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Abstract Genome-wide association studies (GWAS) are

being conducted to identify common genetic variants that

predispose to human diseases to unravel the genetic etiol-

ogy of complex human diseases now. Because of

genotyping cost constraints, it often follows a two-stage

design, in which a large number of markers are identified in

a proportion of the available samples in stage 1, and then

the markers identified in stage 1 are examined in all the

samples in stage 2. In this paper, we introduce a nonlinear

entropy-based statistic for joint analysis for two-stage

genome-wide association studies. Type I error rates and

power of the entropy-based statistic for association tests are

validated using simulation studies in single-locus test. The

power of entropy-based joint analysis is investigated by

simulations. And the results suggest that entropy-based

joint analysis is always more powerful than linear joint

analysis that uses a linear function of risk allele frequencies

in cases and controls when detecting rare genetic variants;

the powers of these two joint analyses are comparable

when detecting common genetic variants. Furthermore,

when the false discovery rate is controlled, entropy-based

joint analysis is more powerful and needs fewer samples

than linear joint analysis that uses a linear function of risk

allele frequencies in cases and controls. So, we recommend

we should use entropy-based strategy for two-stage gen-

ome-wide association studies to detect the rare and

common genetic variants with moderate to large genetic

effect underlying a complex disease.
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Introduction

Genome-wide association studies that were first suggested

a decade ago by Risch and Merikangas (1996) are being

conducted to unravel the genetic etiology of complex

human diseases (Klein et al. 2005; Thomas et al. 2005),

enabled by rapidly decreasing genotyping costs, massively

high throughout genotyping technologies, the large-scale

SNP discovery and genotyping efforts of the SNP Con-

sortium (Sachidanandam et al. 2001) and the international

HapMap consortium (Hinds et al. 2005). Presently the two-

stage design is a more efficient method for genome-wide

association studies than one-stage design.

In one-stage design, all available samples are geno-

typed on all markers. In replication-based two-stage

analysis, a dense set of SNP markers across the genome is

genotyped and tested using a portion of the samples in

stage 1, and, the most-promising markers are then geno-

typed and tested in the remaining samples in stage 2.

Compared with these two designs, in a joint analysis for

two-stage genome-wide association studies, the most

promising markers identified in stage 1 are examined in

all samples in stage 2. So, joint analysis is more efficient,

and its power is nearly the same as that of the one-stage

design, while substantially reducing genotyping costs

(Satagopan et al. 2002, 2004; Satagopan and Elston 2003;

Thomas et al. 2004; Skol et al. 2006). Now, the crucial

and urgent task for two-stage genome-wide association

analysis is to construct more powerful test statistics in

order to make good use of data information and to

develop more efficient methods.
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The power of two-stage genome-wide association stud-

ies to identify variants underlying a complex disease

depends on a number of factors, including how M markers

are selected, how many samples (N) are selected, how

samples (psamples) are divided between stage 1 and stage 2,

the proportion ðpmarkersÞ of markers tested in stage 2 and

strategy used to test for association, inheritable disease

models, effect sizes of risk allele and disease prevalence

and so on (Skol et al. 2006). So, for different parameters

controlled, the relationships among psamples; pmarkers and N

need to be determined in order to get the higher power and

control the proper genome-wide type I error rate.

Skol et al. (2006) get that joint analysis using a linear

function of risk allele frequencies in cases and controls is

more powerful than replication-based analysis for two-

stage genome-wide association studies. (This joint analysis

in Skol et al. will be referred to as the ‘‘linear joint anal-

ysis’’ throughout the article.) This can be achieved easily

because linear joint analysis examines the data from both

stages 1 and 2 and not from only stage 2 in the second

stage. However, the statistic in Skol et al. (2006) compares

risk allele frequencies in cases and controls and uses a

linear function of risk allele frequencies in cases and

controls. A nonlinear function of risk allele frequencies in

cases and controls is Shannon entropy. Shannon entropy,

originally defined in statistical physics and information

theory (Cover and Thomas 1991; Greiner et al. 1995), is

used to measure the uncertainty removed or the informa-

tion gained by performing an experiment. When it is

applied to characterize DNA variation, entropy measures

genetic diversity and extracts the maximal amount of

information for a set of SNP markers (Hampe et al. 2003).

