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Abstract Genetic variations in the Calpain-10 gene,
CAPN10, have been reported to be associated with the
risk of type 2 diabetes mellitus (T2DM) in Mexican-
Americans and Northern Europeans whereas these
variations are not associated with T2DM in other pop-
ulations. The aim of this study was to determine whether
there is an association between specific CAPN10 diplo-
type (SNP-43, -19, and -63) and T2DM in the Korean
population. Overall, 454 Korean patients with T2DM
(male 230, female 224) and 236 non-diabetic controls
(male 124, female 112) with no family history of diabetes
were enrolled in this study. All the subjects were geno-
typed according to CAPN10 SNP-43, -19, and -63. The
restriction fragment length polymorphism method was
used for the three SNPs. There were eight estimated
haplotype allelic variations. After adjusting for gender
and age, the 111 haplotype was associated with a high
risk of T2DM (P <0.0001). The 111/121 diplotype
was associated with a high risk of T2DM (odds

ratio =2.580, 95% confidence interval =1.602–4.155,
P =0.001). The high-risk haplotype (112/121) in Mexi-
can-Americans was not significant in our study popu-
lation. In conclusion, we found that a novel 111/121
diplotype in Calpain-10 gene is associated with T2DM in
the Korean population.
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Introduction

Type 2 diabetes mellitus (T2DM) is a complex metabolic
disease in which multiple genetic effects and metabolic
and environmental factors contribute to pathogenesis
(McCarthy 2004). A genome-wide search for T2DM
genes in Mexican-Americans identified a susceptibility
locus on chromosome 2q37.3, NIDDM1, for T2DM
(Hanis et al. 1996). Horikawa et al. (2000) identified the
Calpain-10 Gene [CAPN10 (MIM 605286)] by fine
mapping and positional cloning as a putative T2DM
susceptibility gene. CAPN10 is comprised of 15 exons
spanning 31 kb of genomic sequence and encodes a 672-
amino-acid intracellular protease. The allele combina-
tion of CAPN10 (SNP-43, -19, and -63), is reported to be
associated with increased risk of T2DM in many popu-
lations (Horikawa et al. 2000; Cassell et al. 2002; Elbein
et al. 2002; Lynn et al. 2002; Malecki et al. 2002; Iwasaki
et al. 2005), although this is somewhat controversial
(Tsai et al. 2001; Daimon et al. 2002; Fingerlin et al.
2002; Chen et al. 2005; Wu et al. 2005). The 112/121
diplotype of CAPN10 is associated with a 3-fold increase
in the risk of contracting T2DM in Mexican-Americans
and in Northern European populations (Horikawa et al.
2000). However, the associations between these genetic
variants of CAPN10 and diabetes have not been consis-
tently observed in other populations, including Japanese
(Evans et al. 2001; Tsai et al. 2001; Rasmussen et al. 2002;
Horikawa et al. 2003; del Bosque-Plata et al. 2004).
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Further studies in other racial populations are still nee-
ded to confirm the role ofCAPN10 polymorphisms in the
pathogenesis of T2DM. The aim of this study was to
determine whether there is any association between spe-
cific CAPN10 polymorphisms and increased T2DM risk
in the Korean population.

Materials and methods

Subjects and study design

The study population consisted of 454 unrelated subjects
with T2DM and 236 non-diabetic controls. The diag-
nosis of T2DM was made according to the criteria of the
WHO (2003). The age at onset of T2DM in the diabetic
subjects was <60 years. In order to rule out type 1 or
maturity-onset diabetes of the young, the following were
excluded from this study: subjects diagnosed before they
were 25 years old or subjects receiving insulin therapy
within 3 years of the onset of diabetes. The non-diabetic
control population consisted only of individuals with a
normal fasting glucose level (< 100 mg/dl), no family
history of diabetes and who were older than 60 years
old. Subjects with late onset (>60 years old) T2DM and
younger non-diabetic controls (<60 years old) were
excluded from the examination to increase genetic
power. The study was approved by the Institutional
Review Board of Inha University Hospital, and written
informed consent was obtained from all participants.

