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Abstract Hereditary hemorrhagic telangiectasia (HHT)

is an autosomal dominant disorder causing vascular dys-

plasias. About 70–80% of HHT patients carries mutations

in ENG or ACVRL1 genes, which code for a TGFb receptor

type III and I respectively. Molecular data on a large cohort

of Italian HHT patients are presented, discussing the sig-

nificance of missense and splice site mutations. Mutation

analysis in ENG and ACVRL1 genes was performed using

single strand conformation polymorphisms (SSCP), dena-

turing high performance liquid chromatography (DHPLC)

and subsequent direct sequencing. Overall, 101 mutations

were found, with ACVRL1 involved in 71% of cases. The

highest number of mutations (28/101 subjects, 14/76 dif-

ferent mutations referring to both genes) was in ACVRL1,

exon 3. Mutation analysis was then extended to a total of

356 family members, and 162 proven to carry the mutation.

New polymorphisms were identified in both genes, and

evidence that ENG P131L change is not a disease-causing

mutation was also provided. An in silico analysis was

performed in order to characterize splice-site mutations.

These results were compared to other European national

studies and data from Italy, France and Spain were con-

sistent for an higher incidence of ACVRL1 mutations.

Keywords Hereditary hemorrhagic telangiectasia �
HHT � ACVRL1 mutation � ENG mutation

Introduction

Hereditary hemorrhagic telangiectasia (HHT; Mutation

Database: http://137.195.14.43/cgi-bin/WebObjects/hht.

woa/wa/default) is an autosomal dominant disorder causing

vascular dysplasias such as mucocutaneous telangiectases

and arterovenous malformations (AVMs). Telangiectases

may lead to epistaxes and gastrointestinal bleeding, which

may be severe enough to require transfusions. Epistaxes

and telangiectases are the most frequent symptoms, present

in more than 95% of the patients. AVMs are mostly

observed in liver (60%), lungs (18–70%) and brain (6%),

and may cause severe life-threatening complications

(Lesca et al. 2007). The phenotype is highly variable, even

among members of the same family, and the disease dis-

plays age-related penetrance, with increased manifestations

developing over a lifetime. About 70–80% of HHT patients

carry mutations in either of two genes—ENG (OMIM

#131195) (HHT1: OMIM 187300) or ACVRL1 (OMIM

#601284) (HHT2: OMIM 600376)—which code for a

TGFb receptor type III and I respectively, although David
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et al. 2007 recently demonstrated that BMP9 is the more

effective ligand of ACVRL1. Evidence for a third and a

fourth locus on chromosomes 5 and 7 respectively has also

been reported (Cole et al. 2005; Bayrak-Toydemir et al.

2006a). Association of the HHT phenotype with juvenile

polyposis (JPHT, #175050) and mutations in the MADH4

gene (coding for SMAD4, involved in the TGFb signaling

pathway) have recently been demonstrated as well (Galli-

one et al. 2004). Moreover, MADH4 mutations may be

observed in HHT patients without a prior diagnosis of JP

(Gallione et al. 2006).

Several papers have recently been published reporting

the results of screening for mutations in ENG and ACVRL1

genes, and more than 200 pathogenetic variations have

been reported for each gene.

Many polymorphisms are also present in both genes

(HHT Mutation database: www.hhtmutation.org). A

peculiar distribution of mutations has been reported: ENG

mutations are more frequently found in patients from

Northern Europe and the Americas, while Mediterranean

populations have a majority of ACVRL1 mutations

(Olivieri et al. 2002; Brusgaard et al. 2004; Lesca et al.

2004, 2006; Abdalla et al. 2005; Kjeldsen et al. 2005;

Letteboer et al. 2005, 2006; Bayrak-Toydemir et al.

2006b; Fernandez-L et al. 2006; Lenato et al. 2006;

Bossler et al. 2006).

Here we report the results of our screening for mutations

in ENG and ACVRL1 genes in a group of 137 Italian HHT

patients. Overall, we found a mutation in 101 subjects (76

different mutations), with ACVRL1 involved in 71% of our

cases. We also identified several new polymorphisms in

both genes, and provide evidence that ENG P131L change

is not a disease-causing mutation.

