groups, Y1k and Y2k, are random variables, and

are described as

Yjk ¼
XL

i¼1

aikXji: ð4Þ

One result of this experiment is represented, with

respect to the kth locus, by a 2 9 2 contingency table

(Table 1), and a test of the independence in the allele

frequency mode is performed using this table. A variable Z

is defined such that, after the tests for l loci (k = 1, 2,…, l),

Z = 1 if the test is significant at any locus, otherwise Z = 0.

Then, Z is a function of Yjk, which is a function of Xji, as

shown by Eq. (4), and is therefore a random variable.

Therefore, Z can be described as

Z ¼ f X11;X12; . . .;X1L�1;X21;X22; . . .;X2;L�1

� �
;

and

P f X11;X12; . . .;X1L�1;X21;X22; . . .;X2;L�1

� �
¼ 1

� �
ð5Þ

defines the probability of block type I error. Here, the block

type I error is defined as an event in which a type I error

occurs in at least one of the tests. Since the distribution of

{Xji} is given by Eq. (3), Eq. (5) can be obtained by

enumerating all possible values of {Xji} and calculating

f(X11, X12,…, X1L-1, X21, X22,…, X2,L-1), as follows:

P f X11;X12; . . .;X1L�1;X21;X22; . . .;X2;L�1

� �
¼ 1

� �

¼
X2n1

x11¼0

X2n1�x11

x12¼0

X2n1�x11�x12

x13¼0

� � �
X2n1�x11�x12�����x1;L�2

x1;L�1¼0

X2n2

x21¼0

X2n2�x21

x22¼0

X2n2�x21�x22

x23¼0

� � �
X2n2�x21�x22�����x2;L�2

x2;L�1¼0

f x11; x12; . . .; x1L�1; x21; x22; . . .; x2;L�1

� �

ð2n1Þ!ð2n2Þ!
QL

i¼1

Q2
j¼1 xji!

YL

i¼1

Y2

j¼1

h
xji

i ;

ð6Þ

where x1L ¼ 2n1 �
PL�1

i¼1 x1i and x2L ¼ 2n2 �
PL�1

i¼1 x2i:

Calculation of type I error rate under the assumption

of a multinomial distribution by MCMC

The time required to calculate formula (6) is enormous,

even with the assistance of computers. The possible number

of different {xji} in the right-hand side of Eq. (6) is given as

1

ðL� 1Þ! 2n1 þ 1ð Þ 2n1 þ 2ð Þ � � � 2n1 þ L� 1ð Þ

� 1

ðL� 1Þ! 2n2 þ 1ð Þ 2n2 þ 2ð Þ � � � 2n2 þ L� 1ð Þ ð7Þ

Table 1 Contingency table I for the allele frequency mode

Group Number of minor allele

copies

Number of major allele

copies

1 y1k 2n1 - y1k

2 y2k 2n2 - y2k

Total yk 2n1 + 2n2 - yk

n1 and n2 denote the number of subjects in groups 1 and 2, respec-

tively. yjk denotes the observed value of a random variable Yjk,

denoting the number of minor allele copies at the kth locus in group j.
k denotes the order of the locus at which the test of independence is

performed. The number in each cell of the 2 9 2 contingency table

indicates the observed number of allele copies
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and so increases very rapidly with respect to n1, n2, and L.

When L = 10, n1 = 100 and n2 = 100, Eq. (7) exceeds

1030. We then attempted to calculate the approximate

values of Eq. (6) with given n1, n2, and L using the MCMC

method. We also developed an approximate algorithm to

calculate formula (6) (see Appendix).

First, we consider a case in which the population hap-

lotype frequencies are given. Thus, we used the MCMC

method based on the Metropolis–Hastings algorithm

(Sorensen and Gianola 2002) to generate {xji} assuming

that each of {X1i} and {X2i} follows the same multinomial

distribution with the frequency parameters of the given

population haplotype frequencies. A sample from the

MCMC contains the values of x1i, i = 1, 2,…, L and x2i,

i = 1, 2,…, L, representing the numbers of haplotypes in

the case and control groups. The number of minor alleles in

each group at each locus is given by Eq. (4). Using the

function f, we can test whether the independence test at

least at one of the l loci is significant. If the samples of

{X1i} and {X2i} are generated appropriately, then the pro-

portion of the samples that are shown to be significant by

the above test can be calculated.

Thus, the following MCMC sampler was produced:

1. The state space is defined by a set of all the different

{xji}, xji C 0, j = 1, 2; i = 1, 2,…, L.

2. As an initial state, arbitrary integer values of xji

(j = 1, 2; i = 1, 2,…,L) are given so thatPL
i¼1 xji ¼ 2nj; xij� 0:

3. j = 1 or j = 2 is selected in equal probability.

4. An integer value u is selected in equal probability

from the integers from 1 to L.

5. If xju = 0, then the state is kept invariant, the step is

advanced, a test of significance is performed as in

(10) and the process returns to (3).

6. If xju [ 0, an integer value v other than u

(1 B v B L) is selected, and new candidates x�ju ¼
xju � 1 and x�jv ¼ xjv þ 1 are calculated.

7. Then, the following value is calculated,

c ¼ hvxju!xjv!

hux�ju!x�jv!
¼ hvxju

huðxjv þ 1Þ

8. If c C 1, then {xji} is updated by substituting x�ju for

xju, and substituting x�jv for xjv, the step is advanced, a

significance test is performed as described in (10) and

the process then returns to (3).

9. If c \ 1, then {xji} is updated by substituting x�ju for

xju, and substituting x�jv for xjv with probability c, else

the state is kept invariant (probability 1 - c), the step

is advanced, a significance test is performed as

described in (10) and the process then returns to (3).