The difference between cases and controls in entropy of the

SNP markers is a measure of the association of the markers

with diseases (Zhao et al. 2005). In this paper we propose a

statistic based on entropy with high power for joint analysis

for two-stage genome-wide association studies.

The main purpose of this article is to develop an

entropy-based statistic with high power that is based on the

nonlinear transformation of risk allele frequencies for joint

analysis for two-stage genome-wide association studies.

We compare the power among one stage analysis, linear

joint analysis and entropy-based nonlinear joint analysis by

simulation studies. To demonstrate that amplification of the

differences in allele frequencies by a nonlinear test statistic

will not cause false-positive problems, we investigate the

type I error rates of the entropy-based nonlinear test sta-

tistic in a single-locus association test by simulations.

Finally, we compare the power of linear joint analysis with

that of entropy-based joint analysis when the same false

discovery rate is controlled. From these results, we rec-

ommend we should use entropy-based joint analysis for

genome-wide association studies.

Methods

We consider evaluating M markers using a case-control

design, where the N cases and N controls are all unrelated

individuals. Further, we assume that the markers are not in

strong linkage disequilibrium with each other, hence the

markers can be considered independent, and that the alleles

in one locus are in Hardy–Weinberg equilibrium(HWE).

We test every marker in a proportion (psamples) of samples

in stage 1 and select approximately M � pmarkers markers

for genotyping on the remaining N · (1 � psamples) cases

and controls in stage 2.

Denote Z1 and Z2 to be the test statistics of a marker at

stage 1 and stage 2, and C1 and C2 to be the critical values

for stage 1 and stage 2, respectively. We denote P0 (�) and

PA (�) to be the probabilities of an event under the null and

alterative hypotheses, respectively. Then from Satagopan

et al. (2002, 2003, 2004), we know that the false-positive

rate for a marker when using a two-stage strategy is

amarkers ¼ agenome=M ¼ P0ðZ1 [ C1ÞP0ðZ2 [ C2jZ1 [ C1Þ;

where agenome is any desired genome-wide false-positive

rate (type I error rate). The power of the two-stage strategy

is the probability of selecting a disease locus under the

alternative hypothesis, which is

Power ¼ PAðZ1 [ C1; Z2 [ C2Þ
¼ PAðZ1 [ C1ÞPAðZ2 [ C2jZ1 [ C1Þ:

Denote P̂A
1 and P̂U

1 to be the estimated risk allele

frequencies in cases and controls in stage 1, respectively.

The test statistic is defined in Skol et al. (2006)

Z1 ¼
P̂A

1 � P̂U
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðP̂A
1 ð1� P̂A

1 Þ þ P̂U
1 ð1� P̂U

1 ÞÞ=ð2NpsamplesÞ
q :

Under the null hypothesis of no association, and when a

large number of samples Npsamples is genotyped in stage

1, Z1 follows a normal distribution with mean 0 and

variance 1. We can determine a threshold C1 for selecting

markers for follow-up such that PðjZ1j[ C1Þ ¼ pmarkers:

Under the alternative hypothesis, the statistic Z1 in large

samples follows an approximate normal distribution with

mean

l1 ¼
PA � PU

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðPAð1� PAÞ þ PUð1� PUÞÞ=ð2NpsamplesÞ
p

and variance 1, where PA and PU are the risk allele fre-

quencies in cases and controls.
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Entropy-based joint analysis

In statistical physics and information theory, entropy

measures the uncertainty of random variables or the degree

of non-structure within a system (Cover and Thomas 1991;

Greiner et al. 1995). The entropy of a discrete variable or a

system X is defined as:

SðXÞ ¼ �
X

i

pðxiÞ log pðxiÞ;

where p(xi) = Prob(X = xi). Entropy can be used to measure

DNA variations at disease genes underlying a complex

disease (Ackerman et al. 2003; Hampe et al. 2003; Zhao

et al. 2005).

The entropies of risk allele at one marker in cases and

controls are defined as SA = � pA log pA and SU = � pU log

pU, respectively.