Materials and methods

Patients

We screened a total of 137 index cases; 123 with a known

family history, and 14 sporadic cases (family SLL in which

the ENG P131L was found is not included in the figures).

For each family, we selected a single case in whom the

diagnosis was ‘‘definite’’, according to the diagnostic cri-

teria suggested by the International HHT Advisory board,

known as ‘‘Curaçao criteria’’ (Shovlin et al. 2000). After

the identification of a mutation, all other available relatives

were also studied.

In 117 of them the diagnosis was made by EB in Crema

(CR) and by FP, LS, SC and CD in Pavia, and the clinical

data were shared between both centres. In 20 cases, the

diagnoses were made in other centres who were certainly

informed about the diagnostic criteria. Six families were of

Croatian, Dutch, Hungarian, Turkish and Indian origin.

Detailed data as to the geographical origin of the Italian

families were also recorded.

Molecular analysis

After informed consent (prior to inclusion in the study),

DNA was extracted from 3 to 7 ml of peripheral blood

from each subject, using standard protocols.

Exons (including intron-exon boundaries) 1–13 of ENG

gene and 1–10 of ACVRL1 gene were amplified by PCR

using the primers reported in the GDB database (Human

Genome Database. The Official World-Wide Database for

the Annotation of the Human Genome. http://www.

gdb.org) (ENG 1–12, including 9a and 9b) or published by

Berg et al. 1997 (ACVRL1 2–10). Exon 13 of ENG was

split into three different PCRs in order to completely cover

this region. Primers for these PCRs were designed by C. O.

using the software on the web PRIMER3INPUT (Access

date is May 25th, 2007 for all these softwares,

http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi)

and are available on request, as are the amplification pro-

tocols for the 26 different PCRs.

Mutation screening was performed by SSCP (ACVRL1

gene) and/or DHPLC (ACVRL1 and ENG genes) analysis.

At least two different SSCP were performed, using dif-

ferent polyacrilammide concentration (from 6 to 8%,

acrilammide bisacrilammide ratio: 19:1; 29:1; 37,5:1) as

suggested by Ravnic-Glavač et al (1994). The DHPLC was

performed on a WAVE DNA fragment analysis system

(Transgenomic, Cheshire, UK). The temperature of the

oven for optimal heteroduplex separation at partial DNA

sequence was obtained with the Wavemaker 4.0 software

(Transgenomic). The DHPLC optimal temperatures are

available on request.

Each time an abnormal pattern was found, direct

sequencing was performed using the Big Dye terminator

method combined with Taq FS (cycle sequencing reaction).

Sequence was analysed on a ABI-PRISM 3700 DNA

analyser (Applied Biosystems).

Each mutation was confirmed at least by a second

sequence. When an unpublished missense mutation was

found, we analysed 50 control DNAs and, when possible,

we confirmed the cosegregation of the mutation with the

disease in the family. We also checked if the amino acid

was conserved in orthologous genes.

When a mutation was found in an ‘‘index case’’, all

other subjects belonging to his/her family were analysed

using direct sequencing or endonuclease restriction diges-

tion. The relatives (affected and non-affected) were all

informed about the results, and genetic counselling was

provided.

J Hum Genet (2007) 52:820–829 821

123



Splice site scores

To evaluate if mutations found in the intron-exon boundary

region affected the splice site, we performed four different

analysis using software for splice site scores calculation

present on the web:

SCORE 1: Splice site analyzer tool: http://ast.bioinfo.

tau.ac.il/SpliceSiteFrame.htm

SCORE 2: Alex Dong Li’s splice site score calculator (v 0.1):

http://www.genet.sickkids.on.ca/*ali/splicesitescore.html

SCORE 3: Splice site score calculation: http://rulai.cshl.

edu/new_alt_exon_db2/HTML/score.html

SCORE 4: MaxEntScan::score5ss for human 50 splice

sites: http://genes.mit.edu/burgelab/maxent/Xmaxentsc

an_scoreseq.html

MaxEntScan::score3ss for human 30 splice sites: http://

genes.mit.edu/burgelab/maxent/

Xmaxentscan_scoreseq_acc.html

All these tools are based on the paper by Shapiro and

Senapathy (1987), Carmel et al. (2004) and Yeo and Burge

(2004).