Data collection

The patients’ medical and family histories were recorded.
Their blood pressure, height, and weight were measured.
Blood samples were collected after an overnight fast to
determine fasting plasma glucose, HbA1c, total choles-
terol, high-density lipoprotein (HDL)-cholesterol, and
triglyceride levels. Concentrations of fasting plasma
glucose, total cholesterol, and triglyceride levels were
determined using an enzymatic colorimetric assay. The
HDL-cholesterol concentration was measured using
lipoprotein electrophoresis. The low-density lipoprotein
(LDL)-cholesterol level was calculated using the Friede-
wald formula (Friedewald et al. 1972). The HbA1c value
was determined using high-performance liquid chroma-
tography (Greencross, Seoul, Korea). The homeostasis
model assessment of insulin resistance (HOMA-IR) was
calculated by {[fasting insulin (lU/ml) · fasting glucose
(mmol/l)]/22.5}. The HOMA-beta cell function was cal-
culated by [20 · fasting insulin (lU/ml)/fasting glucose
(mmol/l)�3.5] (Matthews et al. 1985; Kang et al. 2005a).

Genotyping analysis

Three polymorphisms in CAPN10 were genotyped for
haplotype analyses as described previously (Evans

et al. 2001; Horikawa et al. 2003): SNP-43 (g.4852,
G>A, rs3792267), SNP-19 (g.7920 in/del32bp,
rs3842570), and UCSNP-63 (g.1637C>T, rs5030952).
The alleles were designated as described by Horikawa
et al. (2000). A polymerase chain reaction was performed
with genomic DNA using a sense primer, 5¢-CACGCTT
GCTGTGAAGTAATGC-3¢, and an antisense down-
stream primer, 5¢-CTCTGATTCCCATGGTCTGT
AG-3 for SNP-43, 5¢-GTTTG GTTCTCTTCAGCGTG
GAG-3¢ and 5¢-CATGAACCCTGGCAGGGTCTA
AG-3¢ for SNP-19, and 5¢-AGCACTCCC AGCTCCT-
GATC-3¢ and 5¢-AAGGGGGGCCAGGGCCTGACG
GGGGTGGCG-3¢¢ for SNP-63. NsiI (Promega, Madi-
son, WI) andHhaI (Takara Bio, Shiga, Japan) were used
to perform restriction fragment length polymorphism
analysis.

Statistical analysis

Genotypic distributions were tested for deviation from
the Hardy–Weinberg equilibrium using the chi-square
goodness-of-fit test. A comparison of variables between
the groups of genotypes was performed using a two-
tailed Student’s t-test. Statistical differences in the
genotype frequencies between T2DM subjects and the
controls were assessed by a chi-square test. In diplotype
analysis, odds ratio (OR) and 95% confidence interval
(CI) were calculated by comparing each diplotype with
all the other diplotypes as a group. The OR and 95% CI
for the various genotypes were calculated using Fisher’s
exact test. Statistical analysis of triglyceride, HDL-cho-
lesterol, and LDL-cholesterol levels was performed
using log-transformed values because the distribution
was not normal. Pairwise linkage disequilibrium (LD)
between three Calpain-10 loci was assessed using SAS
Genetics (version 9.1, SAS Institute, Cary, NC) statis-
tical package. Haplotype frequencies created by these
three SNPs were inferred by a maximum likeli-
hood method using the Haplotyper program (http://
www.people.fas.harvard.edu/�junliu/Haplo/) (Niu et al.
2002; Kang et al. b). Haplotype distributions were
analyzed by a likelihood-ratio test. Statistical power was
computed using a power calculator program (http://
calculators.stat.ucla.edu/powercalc/). P values <0.05
were considered significant.