Then the new entropy-based test statistic for an associ-

ation test is defined as:

Ze ¼ ŜA � ŜU

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P̂Að1�P̂AÞð1þlog P̂AÞ2
2NA þ P̂Uð1�P̂UÞð1þlog P̂UÞ2

2NU

q ;

where ŜA; ŜU ; P̂A; P̂U are the estimators of SA, SU, PA, and

PU, respectively.

From theorem 1.9 (Lehmann 1983), we know that the

statistic Ze is asymptotically distributed as a normal dis-

tribution with mean 0 and variance 1 under the null

hypothesis of no association. Under the alterative hypoth-

esis of association, Ze is asymptotically distributed as a

normal distribution with mean

le ¼ SA � SU

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PAð1�PAÞð1þlog PAÞ2
2NA þ PUð1�PUÞð1þlog PUÞ2

2NU

q ;

and variance 1.

In stage 1, the statistic for entropy-based joint analysis

when NU = NA = N is

Ze
1¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Npsamples

p

ðŜA�ŜUÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P̂Að1�P̂AÞð1þlogP̂AÞ2þP̂Uð1�P̂UÞð1þlogP̂UÞ2
q :

Under the null hypothesis of no association, and when a

large number of samples Npsamples is genotyped in stage 1,

Z1
e follows a normal distribution with mean 0 and variance

1. The threshold Ce
1¼U�1ð1�pmarkers=2Þ is determined for

selecting markers for follow-up genotyping. So the

probability that a marker will be selected for stage 2

genotyping is

Pe
1 ¼ 1� UðCe

1 � le
1Þ þ Uð�Ce

1 � le
1Þ;

where le
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Npsamples

p
ðSA�SUÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PAð1�PAÞð1þlog PAÞ2þPUð1�PUÞð1þlog PUÞ2
p : Simi-

larly, an analogous statistic Z2
e is calculated using genotype

data only from stage 2.

In stage 2, the entropy-based statistic Ze
joint is calculated

using genotype data from both stages 1 and 2 as

Ze
joint ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

psamples
p

Ze
1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� psamples

p

Ze
2:

Conditional on the observed stage 1 statistic Z1
e = x, the

statistic for joint analysis Ze
joint follows an approximate

normal distribution in large samples with mean

le
joint¼

ffiffiffiffiffiffi

2N
p

ðSA�SUÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PAð1�PAÞð1þlogPAÞ2þPUð1�PUÞð1þlogPUÞ2
q

þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

psamples
p ðx�le

1Þ

and variance 1 � psamples. Under the null hypothesis of no

association, le
joint ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

psamples
p

x: The critical value Ce
joint can

be calculated iteratively by finding the threshold that satis-

fies P0ð Ze
joint

�

�

�

�

�

�
[ Ce

jointj Ze
1

�

�

�

�[ Ce
1Þ ¼ agenome

�

ðMpmarkersÞ:
The probability of detecting association in stage 2 in an

entropy-based joint analysis is

Pe
joint ¼ PAð Ze

joint

�

�

�

�

�

�
[ Ce

jointj Ze
1

�

�

�

�[ Ce
1Þ

¼
Z 1

Ce
1

PAð Ze
joint

�

�

�

�

�

�
[ Ce

jointj Ze
1

�

�

�

� ¼ xÞf ðxj Ze
1

�

�

�

�[ Ce
1Þdx

þ
Z �Ce

1

�1
PA Ze

joint

�

�

�

�

�

�
[ Ce

jointj Ze
1

�

�

�

� ¼ x
� �

f xj Ze
1

�

�

�

�[ Ce
1

� �

dx

¼
Z

jxj[ Ce
1

Z

yj j[ Ce
joint

1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� psamples

p

½1� UðCe
1 � le

1Þ þ Uð�Ce
1 � le

1Þ�

exp �ðy� le
0Þ

2 � 2psamplesðx� le
1Þðy� le

0Þ þ ðx� le
1Þ

2

2ð1� psamplesÞ

 !

dxdy;
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where

le
0¼

ffiffiffiffiffiffi

2N
p

ðSA�SUÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PAð1�PAÞð1þ logPAÞ2þPUð1�PUÞð1þ logPUÞ2
q :