Access date is May 25th, 2007 for all these software

programs.

Results

Mutations and polymorphisms identified in our study are

summarized in Tables 1 and 2 respectively. Nomenclature

follows suggestions reported by den Dunnen and Anton-

arakis (2000). GenBank RefSeq-file accession number are

NM_000118.1 for ENG and NM_000020.1 for ACVRL1.

Nucleotide numbering uses the A of the ATG translation

initiation start site as nucleotide +1.

In ENG we identified 26 different mutations in 29 sub-

jects; 13 are, to the best of our knowledge, unpublished.

We found 12 nucleotide substitutions, 12 deletions and

two insertions. As to their effects, 16/26 (61.5%) were

truncating mutations, 5/26 (19.3%) were splice-site muta-

tions, 4/26 (15.4%) were missense mutation and 1/26 (3.8%)

was an in-frame deletion of 7 amino acids. Results of splice-

site scores for these last mutations are reported in Table 3.

Mutations 6 and 8 were shared by three and two families

respectively (see Table 1); only for the former could a

common geographical origin be recorded.

We also identified nine different polymorphisms; two of

them were, to the best of our knowledge, unpublished.

As to P131L, we identified a family in which two sub-

jects were homozygous for this DNA change. The index

case, a 9-year-old child, presented with epistaxes, which

were present although limited to childhood also in the

father and in two paternal uncles. Some cutaneous atypical

telangiectases were also present. This phenotype did not

segregate with either homozygosity or heterozygosity for

the P131L variant. No other ENG or ACVRL1 mutation was

found in this family, and it was therefore excluded from

any calculation.

In ACVRL1, we identified 50 different mutations in 72

subjects; 11 are, to the best of our knowledge, unpublished.

The mutations can be classified as nucleotide substitu-

tion (36), deletions (8) and insertions/duplications (6).

As to their effect, 26/50 (52%) were amino-acid

replacement, 20/50 (40%) were truncating mutations, 2/50

(4%) were deletions in frame of 2 amino acids and 2/50 (4%)

affected a splice site (see Table 1). All the missense muta-

tions involved conserved amino acids, when the sequence of

orthologous genes were compared (Rattus, Bos, Xenopus,

Mouse, and Gallus, data not shown). The results of splice site

scores for the change-affecting splice sites are reported in

Table 3.

Ten mutations (nos. 31,34,35,37,41,44,55,62,68,70 in

Table 1) were found in more than one index case; all

families carrying the same mutation were unrelated going

back for at least four generations, but shared a common

geographic origin, with the exception of mutation no. 44

(Table 1): ID1 is a sporadic case and ID287, ID701 and

ID705 have a different geographical origin.

We identified six intronic polymorphisms (outside

splicing regions); four of them are unpublished and were

found in a small proportion of patients (\5%); we also

determined the prevalence of g.IVS3 + 11 c [ t polymor-

phisms (Olivieri et al. 2002) (see Table 2) which was in

Hardy-Weinberg equilibrium.

In one of our patients, a history of colon cancer at age 34

suggested MADH4 involvement; mutation analysis per-

formed by C. Gallione identified a previously unreported

MADH4 mutation (R361L). The son of the index case

carries the same mutation, shows a typical HHT clinical

picture, but has no evidence of polyposis at age 19 (as

assessed by colonoscopy). The healthy mother of the index

case, as expected, does not carry the mutation; the father

died because of a pancreatic cancer at age 56, and no

biological samples were available for analysis.

We then compared our results to the screenings recently

published by other groups on different European popula-

tions [Germany (Kuehl et al. 2005; Schulte et al. 2005;

Wehner et al. 2006), Spain (Fernandez-L et al. 2006),

Denmark (Brusgaard et al. 2004), France (Lesca et al.

2004, 2006), Netherlands (Letteboer et al. 2005)] and to the

work of Lenato et al. 2006 on a smaller group of Italian

patients (see Figs. 1,2).

