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Abstract The differences in medicinal drug responses
among individuals had been known for quite some time.
Some patients exhibit a life-threatening adverse reaction
while others fail to show an expected therapeutic effect.
Intermediate responses between the above two extreme
cases are also known. In fact, it has been recently re-
ported that approximately 100,000 deaths and more
than 2 million hospitalizations annually in the United
States are due to properly prescribed medications. This
interindividual variability could be due in part to
genetically determined characteristics of target genes or
drug metabolizing enzymes. This has now been sub-
stantiated by a variety of studies. We know that ‘‘one
size fits all’’ is not correct. Therefore, the application of
pharmacogenetic concepts to clinical practice is an
excellent goal in the postgenomic era. The successful
completion of the human genome project provided
necessary molecular tools, such as high-throughput SNP
genotyping, HapMap, and microarray, that can be ap-
plied to develop proper therapeutic options for indi-
viduals. Recently, there have been considerable
scientific, corporate, and policy interest in pharmaco-
therapy. However, identification of causal variations in a
target gene is only a starting point, and the progress in
this rapidly developing field is slower than expected. One
major drawback could be due to the multigene deter-
minant of drug response that requires a genome-wide
screening. Additionally, application of pharmacogenetic
knowledge into clinical practice requires a high level of
accuracy, precision (risk/benefit ratio), and strict regu-
lations. This is because the pharmacogenetic approach
raises several ethical, moral, and legal questions. It is
also necessary that both health professionals and the
general public must be urgently educated. Despite these
limitations, translation of pharmacogenomic data into

clinical practice would certainly provide better oppor-
tunities to increase the safety and efficacy of medicine in
the future.
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Introduction

It has been known for quite some time that there is a
large variation in drug response among individuals
(Meyer 2004). Some patients exhibit a life-threatening
adverse reaction while others fail to show an expected
therapeutic effect. Intermediate responses between the
above two extreme cases are also possible (Evans and
McLeod 2003). For instance, some schizophrenic pa-
tients treated with clozapine react adversely while others
fail to show therapeutic response. Similarly, there is an
association between clozapine response and polymor-
phism in dopamine receptors 3 (D3) and 4 (D4) as well as
5-hydroxytryptamine 2A and 5A genes. In fact, it has
recently been reported that approximately 100,000
deaths and more than 2 million hospitalizations annually
in the United States are due to properly prescribed
medications (Muehlberger et al. 1997; Lazarou et al.
1998; Gandhi et al. 2003; Dormann et al. 2004). Hence,
adverse drug reactions represent an important clinical
problem and a leading cause of death (Ament et al. 2000).

The successful completion of the human genome se-
quence has provided a unique opportunity to under-
stand drug efficacy and toxicity in the postgenomic era.
As a result, new excitement has been generated in bio-
medical science and two related fields, namely, phar-
macogenetics and pharmacogenomics, gained popularity
in late 1990s. Pharmacogenetics is the study of the
relationship between an individual’s genetic makeup
(mostly heritable variation in a single gene or a group of
genes) and the response to medicinal drugs whereas
pharmacogenomics investigates a large number of
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clinically important genes (entire genome) and their
expression that underlie the response to drugs (Hako-
narsson and Stefansson 2004; Hall et al. 2004). The
overall goal of these fields is to understand the rela-
tionships between heritable changes and interindividual
variation to drug response. In many cases, adverse drug
reactions are due to the poor metabolism of drugs in
some individuals compared with others, and this leads to
an elevated and harmful drug level in those individuals.
This type of metabolic difference could be due in part to
polymorphism in genes encoding drug-metabolizing en-
zymes (Weinshilboum 2003). As discussed below, accu-
mulated evidence does support this notion, and the
hypothesis is that an understanding of the genetic ma-
keup of an individual may provide an opportunity to
design safer and more efficient drugs suitable for each
person.

The necessary techniques are now available to carry
out this challenging task. For instance, many genes
contain multiple single nucleotide polymorphisms
(SNPs), and there is a large collection of SNPs now
available from the human genome project (http://
www.ncbi.nlm.nih.gov/SNP/snp_summary.cgi). There
are also several methods, such as high-throughput SNP
genotyping, tagging SNPs, HapMap, automated statis-
tical tools, and microarray, which can be applied to
search for genes that underlie disease susceptibility or
influence the response to drugs. Readers are requested to
consult the recent reviews for further discussion on these
methods (Gut 2001; Rodi et al. 2002; Goldstein et al.
2003; Shastry 2003, 2004; Freimuth et al. 2004; Hako-
narsson and Stefansson 2004; Lavedan et al. 2004; Ah-
madi et al. 2005). If we were to be successful in
developing genotype-based medicine, it may have a
maximum benefit for patients. In order to be successful,
however, it is crucial to find the functionally relevant
variation in genes encoding drug-metabolizing enzymes
and drug targets.