10. A test of independence between the phenotype and

alleles at each of the l loci is performed using a

contingency table (Table 1) obtained from the values

of xji (j = 1, 2; i = 1, 2,…,L). Thus, to construct a

contingency table for the kth locus (k = 1, 2,…, l),

yjk ¼
PL

i¼1 aikxji is calculated for the groups j = 1

and j = 2 according to Eq. (4). If a significant result

is obtained by the test for at least one of the l loci,

then the block test is considered to be significant.

11. After the MCMC has been run in a sufficient number

of steps, the proportion of the steps judged to be

significant is considered to be the empirical type I

error rate for the block test.

Calculation of type I error rate for the test

in dominant, recessive, or genotype mode

Calculation of exact probability for the test in dominant,

recessive, or genotype mode under the assumption

of a multinomial distribution

In order to calculate the type I error rate for the test in

dominant or recessive mode, the concept of diplotype

configuration is necessary. In the present study, the test in

the dominant mode is defined as the test of the difference in

the proportion of the individuals with the minor allele

between the two groups. On the other hand, the test in the

recessive model refers to the test of the difference in the

proportion of the individuals with the major allele. Note

that the latter test is equivalent to the test of the difference

in the proportion of the individuals with the minor allele as

homozygotes.

In the present study, the ordered diplotype configuration

denotes the ordered combination of two haplotype copies

in a subject. Let dij denote an ordered diplotype configu-

ration consisting of the ith and jth (in this order)

haplotypes. Since the total number of haplotypes is L, the

total number of ordered diplotype configurations is L2. If

the Hardy–Weinberg’s equilibrium holds at the haplotype

level, then the frequency of dij in the population is equal to

hihj. For the test of the difference in the dominant or

recessive mode, subjects rather than alleles should be

considered. Thus, the frequencies of the subjects with a

certain category of genotypes are compared between the

cases and controls. The sample space in this case, there-

fore, is slightly different. To construct the sample space, an

experiment is defined as drawing at random n1 and n2

ordered diplotype configurations for the first (case) and the

second (control) groups, respectively. Each ordered diplo-

type configuration corresponds to a subject. In this sample

space, the total number of individuals having dij in the kth

(k = 1, 2) group is denoted by a random variable Xkij that

follows a binomial distribution B(nk, hihj). For a specific k,

the joint distribution of all Xkij (i = 1, 2,…,L; j = 1,
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2,…,L), that is, the distribution of each of the matrices

{X1ij} and {X2ij} is multinomial. The probability for the kth

group is given by

P Xkij

� �
¼ xkij

� �� �
¼ nk!
QL

i¼1

QL
j¼1 xkij!

YL

i¼1

YL

j¼1

hihj

� �xkij

The joint distribution of Xkij for all k, i and j is given by

P X1ij

� �
¼ x1ij

� �
; X2ij

� �
¼ x2ij

� �� �

¼ nk!
Q2

k¼1

QL
i¼1

QL
j¼1 xkji!

Y2

k¼1

YL

i¼1

YL

j¼1

hihj

� �xkji :

For each locus q, a contingency table is constructed

using aiq and {Xkij} for the test of independence in the

recessive mode as shown in Table 2. Here, aiq (i = 1,

2,…,L; q = 1, 2,…, l), is defined so that aiq = 1 if the

qth locus of the ith haplotype has a minor allele and

aiq = 0 otherwise. Note that aiqajq in Table 2 is equal to

1 only when both of the alleles at locus q in the subject

with the ordered diplotype configuration dij are minor

alleles. In addition, note that the mode (recessive or

dominant) depends on which allele (minor or major

allele) we consider, and, in the present study, we consider

the minor allele in all cases. Next, the function f({Xkij},

k = 1,2; i = 1, 2, …, L; j = 1, 2, …, L) is defined such

that, based on an independence test at each qth locus

(q = 1, 2,…, l) using the above contingency table, f = 1

if significance is found at any locus, otherwise f = 0.

Then, Z = f({Xkij}, k = 1,2; i = 1, 2, …, L; j = 1, 2, …,

L) is a random variable, and the type I error rate

P(Z = 1) is obtained by

PðZ ¼ 1Þ ¼
Xs111

x111¼0

Xs112

x112¼0

Xs113

x113¼0

� � �
Xs11L

x11L¼0

Xs121

x121¼0

Xs122

x122¼0

Xs123

x123¼0

� � �
Xs12L

x12L¼0

� � �
Xs1L1

x1L1¼0

Xs1L2

x1L2¼0

Xs1L3

x1L3¼0

� � �
Xs1L;L�1

x1L;L�1¼0

Xs211

x211¼0

Xs212

x212¼0

Xs213

x213¼0

� � �
Xs21L

x21L¼0

Xs221

x221¼0

Xs222

x222¼0

Xs223

x223¼0

� � �
Xs22L

x22L¼0

� � �
Xs2L1

x2L1¼0

Xs2L2

x2L2¼0

Xs2L3

x2L3¼0

� � �
Xs2L;L�1

x2L;L�1¼0

Q2
k¼1 f xkij

� �� �
nk!

Q2
k¼1

QL
i¼1

QL
j¼1 xkji!

Y2

k¼1

YL

i¼1

YL

j¼1

hihj

� �xkji ;

ð8Þ

where k = 1, 2; i = 1, 2,…,L; j = 1, 2,…,L, xKLL ¼
nk �

PL
i¼1

PL�1
j¼1 xkij �

PL�1
j¼1 xkiL; and skij are defined

as sk11 ¼ nk; sk12 ¼ sk11 � xk11; . . .; sk1L ¼ sk1;L�1 � xk1;L�1;

sk21 ¼ sk1L � xk1L; sk22 ¼ sk21 � xk21; . . .; sk2L ¼ sk2;L�1�
xk2;L�1; . . .; skL1 ¼ sk;L�1;L � xk;L�1;L; skL2 ¼ skL1 � xkL1;

sk;L;L�1 ¼ sk;L;L�2 � xkL;L�2:

On the other hand, when testing in the dominant mode,

a contingency table is given by Table 3, and the inde-

pendence is tested at each q = 1, 2,…, l locus, and

f({xkij}) = 1 if significance is found at any locus,

otherwise f({xkij}) = 0. Note that, in this case, aiq þ ajq �
aiqajq is equal to 1 if either of the two alleles at locus q

for ordered diplotype configuration dij has the minor

allele.