The distribution of the mutations in the two genes

[number of ENG mutations/total number of mutations]

varied from 37% in Spain to 54% in the Netherlands. When

considering the Italian population, ENG mutations were
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Table 1 Summary of ENG and ACVRL1 mutation found in this study

Number ID Exon Mutation References

ENG

1 423 2 c. 77del A (p. E26fsX42) Unpublished

2 284 2 c. 96_102 del TCAGCCT (p. L32 fs: X40) Unpublished

3 693 2 c. 97C [ T (p.Q33X) Lenato et al. 2006

4 359 2 c. 145G [ T (p. V49F) Lesca et al. 2004

5 36 2 c. 210 del G (L69fsX80) Unpublished

6 56, 90, 718 3 c. 277C [ T (p. R93X) Cymerman et al. 2000 (+4)

7 662 3 c. 338 del G (p. L112 fs:X147) Unpublished

8 135, 632 IVS3 g. IVS3 + 1 g [ a (Splice Site) (p. Gly74_Tyr120del) Pece et al. 1997 (+7)

9 368 IVS3 g. IVS3 + 3 del agtg Unpublished

10 169§ 4 c. 495_496 del CC (p. P165 fsX332) Unpublished

11 684 5 c. 526C [ T (p. Q176X) Unpublished

12 563 5 c. 574 del C (p. 191 fs:X221) Unpublished

13 643 5 c. 590G [ C (p. R197P) Unpublished

14 140 6 c. 772 del T (p. Y258 fs: X359) Fernandez-L et al. 2006

15 32 6 c. 774C [ G (p. c258Y) Unpublished

16 389 6 c. 780 Ins (Dup 768–775) (p. S260 fs X358) Olivieri et al. 2006

17 377 IVS6 g. IVS 6 + 5 g- [ c Olivieri et al. 2006

18 52 7 c. 909_929 del (p. R304_I310 del in frame) Lastella et al. 2003 (+1)

19 41 8 c. 1010C [ G (p. S337X) Unpublished

20 270 8 c. 1080_1083 del GACA (p. G360fs) Gallione et al. 1998 (+3)

21 367 8 c. 1134G [ A (p. A374A:splice site) Letteboer et al. 2005 (+1)

22 326 IVS8 g. IVS8 + 1 g [ a (p. G332fs) Shovlin et al. 1997 (+1)

23 127 9a c. 1144T [ G (p. C382G) Unpublished

24 245 11 c. 1478 del G (p. S492 fs X516) Olivieri et al. 2006

25 198 11 c. 1550_1551 del TG (p. C516 fs X525) Mc. Allister et al. 1995

26 138 11 c. 1684_1686 + 11 dup 13 bp (p. Q562 fs X570) Unpublished

ACVRL1

27 422§ 2 c. 50_53 del TGGT (p. L17X) Unpublished

28 707 3 c. 143G [ A (p. G48E) Brusgaard et al. 2004

29 170 3 c. 144_145 ins G (p.G48 fs: X167) Klaus et al. 1998 (+1)

30 258 3 c. 145 del G (p. G48 fs: X53) Olivieri et al. 2002 (+1)

31 172, 241 3 c. 152G [ A (p. C51Y) Klaus et al. 1998 (+2)

32 131 3 c. 164_169 del TGGTGC (del L55V56 in frame) Olivieri et al. 2006

33 105 3 c. 172G [ T (p.E58X) Olivieri et al. 2002 (+1)

34 199, 476 3 c. 199C [ T (p. R67W) Olivieri et al. 2002 (+3)

35 263, 380, 435 3 c. 200G [ A (p. R67Q) Berg et al. 1997(+5)

36 280 3 c. 203 ins G (p.G68 fs:X166) Olivieri et al. 2006

37 407, 598 3 c. 205_209 dup TGCGG (p. G70 fs:X123) Unpublished

38 633 3 c. 230G [ A (p. C77Y) Unpublished

39 603 3 c. 235G [ A (p. G79R) Olivieri et al. 2006

40 704 3 c. 266G [ A (p. C89Y) Unpublished

41 50, 255, 290

310, 464, 640 3 c. 289_294 del CACAAC (p. H97-N98 del in frame) Olivieri et al 2002

686, 813, 818, 827

42 38 IVS 3 g. IVS3 -3 (c. 314 -3) C [ G (Splice site) Prigoda et al. 2006

43 64 4 c. 321 del A (p. Q107 fs X121) Olivieri et al. 2006

44 1, 287, 701, 705 4 c. 430C [ T (p. RI44X) Paquet at al. 2001 (+7)
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found in 29 % in our cohort and in 40% in the study by

Lenato et al. 2006.