The power of entropy-based joint analysis for two-stage

genome-wide association studies is

Disease models

Denote genotype relative risks (GRRs) to be R1 and R2,

the disease prevalence to be Prev, and the risk allele

frequency to be Pd. Then the disease penetrances fi ¼
Pðaffectedji copies of d alleleÞ ð0� i� 2Þ are

f0 ¼ Prev=ðð1� PdÞ2 þ 2Pdð1� PdÞR1 þ P2
dR2Þ;

f1 ¼ f0R1; f2 ¼ f0R2:

Therefore

PðddjCasesÞ ¼ f2P2
d

Prev
;

PðDdjCasesÞ ¼ 2f1ð1� PdÞPd

Prev
;

PðDDjCasesÞ ¼ f0ð1� PdÞ2

Prev
;

PðddjControlsÞ ¼ ð1� f2ÞP2
d

1� Prev
;

PðDdjControlsÞ ¼ 2ð1� f1Þð1� PdÞPd

1� Prev
;

PðDDjControlsÞ ¼ ð1� f0Þð1� PdÞ2

1� Prev
:

So, risk allele frequencies at a marker locus in cases and

controls can be achieved respectively as

f2P2
d

Prev
þ f1ð1�PdÞPd

Prev
and
ð1� f2ÞP2

d

1�Prev
þ ð1� f1Þð1�PdÞPd

1�Prev
:

Results

In order to apply the entropy-based statistic to genome-

wide association studies, we first examined the property of

this test statistic in the simple case, single-locus case-

control association studies. In the methods, we have shown

that when the sample size is large enough to apply large-

sample theory, the distribution of the entropy-based

statistic under the null hypothesis of no association is

asymptotically a normal distribution. To examine whether

the asymptotic result of the entropy-based test statistic still

holds for a small sample size, 200 individuals were ran-

domly generated. A total of 10,000 simulations were

performed. In each simulation, we calculated the entropy-

based test statistic Ze.

Table 1 summarizes the estimated type I error rates of

the test statistic Ze for sample sizes from 100 to 500

individuals for association test. It shows that the estimated

type I error rates of the test statistic Ze are not appreciably

different from the nominal levels a = 0.05, a = 0.01, and a
= 0.005. Table 2 summarizes the power of the entropy-

based statistic in single-locus association studies for

sample sizes from 100 to 500 individuals, using a multi-

plicative model with R1 = 1.60 and R2 = 2.56 and disease

prevalence of 0.10. It shows that the power of entropy-

based test is higher than that using a linear function of risk

allele frequency.

Z

jxj[ Ce
1

Z

yj j[ Ce
joint

1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� psamples

p exp �ðy� le
0Þ

2 � 2psamplesðx� le
1Þðy� le

0Þ þ ðx� le
1Þ

2

2ð1� psamplesÞ

 !

dxdy:

Table 1 Evaluated type I error rates for the test statistic Ze in single-

locus association test (10,000 simulations)

Sample size Type I error rates for nominal level

a = 0.05 a = 0.01 a = 0.005

100 0.0500 0.0113 0.0062

150 0.0493 0.0090 0.0053

200 0.0547 0.0103 0.0059

250 0.0484 0.0109 0.0058

300 0.0488 0.0106 0.0050

350 0.0511 0.0099 0.0043

400 0.0516 0.0120 0.0063

450 0.0520 0.0119 0.0062

500 0.0492 0.0110 0.0050
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Now we apply the new statistic to joint analysis for two-

stage genome-wide association studies. First, we compare

the powers of one-stage, linear joint analysis and entropy-

based nonlinear joint analysis at agenome = 0.05 for a wide

range of proportions (psamples) of samples in stage 1,

proportions ðpmarkersÞ of markers selected for follow-up

genotyped in stage 2 and four different genetic models with

risk allele frequencies 0.05 and 0.10. All the results show

that entropy-based nonlinear joint analysis is more pow-

erful and a more efficient design for genome-wide

association studies (Figs. 1, 2).

We then investigate the power of nonlinear joint anal-

ysis as a function both of frequencies of risk allele under

multiplicative genetic models (Fig. 3) and of proportions

ðpmarkersÞ of markers selected for follow-up detection in

stage 2 (Fig. 4). We find that the power of the entropy-

based joint analysis is always higher than linear joint

analysis when the frequency of risk allele is small. How-

ever, as the frequency of risk allele increases, the powers of

these two joint analyses are comparable.