The contingency table for the test of independence in the

allele frequency mode can be constructed using {xkij} and

{aiq}. Thus, Table 4 gives the contingency table for the test

of independence in the allele frequency mode. Note that

Table 2 Contingency table for the recessive mode

Group Number of subjects

without major allele

Number of subjects

with major allele

1
PL

i¼1

PL
j¼1 aiqajqx1ij n1 �

PL
i¼1

PL
j¼1 aiqajqx1ij

2
PL

i¼1

PL
j¼1 aiqajqx2ij n2 �

PL
i¼1

PL
j¼1 aiqajqx2ij

n1 and n2 denote the number of subjects in groups 1 and 2, respec-

tively. L and l denote the total possible numbers of haplotypes and

loci, respectively. ars (r = 1, 2, …, L; s = 1, 2, …, l), is defined such

that ars = 1 if the sth locus of the rth haplotype has the minor allele

and ars = 0 if the sth locus of the rth haplotype has the major allele.

xkij denotes the observed number of subjects with the ordered diplo-

type configuration with the ith and jth (in this order) haplotypes in

group k. q denotes the order of the locus at which the test of inde-

pendence is performed

Table 3 Contingency table for the dominant mode

Group Number of subjects with minor allele Number of subjects without minor allele

1
PL

i¼1

PL
j¼1 ðaiq þ ajq � aiqajqÞx1ij n1 �

PL
i¼1

PL
j¼1 ðaiq þ ajq � aiqajqÞx1ij

2
PL

i¼1

PL
j¼1 ðaiq þ ajq � aiqajqÞx2ij n2 �

PL
i¼1

PL
j¼1 ðaiq þ ajq � aiqajqÞx2ij

The notations in this table are identical to those described for Table 2
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aiq + ajq is equal to 0, 1 and 2 when the qth locus in the

ordered diplotype configuration dij contains 0, 1 and 2,

respectively, copies of the minor allele.

Due to its generality, the present sample space is more

useful than the sample space defined for the test of inde-

pendence only in the allele frequency mode. The multiple

comparison problem occurs not only due to the test at

multiple loci, but also due to the test by multiple modes.

Thus, researchers often test the independence in the allele

frequency, dominant and recessive modes at each locus,

and the test is considered to be significant if any of the

tests in any of the modes is found to be significant. Since

the results of the tests in different modes are not inde-

pendent of each other, the application of Bonferroni’s

correction leads to conclusions that are too conservative.

Using {xkij} and {aiq}, we can calculate the exact type I

error rate when the test of independence is performed at

multiple linked loci in three different modes. Thus, using

{xkij} and{aiq}, the test of independence is performed for

each qth locus using Tables 2, 3 and 4, and the function f

is defined such that f({xkij}) is equal to 1 if the test at any

locus in any mode is significant, otherwise f({xkij}) = 0.

We can also perform the test of independence in the

genotype mode. Thus, Table 5 is used as a contingency

table for genotype mode for each locus q. If the test of

independence is significant at any locus, f({xkij}) = 1,

otherwise f({xkij}) = 0. The exact calculation of the

probability of the block type I error is performed using

Eq. (8).

Calculation of type I error rate for the test in the dominant,

recessive, or genotype mode by MCMC under the

assumption of a multinomial distribution

The algorithm of the MCMC method for calculating the

approximate probability of the block type I error in

dominant, recessive, and genotype modes consists of gen-

erating a sample of {Xkij} (k denotes a group, and i and j

denote the orders of the haplotypes) so that each {X1ij} and

{X2ij} follows a multinomial distribution using the

Metropolis–Hastings method. In each step, a test of inde-

pendence was performed for the sample at each locus in

any of the three modes. The empirical type I error rate was

defined as the proportion of steps in which the test of

independence at any of the loci exhibited significance

among selected steps. The processes of the procedure are as

follows:

1. The state space of this Markov-chain is the set of all

different tensors {xkij}, k = 1, 2; i = 1, 2,…,L; j = 1,

2,…,L, and xkij C 0 and
PL

i¼1

PL
j¼1 xkij ¼ nk for all k.

2. As an initial state, arbitrary integer values of xkij

(k = 1, 2; i = 1, 2,…,L; j = 1, 2,…,L) are given

such that
PL

i¼1

PL
j¼1 xkij ¼ nk;and xkij C 0 0 for all k,

i, j.
3. k = 1 or k = 2 is selected at random.

4. Two ordered integers (u, v) (1 B u B L, 1 B v B L)

are selected at random.

5. If xkuv = 0, then the state is kept invariant, the step is

advanced, the test of independence is performed as

described in (10), and the process returns to (3).

6. If xkuv [ 0, additional two ordered integers (w, s),

which are different from (u, v) (1 B w B L,

1 B s B L), are selected.

7. New candidates x�kuv ¼ xkuv � 1 and x�kuv ¼ xkuv þ 1

are calculated followed by the calculation of

c ¼ hwhsxkuv!xkws!
huhvx�

kuv
!x�

kws
! ¼

hwhsxkuv

huhv xkwsþ1ð Þ
8. If c C 1, then x�kuv and x�kws are substituted for xkuv and

xkws, respectively, the step is advanced, the test of

independence is performed as in described in (10)

and the process returns to (3).

9. If c \ 1, then xkuv
* and xkws

* are substituted for xkuv and

xkws, respectively, with probability c, else (probabil-

ity 1 - c) the state is kept invariant. The step is

advanced, the test of independence is performed as

described in (10) and the process returns to (3).