ENG mutations are almost evenly distributed in the

various exons coding for the extracellular domain, while

the ACVRL1 gene shows clustering of mutations in exons

3, 7, 8, and this uneven distribution is confirmed in all the

European samples studied. Conversely, exon 5 is consis-

tently less involved in all published reports.

Discussion

The analysis of a group of 137 index patients affected with

HHT allowed us to identify 76 different mutations in 101

subjects, 24 unpublished; 162 out of the 356 family

members subsequently tested were proven to be mutation

carriers.

All but two of the cases (one Indian, one Swedish) were

of Italian ancestry (see Table 1). On the basis of these data

and of other recent reports, the number of different known

mutations arises to over 200 for each gene; a further

increase in the number of new mutations in both ENG or

ACVRL1 is to be expected.

A ‘‘founder effect’’ for specific mutations observed with

high frequency was suggested in the Netherlands Antilles

(ENG: c.1238G [ T; g.IVS1 + 1 g [ a; Gallione et al.

2000), France (ACVRL1: c.1112_1113 dupG; Lesca et al.

Table 1 continued

Number ID Exon Mutation References

45 720 4 c. 435 del G (p. R145fs: X164) Fernandez-L et al. 2006

46 249 4 c. 448C [ T (p. Q150X) Lenato et al. 2006

47 412 4 c. 476_477 del AG (p. G158 fs: X167) Unpublished

48 711 IVS 4 g. IVS4 +1 G [ A (Splice site) Unpublished

49 11 5 c. 617A [ G (p. E206G) Unpublished

50 247 6 c. 650G [ A (p: W217X) Bossler at al. 2006

51 282 7 c. 810_ 822del CACGCAGCTGTGG (p. S270fs:X297) Olivieri et al. 2002

52 362 7 c. 824_827 dup GGCT (p. L273fsX392) Olivieri et al. 2006

53 716 7 c. 853 dup C (p. S284fs: X107) Unpublished

54 242 7 c. 858C [ A (p. Y286X) Olivieri et al. 2002 (+3)

55 594, 626 7 c. 924C [ A (p. C308X) Berg et al. 1997(+2)

56 297 7 c. 988G [ A (p. D330N) Letteboer et al. 2005

57 187 7 c. 988G [ T (p. D330Y) Olivieri et al. 2002 (+2)

58 266 7 c. 1031G [ T (p. C344F) Abdalla et al. 2000 (+1)

59 634 7 c. 1048G [ A (p. G350S) Schulte et al. 2005

60 148 8 c. 1054G [ C (p. A352P) Olivieri et al. 2002

61 300 8 c. 1080_1098 dup 19bp (p. D360 fs X397) Olivieri et al. 2002

62 20, 621, 667 8 c. 1120C [ T (p. R374W) Berg et al. 1997 (+18)

63 722 8 c. 1121G [ A (p.R374Q) Abdalla et al. 2003 (+4)

64 639 8 c. 1126A [ G (p. M376V) Lesca et al. 2004 (+1)

65 388 8 c. 1127T [ A (p. M376K) Olivieri et al. 2006

66 129 8 c. 1133C [ T (p. P378L) Olivieri et al. 2002

67 593 8 c. 1139T [ G (p. V380G) Letteboer et al. 2005

68 209, 588 8 c. 1199C [ A (p.A400D) Olivieri et al. 2002

69 40 8 c. 1221G [ T (p. E407D) Abdalla et al. 2000 (+2)

70 552, 687 8 c. 1232G [ A (p. R411Q) Johnson et al. 1996 (+11)

71 608 10 c. 1385C [ G (p. S462X) Abdalla et al. 2004

72 313 10 c. 1435C [ T (p.R479X) Lesca et al. 2004 (+5)

73 438 10 c. 1438C [ T (p. L480F) Unpublished

74 583 10 c. 1445C [ A (p. A482E) Unpublished

75 168 10 c. 1450C [ T (p. R484W) Trembath et al. 2001 (+3)

76 251 10 c. 1451G [ A (p.R484Q) Unpublished

Numbers after references indicate how many additional times the mutation has been published
§ the non-Italian patients
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2004) and Denmark (ENG: c.360C [ A; Brusgaard et al.