In order to achieve this goal, pharmacogenomics is
now focusing its interest in generating information that
can be useful in clinical development. This strategy in-
volves a comprehensive collection of epidemiological,
genetic, clinical, and genealogical information. By col-
lecting this type of information, it is possible to uncover
genes more effectively that predispose to disease, enrich
the population that is likely to respond to the study
drug, and eliminate the nonresponder (Hakonarsson
and Stefansson 2004). In this short report, I have at-
tempted to outline some of these aspects focusing pri-
marily on interindividual differences in drug responses
that are attributed to variants in certain drug-metabo-
lizing genes, most notably, CYP 450 alleles. Some
examples are also given for certain cancer and antiviral
drugs that are metabolized by these enzymes and are
known to have different responses among individuals.
The aspects discussed are not exhaustive, and they only
serve as examples. These studies show that application
of pharmacogenetics may significantly improve safer
drug development.

Genomic variation and drug metabolizing genes

Interindividual variation in drug metabolism is an
important aspect of drug therapy. This variability in
drug response and toxicity could be due to genetic fac-
tors, inhibitors, inducers, and dietary factors (lifestyle).
Genetic polymorphism (SNPs) in genes encoding drug-
metabolizing enzymes, drug transporters, and DNA re-
pair enzymes are present in populations (Table 1) and
have been shown to influence drug pharmacokinetics
(Thomas et al. 2004). For instance, cytochrome P450
(CYP) proteins are heme-containing enzymes that are
responsible for the oxidative metabolism of a variety of
endogenous and exogenous compounds (Ozdemir et al.
2000; Caraco 2004; Van Schaik 2004). While there are as
many as 57 CYP genes in humans, three of these are the
major isoforms (CYP3A4, CYP2D6, and CYP2C9) that
contribute to drug metabolism (Daly 2004; Smith et al.
2004). Among the members of the CYP3A subfamily,
the CYP3A5 gene is found to have extreme interpopu-
lational variability in allele frequency and haplotype
structure (Hustert et al. 2001; Kuehl et al. 2001; Lamba
et al. 2002; Thompson et al. 2004). This enzyme is ex-
pressed in the prostate, kidney, liver, and intestine and
metabolizes environmental carcinogens, endogenous
substrates, and prescription drugs. In some patients, it
may have a severely reduced activity (Table 1). Hence, it
is likely that it may contribute to the differential drug
responses among different individuals (Lamba et al.
2002). Because genetic polymorphism may predict vari-
able gene expression and hence variable drug response,
such an understanding of gene activity could improve
therapies with personalized dose adjustments (Woj-
nowski 2004) and help to preclude nonresponders, toxic
effects, and related hospitalization.

Additionally, among the members of CYP family, the
CYP2C9 and CYP2C19 gene polymorphisms have a
dramatic influence on the disposition of compounds
such as warfarin (coumadin), phenytoin (antiepileptic)
and sulfonylureas (antidiabetic). The most widely stud-
ied alleles are CYP2C9*2 (Arg144Cys) and CYP2C9*3
(Ile359Leu). Their frequencies also vary in different
populations (Llerena et al. 2004). Individuals carrying
CYP2C9*2 and CYP2C9*3 alleles have a lower daily
dose requirement of warfarin and are more susceptible
to adverse events (Aithal et al. 1999; Evans and Johnson
2001). This suggests that CYP2C9-genotype-based dos-
ing may be beneficial (Hung et al. 2004; Lee 2004; Kir-
chheiner and Brockmoller 2005). Similarly, ethnic
variations in CYP2A6 have been associated with slow
nicotine metabolism in certain populations (Schoedel
et al. 2004), and deficiency in CYP2D6 may cause
nonresponse to antidepressant treatment (Haller-Gloor
et al. 2004), indicating again that individualized treat-
ment is clinically useful. In the northern European
population, for instance, there exist three forms of
CYP2D6 called poor, extensive, and ultrarapid metab-
olizers. There are more than 70 polymorphisms and 70
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haplotypes that have been identified within the exonic
and promoter region of the CYP2D6 gene, and many of
these variations decrease CYP2D6 activity. Approxi-
mately 5–10% of the Caucasian population is deficient
in CYP2D6 activity. In certain other populations,
duplication of this gene is associated with an ultrarapid
metabolic state (Johansson et al. 1993; Lovlie et al.
1996). Patients carrying the ultrarapid allele do not show
the expected therapeutic response (Weinshilboum and
Wang 2004). For instance, when a patient was treated
with small doses of codeine, life-threatening intoxication
developed, which is reported to be associated with
ultrarapid CYP2D6 metabolism (Gasche et al. 2004).
Additionally, interindividual differences in the metabo-
lism of the antiretroviral agent efavirenz and its central
nervous system side effects have been shown to be
associated with allelic variant of CYP2B6. This variant
(G516T) is more common in African Americans than in
European Americans (Haas et al. 2004a).