10. A test of independence between the phenotype and

genotypes at each of the L loci was performed using

any one of four contingency tables (Tables 2, 3, 4, 5)

obtained from the values of xkij (k = 1, 2; i = 1,

Table 4 Contingency table II for the allele frequency mode

Group Number of minor alleles Number of major alleles

1
PL

i¼1

PL
j¼1 ðaiq þ ajqÞx1ij 2n1 �

PL
i¼1

PL
j¼1 ðaiq þ ajqÞx1ij

2
PL

i¼1

PL
j¼1 ðaiq þ ajqÞx2ij 2n2 �

PL
i¼1

PL
j¼1 ðaiq þ ajqÞx2ij

The notations in this table are identical to those described for Table 2

Table 5 Contingency table for the genotype mode

Genotypea Group 1 Group 2

m/m
PL

i¼1

PL
j¼1 aiqajqx1ij

PL
i¼1

PL
j¼1 aiqajqx2ij

m/M Ab Bb

M/M
PL

i¼1

PL
j¼1 ð1� aiqÞð1� ajqÞx1ij

PL
i¼1

PL
j¼1 ð1� aiqÞð1� ajqÞx2ij

a m minor allele, M major allele bA ¼ n1 �
PL

i¼1

PL
j¼1 aiqajqx1ij �

PL
i¼1

PL
j¼1 1� aiq

� �
1� ajq

� �
x1ij;B ¼ n2 �

PL
i¼1

PL
j¼1 aiqajqx2ij �PL

i¼1

PL
j¼1 1� aiq

� �
1� ajq

� �
x2ij Other notations in this table are identical to those described for Table 2
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2,…,L; j = 1, 2,…,L). If a significant result is

obtained by the test for at least one locus, then the

block test in that step is considered to be significant.

11. After the MCMC has been run in a sufficient number

of steps, the proportion of the steps judged to be

significant is considered to be the empirical type I

error rate for the block test.

12. Although the above procedure describes the test of

independence in any of the three modes (dominant,

recessive, and genotype modes), the method can

easily be extended to the test of independence in all

three modes. Thus, as described in (10), the test of

independence is performed using three different

contingency tables at each locus, and the block test

is considered to be significant if the test at any locus

in any mode is found to be significant.

Calculation of type I error rate in the allele frequency

mode when haplotype frequencies are unknown

In general, true haplotype frequencies are unknown. In this

case, the above methods cannot be used because the hap-

lotype frequencies {hi} are included in the probability

functions for the multinomial distributions. If the haplotype

frequencies are unknown, we may consider the probabili-

ties of block type I errors conditional on the observed data.

Thus, we may consider the probabilities of block type I

errors conditional on the observed marginal numbers of

either haplotypes or combinational diplotype configura-

tions. The difference between the combinational and

ordered diplotype configurations is that, in the combina-

tional diplotype configuration dij = dji, whereas in the

ordered diplotype configuration dij = dji. Note that

observing the ordered diplotype configurations is usually

not possible unless family data are available.

Suppose that the numbers of the ith haplotype from the

first (case) and second (control) groups are random variables

X1i and X2i, respectively, where
PL

i¼1 X1i ¼ 2n1;
PL

i¼1 X2i ¼
2n2 and x1i and x2i are observed values. We consider

the distribution of X1i and X2i, conditional on and

X1i + X2i = x1i + x2i. Then, the joint distribution of the

random variables X1i and X2i is known to be multivariate

hypergeometric with the following probability function:

P X1if g ¼ x1if g; X2if g ¼ x2if g
�
�
�
�

X2

j¼1
Xji

n o
¼ xif g

� 	

¼ ð2n1Þ!ð2n2Þ!
QL

i¼1 xi!

ð2n1 þ 2n2Þ!
Q2

j¼1

QL
i¼1 xji!

;

where xi = x1i + x2i.

The number of the minor alleles at the kth locus for the

jth group, Yjk, can be calculated using Xji and aik, as defined

previously in Eq. (4). Using Table 1 as the contingency

table, we can perform the test of independence between

alleles and the phenotype at each of the L loci, and, if a

significant result is obtained from at least one of the loci,

then the block test is judged to be significant.

Calculation of type I error rate in the dominant,

recessive, or genotype mode by MCMC when

haplotype frequencies are unknown

For the calculation of the type I error rate in dominant,

recessive, or genotype mode, when haplotype frequencies

are not available, new random variables Ykij, (k = 1, 2;

i = 1, 2,…,L; j B i) are defined as follows:

Ykij ¼
Xkij þ Xkji if i 6¼ j;

Xkij if i ¼ j;




Here, Ykij denotes the number of the subjects with the

combinational diplotype configuration with the ith and jth

haplotypes in the kth group, whereas Xkij denotes the

number of subjects with the ordered diplotype

configuration. We then consider the joint distribution of

{Ykij} under the constraint of
P2

k¼1 Ykij ¼ yij (i C j), where

Yij ¼
P2

k¼1 Ykij denotes the observed value of Y1ij + Y2ij.

Under the above condition, the random variable tensor

{Ykij}, k = 1, 2; i = 1, 2,…,L; 1 B j B i follows the mul-

tivariate hypergeometric distribution with the probability

function

P Ykij

� �
¼ ykij

� �
�
�
�
�

X2

k¼1

Ykij

( )

yij

� �
 !

¼
n1!n2!

QL
i¼1

Qi
j¼1 yij!

n1 þ n2ð Þ!
Q2

k¼1

QL
i¼1

Qi
j¼1 ykij!

;

where nk ¼
PL

i¼1

Pi
j¼1 Ykij denotes the number of subjects

in the kth group. The method used to calculate the exact

type I error rates under the assumption of a multivariate

hypergeometric distribution is equivalent to the method

described under the assumption of a multinomial distribu-

tion, as stated previously herein. Next, we describe the

method used to calculate the asymptotic type I error rates

by the MCMC method, rather than by the exact method, in

order to avoid redundancy. The processes of the procedure

are as follows:

1. The state space of this Markov-chain is the set of all

different {Ykij}, k = 1, 2; i = 1, 2,…,L; 1 B j B i

under the constraints of
P2

k¼1 ykij ¼ yij for any i and

j, and
PL

i¼1

Pi

j¼1

ykij ¼ nk for any k, where yij, i = 1,

2,…,L; 1 B j B i are the observed (given) fixed

nonnegative integer values.