2004).

We observed a small cluster in the North Italian county

of Bergamo (ACVRL1: c.289 del CACAAC, p. H97-N98

del in frame; Table 1, mutation 41) with the same mutation

in ten apparently unrelated families with 40 affected sub-

jects, from a population for the county of 1,021,700 in

2004. Other HHT families with different mutations are

known in the same area.

This cluster may partially explain the higher percentage

of ACVRL1 mutation in our cohort as compared to the

results of Lenato et al. 2006.

We also identified several polymorphisms in both genes

by DHPLC analysis, a method that does not allow homo-

zygote identifications; as most of them are intronic

variations, outside splicing sites, and thus are unlikely to

have any effect on the protein, we did not check if these

polymorphisms were in Hardy-Weinberg equilibrium.

The Endoglin P131L substitution was reported as a

HHT-causing mutation (Kjeldsen et al. 2005; Fernandez-L

et al. 2006; Cymerman et al. 2003) and was subsequently

listed as a variant (Abdalla and Letarte 2006). Homozy-

gous Endoglin null mice have an embryonic lethal

phenotype (Arthur et al. 2000), and a previous report

showed no live children homozygous for ENG mutation in

a consanguineous family where both parents were affected

(Karabegovic et al. 2004). Our results (no segregation

with phenotype, presence of two homozygotes) provide

conclusive evidence that P131L is probably a poly-

morphism whose biological effect, if any, is still to be

assessed.

The ENG protein contains a large extracellular domain

(encoded by exons 1–12), a transmembrane and an intra-

cellular domain (exons 13 and 14). The mutations are

distributed almost evenly in all exons with the exception of

a clear lower involvement of exons 1 and 12 to 14 (HHT

mutation database; Wehner et al. 2006); our data support

this distribution (Fig 1).

Most mutations result in a truncated protein (61.5% in

our sample), which is in agreement with the model of

haploinsufficiency proposed for the pathogenesis of the

disease (Abdalla and Letarte 2006). This model is sup-

ported by studies in KO mouse (Arthur et al. 2000;

Bordeau et al. 2000) and by the demonstration of a 50%

level of protein in HUVEC HHT1 cells (Pece et al. 1997;

Cymerman et al. 2000).

A number of DNA changes resulting in amino acid

variation but interpreted as polymorphisms have also been

reported as [MTHFR, A222V]. A high population fre-

quency of the observed change ‘‘per se’’ cannot be held as a

demonstration that the variation has no effect on the protein

function and in turn on the general phenotype of the subject

carrying it (Paquet et al. 2001). For instance, the [MTHFR,

A222V] will result in a protein with definitely modified

behaviour, whose presence is associated with vascular

disorders and other diseases.

Endoglin polymorphisms resulting in amino acid changes

and not causing HHT (as a second obviously pathogenetic

Table 2 Summary of ENG and ACVRL1 polymorphisms found in this study

Exon Position Effect Genotypes References %

ENG

2 c. 207 G [ A p. L69L 3 Het Shovlin et al. 1997 (+3) 11

IVS2 g.IVS2 + 22c [ t No 1 Het Bossler et al. 2006

IVS2 g.IVS2 + 25g [ t No 2 Het Prigoda et al. 2006 5

4 c. 392 C [ T p. P131L 2 Hom Cymerman et al. 2003 (+3)