Results

A total of 454 unrelated subjects with T2DM and 236
non-diabetic controls were genotyped. There were no
gender differences between the two groups. HbA1c,
fasting plasma insulin, HOMA-IR, and HOMA-beta
cell values in the diabetic patients were 8.4±3.3%,
83.23±95.43 pmol/l, 4.2±5.4, and 62.7±79.9, respec-
tively. The body mass index (BMI) and blood pressure
were higher in the diabetes patients than that in the non-
diabetic controls (Table 1). The diabetes group showed
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higher serum triglyceride levels and lower HDL-choles-
terol levels than the control group. There was no sig-
nificant difference in the frequency of SNP-43, -19, and -
63 between the diabetic patients and the non-diabetic
controls, which is in agreement with previous studies
(Table 2) (Horikawa et al. 2000; Daimon et al. 2002).
The distribution of each allele did not significantly
deviate from Hardy–Weinberg equilibrium (Table 2).
The Haplotyper program (Stephens et al. 2001) esti-
mated the haplotype allelic distributions and identified
eight alleles (Table 3). Haplotype frequencies were
47.7% for 121, 19.2% for 112, 14.7% for 111, 9.5% for
122, and 6.7% for 221. The most common haplotype in
this study was 121, which is in agreement with other
previous studies (Horikawa et al. 2000; Cassell et al.
2002; Fingerlin et al. 2002; Malecki et al. 2002; Wu et al.
2005). Calculations of the LD showed a weak positive
LD between these SNPs (Table 4). LD among the three
markers (D¢) ranged from 0.2383 to 0.5464 (average
pairwise D¢ of 0.4423). Likelihood-ratio test revealed
that 111 haplotype showed a high risk of T2DM
(P <0.0001; Table 3). The 121/121 diplotype was asso-
ciated with significantly decreased risk of T2DM
(OR=0.660, 95% CI =0.460–0.948, P =0.029, pow-
er =63.5%; Table 5). The subjects with 111/121 diplo-
type showed a high risk of T2DM (OR =2.580,
95% CI =1.602–4.155, P <0.001, power =78.7%;

Table 5). The 112/121 diplotype, which is reported to be
associated with T2DM in Mexican-American and
Northern European population (Horikawa et al. 2000;
Cox et al. 2004), was not significant in this study.

Discussion

We previously reported that 111/121 diplotype is asso-
ciated with metabolic syndrome in patients with T2DM
(Kang et al. 2006). In this study we investigated whether
the 111/121 diplotype is associated with diabetes or not.
Our results show that a novel 111/121 diplotype, defined
by the three polymorphic alleles designated SNP-43, -19,
and -63 of CAPN10, is associated with increased risk of
T2DM in the Korean population. This study also sug-
gests that subjects homozygous for the 121 haplotype
have a reduced risk of T2DM. Although Horikawa et al.
demonstrated that the 112/121 diplotype confers the
highest risk of diabetes in Mexican-Americans
(OR =2.8) (Horikawa et al. 2000; Cox et al. 2004), we
found no significant association between the 112/121
diplotype and increased susceptibility to T2DM
(OR =0.693, P =0.077). Wu et al. (2005) reported that
112/221 was associated with a reduced risk of T2DM in
a Chinese population (OR =0.39). We did not find a
reduced frequency of this diplotype 112/221 in the

Table 1 Clinical characteristics
of the study population. BMI
Body mass index, SBP systolic
blood pressure, DBP diastolic
blood pressure, FPG fasting
plasma glucose, LDL low-
density lipoprotein, HDL high-
density lipoprotein

P value by Student’s unpaired
t-test
aP value by chi-square test
bP values calculated from log-
transformed data

Diabetic Control P

Number of subjects (M/F) 454 (230/224) 236 (124/112) 0.689a

Age (years) 53.3 ± 11.0 62.6 ± 5.1 <0.001
BMI (kg/m2) 24.4 ± 3.5 23.8 ± 2.7 <0.01
SBP (mmHg) 134.3 ± 19.1 129.7 ± 16.4 <0.001
DBP (mmHg) 82.4 ± 10.5 79.6 ± 9.1 <0.001
FPG (mmol/l) 8.3 ± 2.5 5.1 ± 0.5 <0.001
Total cholesterol (mmol/l) 5.15 ± 1.03 5.08 ± 0.85 0.392
Triglyceride (mmol/l) 2.52 ± 1.39 1.87 ± 1.06 <0.001b