2. As an initial state, arbitrary integer values of ykij

(k = 1, 2; i = 1, 2,…,L; 1 B j B i) are given under
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the constraints of
P2

k¼1 ykij ¼ yij for any i and j, and
PL

i¼1

Pi
j¼1 ykij ¼ nk for any k.

3. k = 1 or k = 2 is selected at random. Let k0 = 1 if

k = 2, and k0 = 2 if k = 1.

4. Two ordered integers (u, v) (1 B u B L, 1 B v B u)

are selected at random.

5. If ykuv = 0, then the state is kept invariant, the step is

advanced, the test of independence is performed as

described in (10), and the process returns to (3).

6. If ykuv [ 0, then two additional ordered integers (w,

s) that are different from (u, v) (1 B w B L,

1 B s B w) are selected. If yk0ws = 0, then the state

is kept invariant, the step is advanced, the test of

independence is performed as described in (10), and

the process returns to (3).

7. New candidates ykuv
* = ykuv - 1, ykws

* = ykws + 1,

yk0uv
* = yk0uv + 1, and yk0ws

* = yk0ws - 1 are calcu-

lated, and the following calculation is performed:

c ¼ ykuv!ykws!yk0uv!yk0ws!
y�

kuv
!y�

kws
!y�

k0uv
!y�

k0ws
! ¼

ykuvyk0ws

ðyk0uvþ1Þðykwsþ1Þ :

8. If c C 1, then ykuv
* , ykws

* , yk0uv
* , and yk0ws

* are substituted

for ykuv, ykws, yk0uv, and yk0ws, respectively, the step is

advanced, the test of independence is performed as

described in (10) and the process returns to (3).

9. If c \ 1, then ykuv
* , ykws

* , yk0uv
* , and yk0ws

* are substituted

for ykuv, ykws, yk0uv, and yk0ws, respectively, with

probability c, else (probability 1 - c) the state is kept

invariant, the step is advanced, the test of indepen-

dence is performed as described in (10), and the

process returns to (3).

10. A test of independence between the phenotype and

genotypes at each of the L loci was performed using

any of the three contingency tables, depending on the

mode of test. Thus, for the test in the recessive mode,

Table 2 is used, whereas for the dominant mode,

Table 3 is used, after substituting y1ij and y2ij for x1ij

and x2ij, respectively. For the tests in the allele

frequency mode and the genotype mode, Tables 4

and 5 are used, respectively, after substituting y1ij and

y2ij for x1ij and x2ij, respectively. If a significant result

is obtained by the test for at least one locus, then the

block test in that step is considered to be significant.

11. After the MCMC has been run in a sufficient number

of steps, the proportion of the steps judged to be

significant is considered to be the empirical type I

error rate for the block test.

12. Although the above procedure describes the test of

independence in any of the three modes (dominant,

recessive, and genotype modes), the method can

easily be extended to the test in all three modes. Thus,

as described in (10), the test of independence is

performed using three different contingency tables at

each locus, and the block test is considered to be

significant if the test at any locus in any mode is

found to be significant.

Method for calculating the appropriate significance

level at each locus in order to achieve a desirable block

significance level

In the above-mentioned methods, the probability of global

type I error given the significance level (type I error rate) at

each SNP locus is calculated. However, in several cases,

the appropriate significance level must be calculated at

each locus in order to achieve a desirable global signifi-

cance level (e.g., P = 0.05). This is achieved by the

following procedure:

1. The significance level for the test at each SNP locus is

increased, for example, from Plocus = 0.01 to Plo-

cus = 0.05 by an increment of 0.005, and the global

type I error rate Pblock is calculated at each Plocus value

using either the exact method or the MCMC method.

2. Since SNPs of different haplotype blocks are at linkage

equilibrium, the global type I error Pglobal is obtained

from Pblock of all haplotype blocks by using Bonfer-

roni’s correction. Then, the appropriate Plocus value is

calculated in order to achieve the desired Pglobal value.

Results

Calculation of corrected block type I error rates using

simulated data

Calculation by the exact method is expected to take an

enormous amount of time, even when the numbers of

subjects in the groups are rather small and the test is per-

formed in the allele frequency mode. For example, when

the numbers of subjects in each of the two groups are

n1 = n2 = 15, the number of different values of {xji} in

Eq. (6) increases with increasing numbers of haplotypes L.

Thus, when L = 2, 3, 4, and 5, the numbers of different

{xji} in Eq. (6) will be 961, 246,016, 29,767,936, and

2,150,733,376, respectively.

First, we used simulated data for the calculation of block

type I error rates. The data for nine linked SNP loci were

considered. Thus, the possible number of haplotypes is

L = 29 = 512. However, we assumed that only five hapl-

otypes, ATAATTTAC, ACGGCCGGT, GTAATTTAT,

ATAATTTAT, and GTAATTTAC, are present in the

population in the frequencies of 0.5252, 0.1902, 0.1776,

0.0420, and 0.0650, respectively. The frequencies of the

other 507 haplotypes were assumed to be zero. This is often

the case for the real data. Thus, in this case, the real L is
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512, but the effective L is 5. Even if n1 = n2 = 50 and

L = 5, approximately 4 days are required to calculate the

exact probability with the allele frequency model by a

parallel computation with 128 CPU PC cluster (Dell

PowerEdge 1750, CPU Intel Xeon 3.06 GHz) (Fig. 1).

Therefore, the calculation of the exact probabilities for

actual study designs is not realistic. The time required for

the MCMC method is much shorter than that for the exact

method. However, whether the MCMC method gives

acceptable approximations under real conditions has yet to

be clarified. We therefore compared the block type I error

rates calculated by the exact method and the MCMC

method.