5 c. 572 G [ A p. G191D 8 Het Lesca et al. 2004 (+2) 6,4

IVS7 g.IVS7 + 25_26 ins cctccc No 1/10 Het Lesca et al. 2004 (+1) 42,1

8 c. 1023 C [ A p. I341I 1 Het Novel

8 c.1029C [ T p. T343T 9 Het Shovlin et al. 1997 (+2) 5

8 c. 1060C [ T p. L354L 1 Het Prigoda et al. 2006 1,6

ACVRL1

IVS1 g.IVS1-23 c [ t NO 6/16 Het Novel

2 C(ATG –38)T NO 6 Het Abdalla et al. 2003 (+1) 14

IVS3 g. IVS3 + 11 c [ t NO 50% c/t, 18%t/t Olivieri et al. 2002 (+1)

IVS4 g. IVS4-22 a [ g NO 1 Het Novel

IVS5 g. IVS5 –58: ins t NO 3 Het Novel

IVS5 g. IVS5 -53 c [ t NO 2 Het Prigoda et al. 2006

References and figures in brackets are as in Table 1

% as reported by references, Het Heterozygous, Hom Homozygous
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mutation in the same gene or in ACVRL1 gene is concurrently

present) should thus be reported and studied to demonstrate if

they have any effect on protein function. This situation is

observed in cases ID170, ID131 and ID300, in which a

ACVRL1 mutation was associated to the ENG G191D

polymorphism. Until this datum is obtained, we cannot

Table 3 Splice scores for splice site mutation

Gene Exon Mut Sequence Type Score1 Score2 Score 3 Score4

S BP DG Maxent MDD MM WMM

ENG IVS3 WT TACgtgagt 50 81.03 8 –4.2 83.2 7.2 7.77 12.28 6.13 6.80

8 TACatgagt 63.19 7 –1.8 65.0 –3.5 –0.41 4.10 –2.05 –1.38

9 TACatgtgt 70.63 8 –0.6 71.9 4.6 1.40 6.98 1.55 3.86

IVS6 WT TGGgtgagt 50 85.28 8 –9.3 88.9 8.8 8.73 13.18 8.36 7.38

17 TGGgtgact 72.27 7 –5.6 74.6 5.1 0.99 3.68 3.49 3.54

IVS8 WT GCGgtaagg 50 85.01 6 –7.4 87.2 8.0 9.63 13.08 9.59 8.59

21 GCAgtaagg 72.59 5 –4 74.8 5.1 4.69 10.38 5.58 5.42

22 GCGataagg 67.17 5 –1.7 69.0 –2.7 1.45 4.90 1.41 0.41

ACVRL1 IVS3 WT tcagtgtccccctccctcagCCA 30 74.84 – – 84.1 9.1 6.88 / 7.69 9.30

42 tcagtgtccccctccctgagCCA 64.26 – – 72.4 –1.3 –4.69 / –0.59 0.39

IVS4 WT GGGgtatgg 74.66 7 –4.7 76.3 5.4 5.84 7.88 4.93 5.71

48 GGGatatgg 50 56.82 6 –1.2 58 –5.3 –2.34 –0.30 –3.26 –2.47

SCORE 1: S Splice-site score. Best possible score = 100

BP number of H-bonds between U1 and the 50 splice site

DG free energy. Best score of 50 splice site = –9.6

SCORE 2: A 100% match to the mammalian 30 and 50 splice site would have a score of 100

SCORE 3: A 100% match to the mammalian 30 splice site would have a score of 14.2. The mean score of the 30 splice site in constitutive exons is

7.9

SCORE 4: Maxent Maximum entropy model score

MDD Maximum dependence decomposition model score

MM First-order Markov model score

WMM Weight matrix model score

A perfect 50 splice site would have a score of 12.6. The mean score of the 50 splice site in constitutive exons 8.1

The ideal MaxEnt score is 11.81 for a 50 splice site and 13.59 for a 30 splice site. For the other models, the higher is the score, the higher is the

probability that the sequence is a true splice site

WT wild type sequence

Mut mutation numbers (as in Table 1)

Fig. 2 Distribution of ACVRL1 mutation in six European countries.

Figures refer to the number of the different mutations found. NET
Netherlands, DEN Denmark, GER Germany, FRA France, SPA Spain,

ITA Italy. For references, see the text

Fig. 1 Distribution of ENG mutation in six European countries.

Figures refer to the number of different mutations found. NET
Netherlands, DEN Denmark, GER Germany, FRA France, SPA Spain,

ITA Italy. For references, see the text
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formally exclude the possibility that (minor) changes in

protein activity may exert an addictive effect on the HHT

phenotype or may be a risk factor for different phenotypes.