LDL-cholesterol (mmol/l) 3.16 ± 0.94 3.09 ± 0.82 0.338b

HDL-cholesterol (mmol/l) 1.17 ± 0.35 1.35 ± 0.32 <0.001b

Table 2 Allele and genotype frequencies of the CAPN10 SNPs.
Data are represented as mean ±SD. Alleles were designated as
described by Horikawa et al. (2000): SNP-43 allele 1 = G, allele
2 = A; SNP-19 allele 1 = 2R (two repeats of 32-bp sequences),

allele 2 = 3R (three repeats of 32-bp sequences); SNP-63 allele
1 = C, allele 2 = T. Haplotypes 211, 212, and 222 were not ob-
served. P value assessed by Hardy–Weinberg equilibrium chi-
square test

Allele Number (%) Genotype Number (%) P

Diabetic Control Diabetic Control

SNP-43 0.402
G 829 (91.3) 430 (91.1) G/G 388 (85.5) 198 (83.9)
A 79 (8.7) 42 (8.9) G/A 53 (11.7) 34 (14.4)

A/A 13 (2.8) 4 (1.7)
SNP-19 0.153
2R 331 (36.5) 149 (31.6) 2R/2R 50 (11.0) 20 (8.5)
3R 577 (63.5) 323 (68.4) 2R/3R 231 (50.9) 109 (46.2)

3R/3R 173 (38.1) 107 (45.3)
SNP-63 0.326
C 647 (71.3) 316 (66.9) C/C 253 (55.7) 120 (50.8)
T 261 (28.7) 156 (33.1) C/T 141 (31.1) 76 (32.2)

T/T 60 (13.2) 40 (17.0)
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T2DM group compared to the control group (OR=
0.518, P =0.072). The 121 haplotype was reportedly
associated with increased risk in European populations
(Malecki et al. 2002; Orho-Melander et al. 2002) while
being associated with a reduced risk in Japanese (Iwa-
saki et al. 2005). There was no significant association
between diabetic risk and the 121 haplotype in this
study; conversely, the 111 haplotype was shown to be
associated with an increased risk of T2DM in this study
(P <0.0042). Our study also showed that the common
121/121 diplotype appeared to be associated with pro-
tection from T2DM in our population (OR =0.660,
95% CI =0.460–0.948, P <0.001). We examined the
association between the CAPN10 SNP-44 genotype and

diabetes in a subset of our study population (96 diabetes
and 96 controls). We found no significant association
between CAPN10 SNP-44 and diabetes (P =0.0.817).

Calpain is a member of a family of calcium-activated
intracellular proteases. The CAPN10 gene is located on
chromosome 2q37, encodes at least eight alternative
splicing variants, and contains 15 exons spanning 31 kb.
Calpain-10 is expressed in many tissues such as the
heart, pancreas, brain, liver, skeletal muscle, and kidney
(Horikawa et al. 2000), and is essential for multiple
cellular functions. The exact molecular mechanisms of
how some polymorphisms in the CAPN10 increase
susceptibility to T2DM are unclear. However, the
polymorphisms of this gene most likely influence glucose
uptake in skeletal muscle and adipocytes (Paul et al.
2003; Ridderstrale et al. 2005; Turner et al. 2005) as well
as glucose-induced insulin secretion in pancreatic b cells
(Sreenan et al. 2001; Paul et al. 2003; Zhou et al. 2003;
Ridderstrale et al. 2005; Turner et al. 2005).

Most of the haplotype frequencies in our study are
similar to those reported by Horikawa et al. (2003) ex-
cept for the frequency of the significant haplotype 111
(diabetes 16.48% vs 12%; control 7.95% vs 9%). It is
possible that the younger age and increased obesity in
our population (53.3±11.0 years old vs 62.0±11.0 years
old; BMI, 24.4±3.5 kg/m2 vs 23.9±3.3 kg/m2) might
have contributed to this discrepancy. Additionally, late
onset (>60 years) diabetic subjects were excluded from
our study, and our study included a larger number of
diabetic subjects (454 vs 177) than the study of Horik-
awa et al. (2003). The susceptibility locus of the Mexi-
can-Americans, NIDDM1, may also contribute to the
development of T2DM in other populations, but each
study localized susceptibility to different regions of the
genome, which suggests that different combinations of
the susceptibility gene contribute to the development of
T2DM in each population.

In conclusion, we found that the novel 111/121
diplotype in the Calpain-10 gene is associated with an
increased risk of T2DM and that the 121/121 diplotype
was associated with a significantly decreased risk of
T2DM in the Korean population.
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