We also investigate the samples sizes needed to detect

the genetic variants with different effect sizes (Fig. 5) by

linear and entropy-based joint analyses in two-stage design.

The sample size needed for entropy-based joint analysis is

Table 2 Power of the test statistic Ze in single-locus association

study (10,000 simulations)

PA � PU 2% 3% 4% 5%

100 LF 0.1793 0.2492 0.3021 0.3456

Entropy 0.1941 0.2538 0.3180 0.3472

300 LF 0.4236 0.5858 0.7042 0.8010

Entropy 0.4241 0.6106 0.7184 0.8066

500 LF 0.6404 0.8090 0.9035 0.9531

Entropy 0.6424 0.8180 0.9086 0.9553

Uses a multiplicative model with R1 = 1.60 and R2 = 2.56 and risk

allele frequencies Pd � 0.10 and disease prevalence of 0.10. The

significant level is 0.05
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Fig. 1 Power of linear and entropy-based joint analyses with 2,000 cases and 2,000 controls genotyped on 300,000 independent markers with

agenome = 0.05. Using a multiplicative genetic model with R1 = 1.40 and R2 = 1.96 and disease prevalence of 0.10
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less than that needed for linear joint analysis to get the

same power. For obtaining power of 80%, for the genetic

variants Pd = 0.10 with modest and large effect sizes at a

multiplicative model, we suppose the sample size are

respectively to be 2,540 and 1,227 for genetic variants with

effect sizes GRR = 1.4 and 1.6, respectively.

When controlling the false discovery rate, we compare

the power of linear and entropy-based joint analyses in

two-stage genome-wide association studies as a function of

the difference of risk allele frequencies between cases and

controls (Fig. 6). The power of entropy-based joint analysis

is higher than that of the linear joint analysis controlling

the same false discovery rate when detecting the genetic

variants with a small frequency. It makes sense if we want

to attain the same power for two joint analyses, then the

false positive rate of linear joint analysis will increase. For

example, the false-positive rate increases from 0.05 to

nearly 0.10 when the same power in two joint analyses is

achieved for psamples ¼ 0:30; p ¼ 0:01; GRR = 1.60, and

PA � PU = 0.04.

In Table 3, we compare the power of entropy-based

joint analysis with that of the linear joint analysis under

four different genetic models. We find that the powers of

entropy-based joint analysis are 2% higher than that of the

linear joint analysis under the risk allele frequency of 0.05

by simulations. In Table 4, we evaluate the sample size

needed in entropy-based joint analysis, and it shows that

there are fewer samples needed in entropy-based joint

analysis than that needed in linear joint analysis. In

Table 5, we compare the power of linear and entropy-based

joint analyses when controlling the false discovery rate for

the fixed allele frequency difference between cases and

controls. We can find that the false discovery rate of linear

joint analysis increases from 0.05 to 0.1 when getting a

power of 0.93 compared with the entropy-based joint

analysis. All results show that the entropy-based analysis is
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Fig. 2 Power of linear and entropy-based joint analyses with 2,000

cases and 2,000 controls genotyped on 300,000 independent markers

with agenome = 0.05 under four different genetic models and disease

prevalence of 0.10. Dominant model: R1 = 1.60, R2 = 1.60; recessive

model: R1 = 1, R2 = 6; multiplicative model: R1 = 1.60, R2 = 2.56;

additive model: R1 = 1.50, R2 = 2
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more powerful and needs fewer samples for attaining the

same power and achieving the same false discovery rate.

These make sense, as entropy-based joint analysis uses a

nonlinear function of risk allele frequencies so that it

makes full use of data information from all samples.

Discussion

We have shown that the entropy-based joint analysis for

two-stage genome-wide association design is a more effi-

cient and more powerful strategy to identify genetic

variants with variant effect sizes associated with a disease

when testing a large number of markers using unrelated

case-control samples. For achieving an overall power of

90% when detecting genetic variants both with small fre-

quency and with small to large effects, the sample size

needed in entropy-based joint analysis is about 30 fewer

than that needed in linear joint analysis.