Figure 2 shows an example of such a comparison, in

which the test was in the allele frequency mode. The sig-

nificance level for each locus was P = 0.01, and the

numbers of subjects in the two groups were varied from 1

to 50. Figure 2 clearly demonstrates that the type I error

rates calculated by the MCMC method are almost identical

to those calculated by the exact method as long as the

number of subjects in each group is not larger than 50.

When n1 = n2 [ 16, the block type I error rates corrected

by both the exact method and the MCMC method were

found to be between 0.025 and 0.03 (Fig. 2). Because the

number of SNPs in this case is nine, Bonferroni’s correc-

tion yields a block type I error rate of P = 0.09 at any

number of subjects (Fig. 2). Thus, in this particular situa-

tion, the proposed method was approximately one-third as

conservative as Bonferroni correction.

Figure 2 also shows the block type I error rates calcu-

lated assuming a hypergeometric distribution for the test in

the allele frequency mode. The calculation by this method

appears to be unstable for small sample sizes. This is

probably because the number of haplotypes in each group

does not accurately reflect the population frequency. Since

the samples were made by drawing haplotypes from the

population, the proportions of the haplotypes should be

unstable when the sample size is small.

We then examined whether the MCMC method gives

results in accord with those generated by the exact method

when the test was performed in dominant and recessive

modes. In this experiment, the number of the subjects in

each of the two groups was 17.

Figure 3 indicates that the MCMC accords with the

exact calculation for dominant and recessive modes (at

least when n1 = n2 B 17). Although the block type I error

rates obtained by the correction using the exact method and

the MCMC method fluctuate with the numbers of subjects,

both methods concurred very well for any number of

subjects for the test in any mode (Fig. 3). The approximate

method also gave almost the same results even when n1 and

n2 are large (data not shown). Although the corrected block

type I error rates for the test in the dominant mode were

higher than those for the test in the recessive mode, this

difference disappeared when the number of subjects was

higher (e.g., n1 = n2 = 100) when the calculation was

Fig. 1 Time in seconds required for calculation of the type I error

rate by the exact method for the tests in allele frequency (open circle)

and recessive (open triangle) modes. The number of subjects in each

group (n1 = n2) was varied up to 50. The calculation was performed

by a parallel computation using a 128-CPU Linux Cluster System.

The results in Figs. 2, 3, 4, and 5 were obtained using the same

system

Fig. 2 Comparison of the block type I error rates corrected by the

exact method, MCMC methods, and Bonferroni’s method. The data

of the population haplotype frequencies were simulated as described

in ‘‘Methods.’’ The simulated data for this experiment were composed

of nine linked SNP loci. The haplotype frequencies were ATAATT-

TAC, ACGGCCGGT, GTAATTTAT, ATAATTTAT, and GTAA

TTTAC at the population frequencies of 0.5252, 0.1902, 0.1776,

0.0420, and 0.0650, respectively. Based on the population haplotype

frequencies, the block type I error rate was calculated for the test in

the allele frequency mode by the exact method (open circle) and the

MCMC method (open triangle), as described in ‘‘Methods.’’ The

significance level for each locus (Plocus) was P = 0.01, and the

numbers of subjects in the two groups were varied from 1 to 50. For

the calculation of the type I error rates assuming a hypergeometric

distribution (haplotype frequencies unknown), the haplotypes in both

groups (cases and controls) were drawn according to the above

haplotype frequencies. Based on the combinational diplotype config-

urations in the subjects of the two groups, the type I error rate (closed
triangle) was calculated according to the MCMC method described

in ‘‘Methods.’’ Since the number of loci was nine, the block type I

error rate corrected by Bonferroni’s method (closed circle) is

always 0.09. The computer system used to generate the data in the

following figures was the same as that used to generate the data in

Fig. 1
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performed by the MCMC method. Note that the exact

method cannot handle a large number of subjects.

Calculation of the corrected block type I error rates

using real data

Next, the proposed methods were applied to real data. The

data were obtained by an SNP genotyping study targeted at

[200 drug-related genes. DNA from 752 Japanese vol-

unteers was used for SNP genotyping. The methods for

genotyping, data processing, haplotype-block construction,

and haplotype inference are described in our previous

paper (Kamatani et al. 2004). For the present experiment,

only the data for 1,145 SNPs in 249 haplotype blocks on

chromosome 8 were used. There were 3–13 SNPs in each

block, and the block type I error rates were calculated

separately for each block. Figure 4 shows the corrected

block type I error rates for the tests in the allele frequency,

dominant, and recessive modes plotted against the number

of SNP loci, compared to Bonferroni’s correction. This

figure demonstrates that the difference between the block

type I error rates obtained by the correction using the

MCMC method and Bonferroni’s method increases with

the number of SNP loci (Fig. 4). Thus, using the Bonfer-

roni’s correction, the corrected block type I error rate

increases linearly. The rate of increase by the proposed

method is much lower. In addition, the averaged block type

I error rates for the tests in the allele frequency, dominant

and recessive modes did not differ greatly for the same

number of loci.

The correction for the multiple comparison is likely to be

more efficient when the linkage disequilibrium between the

loci involved is stronger. As a measure of the strength of the

linkage disequilibrium for multiple loci, we used haplotype

heterozygosity. Thus, we examined whether there was any

positive correlation between the haplotype heterozygosity

and the corrected block type I error rate. We collected the

blocks having the same numbers of SNPs and tested the

correlation between the haplotype heterozygosity and the

corrected block type I error rate for each SNP number. The

correlation coefficients (r) between the haplotype heterozy-

gosity and the corrected block type I error when Plocus was set

to 0.01 were 0.3383181 (P = 0.1058716), 0.6603017 (P =

8.637 9 10-11), 0.4102507 (P = 0.0012505), 0.6779765

(P = 0.0010194), 0.69114404 (P = 0.00185095),

0.6291491 (P = 0.069478), 0.9846587 (P = 0.0022758),

and 0.0334933 (P = 0.9573629) for the blocks with 3, 4, 5,

6, 7, 8, 9, and 10 SNPs, respectively. The P values in

parentheses indicate those for the test of the null hypothesis

r = 0. Thus, in many cases, there was a positive correlation

between the haplotype heterozygosity and the corrected

block type I error rate. Figure 5 shows the relationship

between the haplotype heterozygosity and the corrected

block type I error rate when the number of SNPs was four.