The ALK1 protein consists of a small extracellular

domain (encoded by exons 2,3, partially 4), a short trans-

membrane domain (exons 4,5 partially), and a large

intracellular domain including a glycine-serine rich (GS)

domain (exon 5) and the serine/threonine kinase (S/T-K)

domain (exons 5 to 10).

The mutations are unevenly distributed, with exons 3,7,8

carrying a larger number of mutations (61.46% of the total

number of ACVRL1 mutations, as calculated from the HHT

mutation database). This trend is observed in all European

countries, and also in our cohort of cases, with the only

peculiarity of a higher number of mutations in exon 3.

In fact in our group of HHT2 patients, we found 28/72

subjects (39%) to be carriers of exon 3 mutations; if only the

different ACVRL1 mutations are considered, exon 3 still

contains 14/50 mutations (28%), versus 22% in Europe and

in the database.

In exon 5, only 5 mutations are known; among them, the

only mutation identified in the GS domain (Harrison et al.

2003) was found in a patient with PAH but, apparently,

without clinical signs or family history of HHT. Other

mutations in exon 5 generate a truncated protein or are in the

S/T-K domain, as our mutation 49 in Table 1.

For two mutations in the S/T-K domain (S333I and

C344Y), Gu et al. (2006) suggested a dominant negative

effect, on the basis of the evaluation of ALK1 expression and

activity in monkey and human cell lines. We found a C344F

mutation (Table 1, n.58) in which cysteine is replaced by

phenylalanine instead of tyrosine as for the study by Gu et al.;

the two substituted amino acids are structurally similar, and

the hypothesis of a dominant negative may thus be consid-

ered for our mutation too. Moreover, the same authors

demonstrated that the R411Q mutation results in a protein

which retains its activity, although at a reduced level.

Very interestingly, Fernandez-L et al. (2005) demon-

strated on BOECs (Blood Outgrowth Endothelial Cells)

from HHT2 patients carrying the R374W missense mutation

an ALK1 amount similar to that of controls by western blot

analysis; this result suggests that some missense mutations

may be expressed. Both the R374W and the R411Q are

present in our cohort (Table 1, mutation 62 and 70).

The use of the SIFT Tool allowed Prigoda et al. (2006)

to show that the vast majority of, but not all, ALK1 mis-

sense mutations lead to altered structures, which might

imply loss of function.

Altogether, these data indicate that the pathogenesis of

HHT2 may be more complex than previously thought;

haploinsufficiency may not be the only disease-causing

mechanism, and different mutations may lead to (slightly)

different phenotypes.

In vivo studies and the development of functional bio-

logical tests will settle this point.

In the ACVRL1 gene we did not find any polymorphism

resulting in amino acid change, in agreement with previ-

ously published data.

We found seven different DNA changes (two in ACVRL1)

occurring at a splice site; as all of our work was performed on

DNA samples, and data on the expression were not available,

we studied these changes in silico using four different tools

(Table 3). They were considered as disease-causing muta-

tions when segregating with the disease in the family, and

when the power of the splicing was reduced to an extent

similar to the result reported by Roca et al. 2003.

A mutation in either ENG or ACVRL1 was found in

75.6% of the Italian index cases and in 2/6 of the non-

Italian patients; in addition, 1 MADH4 mutation was

found in a family selected because of the phenotype of

the index case. The reasons for failure in identification of

a mutation in a proportion of the remainder of cases have

been extensively and clearly discussed by Lesca et al.

(2004) and include technical limits and genetic heter-

ogeneity.

The comparison of our data with those of other European

countries indicates that Italy, Spain and France homoge-

neously show an higher percentage of ACVRL1 mutations

with a narrow range: 60–62%. In other countries such as

Germany, Denmark and The Netherlands, the percentage of

HHT2 patients is lower, and the picture seems less homo-

geneous, as the percentage of ACVRL1 mutations ranges

from 45 to 57%. Knowledge of the relative distribution of the

mutations in the two genes is helpful in developing strategies

for testing HHT patients.
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