Genome-wide disease-association mapping has been

herald as the study design of the next generation (Marchini

et al. 2005); two-stage designs have been a promising

strategy for genome-wide association studies, but the lack

of analytical methods to use genotype data fully and suf-

ficiently is a large stumbling block (Lin et al. 2004). So, we

should commit ourselves to find more powerful and more

efficient methods (or statistics) in the near future. The

traditional test statistic in Skol et al. (2006) is a linear
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Fig. 3 Power of linear and entropy-based joint analyses as a function

of the frequencies of risk allele with 2,000 cases and 2,000 controls

genotyped on 300,000 markers with agenome = 0.05; it uses two

multiplicative genetic models (R1 =1.50, R2 = 2.25 and R1 = 1.70,

R2 = 2.89) and disease prevalence of 0.10
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Fig. 4 Power of linear and entropy-based joint analyses as a function

of pmarkers with 2,000 cases and 2,000 controls genotyped on 300,000

markers with agenome = 0.05; it uses dominant (R1 = 1.60, R2 = 1.60)

and multiplicative (R1 = 1.40, R2 = 1.96) genetic models with disease

prevalence of 0.10 and risk allele frequency of 0.10
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function of (PA � PU) in risk allele frequencies between

cases and controls. Here, we introduce a nonlinear function

of risk allele frequencies in cases and controls, entropy, (SA

� SU) to develop novel test statistics with high power for

detecting the genetic variants underlying the disease.

We investigate the distribution of a nonlinear entropy-

based statistic under the null hypothesis by simulation

studies. To validate the test statistic, we calculate the type I

error rates of the entropy-based statistic by simulations. It

shows that the type I error rates of the entropy-based sta-

tistic are close to the nominal significance levels. To

evaluate the performance of the entropy-based joint anal-

ysis, we compare the power of the entropy-based statistic in

single-locus association study with that of the statistic

using linear function of risk allele frequencies in cases and

controls by simulations. The results show that the entropy-

based statistic has a higher power than the statistic using

the linear function of risk allele frequencies in cases and

controls. However, since the power of the statistic is a

complex issue, there is not one statistic that is uniformly

more powerful (Zhao et al. 2006). The entropy-based

analysis is also not more powerful in all situations. When a

large difference of rare risk allele frequencies between

cases and controls appears, that is, |PA � PU | > 0.07, the

linear joint analysis is more powerful than the entropy-

based joint analysis when detecting rare genetic variants
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Fig. 5 Power of linear and entropy-based joint analyses with variant

sample sizes on 300,000 independent markers with agenome = 0.05. It

uses two multiplicative models with R1 = 1.40, R2 = 1.96 and

R1 = 1.60, R2 = 2.56 respectively and prevalence = 0.10, risk allele

frequency of 0.10
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controlling the same false discovery rate, with sample size 2,000

cases and 2,000 controls on 300,000 independent markers. It uses dom-

inant (R1 = 1.60, R2 = 1.60) and multiplicative (R1 = 1.60, R2 = 2.56)

models, prevalence = 0.10, psamples = 0.30 and pmarkers ¼ 0:01
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with variant genetic effects. However, these differences in

rare risk allele frequencies between cases and controls are

practically unrealistic in real-world studies of rare variants/

common diseases.

Subsequently, we apply the entropy-based statistic to

two-stage genome-wide association studies. We compare

the power of entropy-based nonlinear joint analysis with

that of the linear joint analysis by simulations. The results

show that the power of the entropy-based joint analysis is

higher than the power of the linear joint analysis in most

cases when detecting rare genetic variants with variant

genetic effects. However, entropy is one of the nonlinear

transformations of risk allele frequencies between cases

and controls. The general forms of nonlinear transforma-

tions f(PA, PU) of risk allele frequencies in cases and

controls should be investigated in the future.

Here we have described entropy-based joint analysis for

two-stage genome-wide association studies using inde-

pendent genetic markers. But this assumption will be

violated when some markers are in linkage disequilibrium.

For two genetic variants each with a small effect, we

should consider the interaction between loci in genome-

wide association studies when they contribute modest or

large effects in combination. This will be an inevitable and

promising field for genome-wide association studies.