These data indicate that the corrected block type I error rate is

higher when the linkage disequilibrium between the SNP

loci is low (haplotype heterozygosity is high). This means

that the problem of the correction for multiple comparisons

Fig. 3 Comparison of the block type I error rates corrected by the

exact method and the MCMC method for the test in the dominant and

the recessive modes. The haplotype frequencies used in the exper-

iment were identical to those in Fig. 2. The calculation of the block

type I error rates for the test in the dominant and recessive modes was

performed as described in ‘‘Methods’’. The number of subjects in

each of the two groups (n1 = n2) was varied from 2 to 20. The lines in

the figure show the results for (a) the dominant mode and the MCMC

method (open circles), (b) the dominant mode and the exact method

(closed circles), (c) the recessive mode and the MCMC method (open
triangles), and (d) the recessive mode and the exact method (closed
triangles)

Fig. 4 Comparison of the block type I error rates corrected by the

MCMC method for the tests in the allele frequency, dominant, and

recessive modes using the real data. The data from 1,145 SNPs in 249

haplotype blocks on chromosome 8 were used. The genotype data

from each block from 752 control subjects were used for the inference

of population haplotype frequencies. Using the haplotype frequencies

for each block thus obtained, we calculated the corrected block type I

error rate for the test in the allele frequency, dominant or recessive

mode by the MCMC method, as described in ‘‘Methods,’’ with a fixed

type I error rate for each SNP (Plocus) of 0.01. Each plot indicates the

average of the corrected type I error rate for the test in the allele

frequency (open circles), dominant (open triangles), or recessive

(open squares) mode. Note that the corrected block type I error rate is

always 0.01 multiplied by the number of loci when the correction is

made using Bonferroni’s method (closed circles)

798 J Hum Genet (2008) 53:789–801

123



using Bonferroni’s method becomes more problematic as the

linkage disequilibrium between separate loci becomes

stronger.

Discussion

A multiple comparison problem emerges when the asso-

ciation between phenotypes and multilocus genotypes is

examined. Since Bonferroni’s correction gives conclusions

that are too conservative, several researchers have pro-

posed better corrections for the tests on the multilocus data.

Becker and Knapp (2004) proposed a strategy to account

for multiple testing in the context of haplotype analysis.

They proposed a method in which the smallest raw P value

was used. On the other hand, Nyholt (2004) described a

simple correction method for multiple testing for SNPs in

linkage disequilibrium with each other. In Nyhot’s method,

correction for multiple testing is performed on the basis of

the spectral decomposition of matrices (Cheverud 2001) of

pairwise LD between SNPs. His method provides a simple

and useful alternative to more computationally intensive

permutation tests. In addition, Meng et al. (2003) have

proposed a method based on the spectral decomposition of

matrices of pairwise LD between SNPs. Recently, Mosk-

vina and Schmidt (2008) proposed a correction method for

multiple testing of genome-wide association studies on the

basis of the spectral decomposition of matrices. The

spectral decomposition method utilizes the fact that the

individual marker association tests are not statistically

independent, but dependent to a degree which can be

measured in terms of the pairwise haplotypic correlation

between markers observed in the empirical data. The per-

mutation method is also used for correction for multiple

testing of the genome-wide association studies (Kimmel

and Shamir 2006; Sladek et al. 2007). In addition, Sabatti

et al. (2003) proposed the application of the concept of the

false-discovery rate (FDR) (Benjamini and Hochberg

1995) to the multilocus association studies for the purpose

of the correction of multiple comparisons. The method

proposed in this study differs from all of these previous

methods. The permutation method and the spectral

decomposition method are known to provide much less

conservative results than Bonferroni correction. However,

it is still unclear how conservative these methods are.

Further studies are necessary to compare the probability of

type I errors and type II errors of these methods to that of

the exact calculation shown here.

We have shown that the exact type I error rates in the

allele frequency, dominant and recessive modes can be

calculated assuming multinomial distributions when the

population haplotype frequencies are known. However,

calculation of such exact rates requires a long computational

time, and using this method for real data is impractical. For

example, it would require approximately 70 years to cal-

culate the exact type I error rate in the allele frequency mode

for n1 = n2 = 1,000 and L = 19 even using one of the

highest speed computers in the world (12 TFLOPS). To

overcome this problem, the approximate calculation method

was constructed using a MCMC sampler of a multinomial

distribution. Thus, we presented methods for calculating the

asymptotic type I error rates in the allele frequency, domi-

nant, recessive, and genotype modes when the population

haplotype frequencies are given.

However, the population haplotype frequencies are not

always known. We have proposed methods to calculate the

type I error rates in such cases. Thus, hypergeometric

distributions were assumed given fixed marginal frequen-

cies of haplotypes and diplotype configurations. The

usefulness of these methods was not fully examined in the

present study and so should be confirmed in future studies.

It is generally difficult to assess how many steps are

necessary for convergence of MCMC chains. In this study,

convergence was monitored by comparing several inde-

pendent runs. Namely, several MCMC runs were

conducted with the starting values of the gene frequencies

being randomly set. Proportions of the cases type I errors of

all runs were calculated for every million steps. When

proportions of the cases type I errors of all runs became

similar to each other, the MCMC chains were considered to

be converged. In the case of Figs. 1 and 2, 100 million

steps are enough to reach the steady states of the MCMC

chains. Thus, we set the length of the burn-in as 100 mil-

lion steps so that first 100 million steps were thrown away.