Another notable pharmacogenetic association is with
the drug pravastatin. This drug has been efficiently and
widely used to reduce cardiovascular risk by lowering

the cholesterol level. It is a competitive inhibitor of
3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA)
reductase, which is the rate-limiting enzyme involved in
cholesterol synthesis. This cholesterol-lowering therapy
also exhibits a wide range of interindividual variability.
The variable individual response has been attributed to
the genetic difference between individuals in genes in-
volved in cholesterol synthesis and statin metabolism.
Recently, it was shown that two linked common
polymorphisms in the HMG-CoA reductase gene are
associated with reduced lipid-lowering activity. Hetero-
zygous individuals may have a significantly reduced
efficacy of pravastatin therapy (Chasman et al. 2004).
The two SNPs are in the intronic sequence, and they
may not affect the gene expression but mRNA stability
in the cell instead. This study provides further clinical
evidence of the impact of genetic variation. It also shows
that genetic screening and genotype-based medicine has
pathophysiological significance.

It must be noted, however, that all polymorphism in a
gene does not need to have an influence on drug
metabolism. For instance, CYP3A is expressed in the

Table 1 A partial list of genetic polymorphism and drug response. 5-FU 5-fluorouracil

Gene Name Allelea Phenotypic effect

Drug-metabolizing enzymes
CYP3A4*17 Cytochrome P450 F189S Reduced activity
CYP3A4*18A Cytochrome P450 L293P Increased activity
CYP3A5*3A-3J Cytochrome P450 Splicing defect Severely reduced activity
GSTP1 Glutathione S-transferase I105V Increased survival for 5-FU
UGT1A1 UDP-glucorono-syltransferase1A1 UGT1A1*28 Side effect for irinotecan
DPYD Dihydropyrimidine

dehydrogenase
DPYD*2A Severe toxicity for 5-FU

TPMT Thiopurine methyl
transferase

TPMT*2, TPMT*3A
TPMT*3C

Homozygotes are at higher risk
for thiopurine treatment

Drug-pathway protein
TYMS Thymidylate synthase TSER*2/*3 *3/*3 genotype requires

higher dose of 5-FU
LIPC Hepatic lipase C514T C/C genotype shows increased

response to statin
MTHFR Methylene tetrahydrofolate

reductase
C677T T/T genotype shows increased

toxicity for methotrexate
ADRB1 Beta1 adrenergic receptor R389G R/R individuals have greater response

to beta-adrenergic receptor antagonists
AGT Angiotensinogen M235T Reduction of blood pressure
DRD3 Dopamine D3 receptor S9G Intermediate response to clozapine
HTR2A Serotonin receptor 2A H452Y Reduced response to clozapine
ACE Angiotensin converting

enzyme-1
Ins/del Del/Del genotype shows

decreased proteinuria
in response to ACE inhibitor

ALOX5 Arachidonate 5-lipoxygenase Promoter VNTR Homozygotes show decreased
response to enzyme inhibitor

Drug transporter
ABCB1 P-glycoprotein-1 (MDR1) C3435T T/T patients may have less

drug-resistant epilepsy
Others
XRCC1 DNA repair protein XRCC1 R399Q Q/Q individuals less likely to develop

therapy-related myeloblastic leukemia
IL 10 Interleukin 10 A1082G G/G individuals have better

response to prednisone
ADD1 Adducin 1 (alpha) G460W Hypertensives’ show increased