The simulations show that for a given sample size, we

should genotype half of the individuals on all markers in

the first stage and select the 5% of markers for follow-up

genotyping in the second stage using the entropy-based

statistic, which provides a practical cost-effective strategy

to search for rare genetic variants in association studies.

The simulations also show that for searching for rare

genetic variants with moderate effects (R1 = 1.4, 1.6), the

sample size is approximately 2,000 for the fixed rare allele

frequency difference (4%, 5%) by using the entropy-based

joint analysis.

In multiple tests, there is an increasing trend to use a

false discovery rate as a measure of global error instead of

using overall type I error rate. This article compares the

power of entropy-based joint analysis with that of linear

joint analysis controlling the false discovery rate when its

level is set to be the same, which is usually done in the

literature (Benjamini and Hochberg 1995; Zou and Zuo

2006; Zuo et al. 2006). The results also show that entropy-

based joint analysis leads to higher power than linear joint

analysis when controlling the same false discovery rate,

which makes sense.

In conclusion, numerous genome-wide association

studies for a range of diseases are being planned or are

already underway. Developing new statistical methods that

Table 3 Power of entropy-based joint analyses for two-stage

genome-wide association studies under four genetic models

Models R1 R2 psamples pmarkers Power

LF Entropy

Dominant 1.5 1.5 1 0.05 0.62 0.64

0.5 0.62 0.64

0.3 0.59 0.61

Recessive 1 11 1 0.05 0.76 0.77

0.5 0.76 0.77

0.3 0.73 0.75

Multiplicative 1.5 2.56 1 0.05 0.81 0.82

0.5 0.80 0.82

0.3 0.77 0.79

Additive 1.5 2 1 0.05 0.72 0.73

0.5 0.71 0.73

0.3 0.68 0.70

There are 3,000 cases and 3,000 controls genotyped on 300,000

independent markers, the significance level of two-stage genome-wide

design is 0.05 and uses a risk allele frequency of 0.05 and disease

prevalence of 0.10

R1 = P(Affected|Dd)/P(Affected|DD), R2 = P(Affected|dd)/P(Affec-
ted|DD); LF, represents linear joint analysis based on a linear function

of risk allele frequencies in cases and controls (all the ‘‘LF’’ in the

following have the same meaning as this one and we will omit this)

Table 4 Sample size to attain the desired significance level of two-

stage genome-wide design 0.05 and power of 80% for various rare

allele frequency differences and population allele frequencies

PA � PU

(%)

R1 = 1.30 R1 = 1.40 R1 = 1.60

LF Entropy LF Entropy LF Entropy

3 4,337 4,319 3,285 3,248 2,331 2,269

4 – – 2,340 2,324 1,754 1,713

5 – – – – 1,410 1,385

Where all samples are genotyped on 300,000 independent markers,

psamples ¼ 0:50;pmarkers ¼ 0:01; and use a multiplicative model (R2 =

R1
2) with risk allele frequencies Pd � 0.10 and with disease preva-

lence of 0.10

– Means that such differences in rare risk allele frequencies between

cases and controls are practically impossible to appear in a real world

Table 5 Power of entropy-based joint analyses for two-stage gen-

ome-wide association studies when controlling FDR

PA � PU

(%)

FDR = 0.10 FDR = 0. 05 FDR = 0.01

LF Entropy LF Entropy LF Entropy

2 0.22 0.24 0.19 0.21 0.13 0.14

3 0.60 0.63 0.57 0.60 0.50 0.53

4 0.83 0.85 0.82 0.84 0.79 0.81

5 0.93 0.93 0.92 0.93 0.92 0.92

Where 2,000 cases and controls are genotyped on 300,000 indepen-

dent markers, psamples ¼ 0:30;pmarkers ¼ 0:01; : It uses a multiplicative

model with R1 = 1.40 and R2 = 1.96 and a disease prevalence of 0.10

FDR false discovery rate
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can deal with such large-scale studies is urgently needed to

explore the etiology of complex diseases. Two-stage

designs are more efficient and powerful, comparable to the

one stage design. The results in this paper show that the

entropy-based joint analyses are more powerful and need

fewer samples for attaining the same power and achieving

the same false discovery rate. Therefore, we suggest that

we should use entropy-based joint analysis for two-stage

genome-wide association studies.
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