Then we used 100 million steps after burn-in for calcu-

lating the proportions of the cases type I errors. It took a

few minutes for the calculation of 200 million steps of the

MCMC method.

Fig. 5 Relationship between the haplotype heterozygosity and the

corrected block type I error rate when the number of SNPs is four.

The corrected block type I error rates for the test were calculated in

the allele frequency mode by the MCMC method for blocks with four

SNPs. The regression line is shown, and the Pearson’s correlation

coefficient r was 0.66 (P = 8.637 9 10-11)
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The methods proposed herein were applied to both

simulated and real data. Using the simulated data, we found

that the exact block type I errors can be calculated at least in

the allele frequency mode when the number of subjects in

each group does not exceed 50. On the other hand, the

proposed MCMC methods could be used to calculate the

block type I error rates in any mode for any number of

subjects in any group. The block type I error rates calculated

by the exact methods and the equivalent MCMC methods

were in good agreement, indicating that the MCMC meth-

ods give good approximations. One can conduct computer

simulations by generating random numbers that follow the

multinomial or the hypergeometric distributions to obtain

the type I errors of tests. The algorithm is simpler than the

algorithms generating random numbers that follow the

multinomial or the hypergeometric distributions, especially

when the number of terms is large (Press et al. 1999).

Using real data, in which 1,145 SNPs on chromosome 8

were partitioned into 249 haplotype blocks, we found that

the block type I error rates calculated by the proposed

methods increased with the number of SNP loci. However,

the rate of increase was not as high as when the correction

was performed by Bonferroni’s method. The block type I

error rates obtained by the proposed methods were half as

high as those obtained by the correction by Bonferroni’s

method, which suggests that the application of Bonfer-

roni’s method yields corrections that are too conservative

when the association is tested in case–control studies. The

problem of corrections that are too conservative becomes

more remarkable as the linkage disequilibrium between the

SNP loci becomes stronger.

Since haplotype frequencies are expected to become

available for each ethnic group, the use of the proposed

correction methods is likely to be practical. The proposed

methods should be tested for validity, along with other

correction procedures, using large amounts of data.
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Appendix

We developed a fast approximation algorithm to calculate

the type I error when the haplotype frequencies are known.

The notations in appendix are identical to those described

in the text. The basic idea of this algorithm is to skip xji

(j = 1,2; i = 1,…, L), whose probability of occurrence is

very small. In this algorithm, we obtain Q = 1—(the

probability of type I error). We explain this algorithm by

using the genotype mode. xji follows the binomial distri-

bution; the mean of xji, E[xji], is 2njhi, and the variance of

xji, V[xji], is 2njhi(1 - hi). We define Mji(t) and mji(t) as

Mji(t) = E[xij] + t
ffiffiffiffiffiffiffiffiffiffiffi
V½xji�

p
= 2njhi + t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2njhið1� hiÞ

p
and

mji(t) = E[xji] - t
ffiffiffiffiffiffiffiffiffiffiffi
V½xji�

p
¼ 2nihj � t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2njhið1� hiÞ

p
;

where t [ 0. When t is large, the binomial distribution is

approximately equal to the normal distribution, whose

mean and variance are E[xji] and V[xji], respectively, so

that the probability of xji [ Mji(t) or xji \ mji(t) is as large

as 1-erfð tffiffi
2
p Þ; where erf is the error function. When t = 4,

the probability that xji [ Mji(t) or xji [ Mji(t) is smaller

than 10-7. Thus, the terms with xij can be ignored when t is

large enough and xji [ Mji(t) or xji \ mji(t).

For the sake of convenience, we define define Nji and nji

by because 0 B xji B 2nj as

Nji ¼
MjiðtÞ; when MjiðtÞ\2nj;

2nj; otherwize




nji ¼
mjiðtÞ; when mjiðtÞ\2ni;

0; otherwise




Since
PL

i¼1 x1i must be 2n1 and
PL

i¼1 x2i must be 2n2,

when we calculate Q, a new function g is defined as

g x11; x12; . . .; x1L; x11; x12; . . .; x1Lð Þ

¼ 1 when
PL

i¼1

x1i ¼ 2n1 and
PL

i¼1

x2i ¼ 2n2;

0; otherwise:

8
<

:

Then, Q is obtained as

Q �
XN11

x11¼n11

XN12

x12¼n12

XN13

x13¼n13

� � �
XN1L

x1L¼n1L

XN21

x21¼n21

XN22

x22¼n22

XN23

x23¼n23

� � �
XN2L

x2L¼n2L

g x11; x12; . . .; x1L�1; x21; x22; . . .; x2;L�1

� �

� �f x11; x12; . . .; x1L�1; x21; x22; . . .; x2;L�1

� �

2n1ð Þ! 2n2ð Þ!
QL

i¼1

Q2
j¼1 xji!

YL

i¼1

Y2

j¼1
h

xji

i ;

where �f (x11, x12,…, x1L-1, x21, x22,…, x2,L-1) = 1 when

f(x11, x12,…, x1L-1, x21, x22,…, x2,L-1) = 0 and �f (x11, x12,…,

x1L-1, x21, x22,…, x2,L-1) = 0 when f(x11, x12,…, x1L-1, x21,

x22,…, x2,L-1) = 1. In the same way, we can calculate the

probability of the dominant and recessive modes.

In this algorithm, the possible number of different {xji}

on the right-hand side of Eq. (6) is reduced to

2tð ÞL 2n1ð Þ
L
2 2n2ð Þ

L
2

YL

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjð1� hjÞ

q
:

Since hi(1 - hi) B 0.5 for i = 1, …, L, the

computational complexity of this algorithm is as large as

O tL n1n2ð Þ
L
2

h i
: Our numerical experiments showed that the
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approximate values obtained by this algorithm are good

enough when t = 4. Under the condition where
PL

i¼1 x1i ¼
2n1 and

PL
i¼1 x2i ¼ 2n2; the actual number of different

{xji} is smaller than the value given by the above formula.
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