response to diuretics

a Types of mutations that are responsible for the alleles
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kidney and extensively metabolizes cyclosporin, but
CYP3A5*1 allele expression is not involved in cyclo-
sporin dosing, long-term renal graft survival, and blood
pressure regulation in the Caucasian population (Kreutz
et al. 2004). Similarly, multi-drug-resistant transporter
gene (MDR1) haplotypes in exons 21 and 26 do not
influence the pharmacokinetics of the immunosuppres-
sant drug tacrolimus (Lee et al. 2004; Mai et al. 2004).
Additionally, the ATP-binding cassette transporter
(ABCG2—breast-cancer-resistant protein) allele does
not have any effect on the disposition of irinotecan in the
European population (De Jong et al. 2004). Irinotecan is
a prodrug that has been widely used in the treatment of
advanced cancers and is activated by human carboxyl-
esterase 2. Although its gene presents several polymor-
phisms and an intronic SNP is found to be associated
with reduced carboxylesterase 2 mRNA expression in
colorectal tumor (Marsh et al. 2004), none of the vari-
ations in the carboxylesterase 2 gene are found to be
associated with protein activity (Charasson et al. 2004).
Similarly, the polymorphism in the histamine- N-meth-
yltransferase gene is not associated with gastric ulcer
(Chen et al. 2004). Conversely, some genetic variants in
nontarget genes may also be involved in producing ad-
verse effects of drug treatment (Napolitano et al. 2000;
Psaty et al. 2002). Thus, it is not only genetic variability
of drug metabolism and drug target genes, but envi-
ronmental factors, nontarget genes, and enzyme induc-
tion and inhibition that may also play a role in drug
disposition (Root et al. 2004).

Gene polymorphism and immunosuppressive drugs

Azathioprine is an immunosuppressive prodrug that is
metabolized by the thiopurine S-methyltransferase
(TPMT) enzyme. This drug is used to treat autoimmune
disorders and those receiving organ transplants. The
enzyme TPMT contains three nonfunctional mutant
alleles (TPMT*2, TPMT*3A, and TPMT*3C) that
determine about 80–90% of low enzyme activity.
TPMT*3A is the most common allele in the Caucasian
population whereas in African American, Asian, and
African populations, TPMT*3C is the most prevalent
allele (Krynetski and Evans 2003). These alleles also
predict azathioprine-induced myelotoxicity in kidney
transplant recipients (Fabre et al. 2004) that can be life
threatening because of adverse drug responses. Those
patients homozygous for TPMT*3A may develop life-
threatening myelosuppression with a normal dose of
thiopurine drugs (Table 1). This suggests that if thiop-
urine doses are lowered according to the genotype, it is
possible to treat patients without adverse effects. Thus,
application of pharmacogenetic knowledge may help in
optimization of immunosuppressive drug therapy as well
as reducing drug toxicity (Formea et al. 2004). Recently,
there has been considerable interest in the use of phar-
macogenetic testing of TPMT prior to therapy (Balis
and Adamson 1999). This is the only example of phar-

macogenetic testing that has been integrated into clinical
practice to date. However, its broader application is not
possible at present because a set of functional variants
described in the Caucasian population have different
frequencies in different populations (McLeod and Siva
2002; Van Aken et al. 2003).

Genetic polymorphism and the metabolism of other
drugs

Genetic factors also play a role in the individual re-
sponse to antihypertensive agents (Huang et al. 2004),
vascular disease agents(Nabel 2003; Yee and Bray 2004),
asthmatic drugs (Pelaia et al. 2004), antipsychotic med-
ication (Scharfetter 2004), medication for human
behavioral disorders (Akio 2003), and drugs to treat
diabetes (Rosmond 2004). For instance, an SNP in the
catechol-o-methyltransferase results in about a three- to
four-fold reduction in its activity and is associated with a
number of neuropsychiatric disorders (Doyle et al.
2004). Similarly, in the case of asthma, homozygous
patients with a variant in the 5-lipoxygenase-promoter
region (Table 1) respond less well to the lipoxygenase
inhibitor (Drazen et al. 1999). Although hypertension
biology is very complex, potentially promising associa-
tions between angiotensin-converting enzyme insertion/
deletion variant (Table 1) and drug treatments have
been reported (Arnett and Claas 2004). It is for this
purpose, typing of genes of an individual may provide a
better way of predicting the ‘‘at-risk’’ genotype that may
facilitate therapy (Ferraccioli et al. 2004).

Genetic variation and cancer chemotherapy

A purely speculative and an incomplete understanding
of the metabolism of many drugs administered simul-
taneously to treat diseases such as cancer and the
interaction between drugs (e.g., warfarin plus cipro-
floxacin; phenytoin plus cimetidine) are also the leading
causes of adverse drug toxicity in a large percentage of
patients (Ament et al. 2000). Because anticancer drugs
have a narrow therapeutic index, the individual differ-
ences in drug efficacy is particularly important. There-
fore, pharmacogenetics can play a role in cancer
chemotherapy as well (Smith et al. 2004). Interindivid-
ual, population-specific and age-related responses to
chemotherapeutic agents are also well known. Metho-
trexate, for example, has been used in the treatment of
number of malignancies. However, some patients de-
velop resistance and others could have toxic side effects.
This could be due to polymorphic difference in several
genes, such as thymidylate synthase, methylenetetrahy-
drofolate reductase (Table 1), and thiopurine S-meth-
yltransferase. In support of this is the finding that
several genetic variants in methylenetetrahydrofolate
reductase and thymidylate synthase genes have a pre-
dictive role (Krajinovic and Maghrabi 2004). Similarly,
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genetic variants have been identified in 14 genes that are
involved in gemcitabine metabolism. This drug shows a
significant variability in the antitumor response and
toxicity in cancer patients (Fukunaga et al. 2004). The
anticancer drug 5-fluorouracil (5-FU) has been widely
used to treat a variety of cancers. This drug is catabo-
lized by the enzyme dihydropyrimidine dehydrogenase
(DPD). To date, 39 different mutations and polymor-
phisms have been reported for DPD, and 14 of them
were found to be associated with 5-FU toxicity
(Table 1). Patients with DPD deficiency may have a risk
of developing a life-threatening toxicity (Van Kuilen-
burg 2004). Thus, genotype identification of an indi-
vidual prior to therapy may help reduce the severe
toxicity of 5-FU.

By measuring direct enzyme activity, genotype, gene
expression, and designing an individualized chemother-
apy, it may be possible to eliminate tumor cells from the
host (Donnelly 2004). However, numerous genes are
likely to influence chemotherapy response or cytotoxic-
ity. It is difficult to predict which genes are involved in
chemotherapy cytotoxicity using a candidate-gene ap-
proach. This may require genome-wide linkage analysis
to map the trait loci influencing the cellular effect of
chemotherapy cytotoxicity. One such approach (CEPH
family) has recently been reported for the chemotherapy
agents 5-FU and docetaxel (Watters et al. 2004). This
type of approach is faster, widely applicable, requires a
single blood sample, and does not require a prior
knowledge of a small number of candidate genes (Roses
2004). Alternatively, the DNA microarray technique can
also be used for studying drug response by genotyping
selected candidate genes (Weinshilboum and Wang
2004). For instance, a specific chip for the rapid detec-
tion of CYP2D6 alleles has already been developed
(Evans and Relling 2004) and is awaiting FDA approval
in the US. Gene-expression profiling is another powerful
technique that can be useful in all stages of drug devel-
opment, including preclinical testing and predicting po-
tential toxic effects. It is particularly valuable in the case
of cancer treatment, but whether this technology helps
predicting treatment success remains to be seen (Van de
Vijver et al. 2002; Sotiriou et al. 2003). Although this
procedure has several limitations, such as errors in the
manufacturing of chips, low specificity, and discrepancy
in differential gene expression data, by carefully selecting
genes, it is possible to gain insight into the variation in
drug response (Lorenzi et al. 2004).

Gene polymorphism and antiviral therapy

Genetic factors also influence the efficacy and toxicity of
antiviral therapy. For instance, CYP and drug trans-
porters influence the disposition of human immunode-
ficiency virus (HIV) protease inhibitor and nucleotide
and nonnucleotide analog reverse transcriptase inhibitor
drugs (administration of multiple drugs is needed)
(Martin et al. 2004). However, it involves variability in

host alleles and drug–drug interaction; hence, it is a
significant challenge to devise a pharmacotherapy. De-
spite this limitation, considerable effort has been made
to understand the contribution of genetic factors for the
development of toxicity and response that may have
potential in the future. One interesting example in this
respect is the association between abacavir hypersensi-
tivity reactions and specific HLA and hsp70-hom
genotypes (Haas 2004b). The finding that a nonfunc-
tional deletion mutant of the HIV receptor CCR5 gene
protected against infection may also help drug devel-
opment.

Drug transporter gene polymorphism

As mentioned earlier, polymorphism in drug trans-
porter genes also determines drug response. There are
48 known drug transporters. One of the best-charac-
terized drug transporters is the MDR1 gene, which is
also called ABCB1 and is known to transport a broad
range of drugs. Little is known about other drug
transporters. To date, there are 28 SNPs that have
been reported in the MDR1 gene, and a silent SNP
(C3435T) in exon 26 is found to be a risk factor for
diseases such as Parkinson’s, renal epithelial tumor,
inflammatory bowel disease, and drug-resistant epi-
lepsy (Sakaeda et al. 2004). This polymorphism is
associated with different expression levels of the MDR1
gene, and a difference in allele frequency has also been
reported between different population groups (Ostrov-
sky et al. 2004). Patients resistant to antiepileptic drugs
are more likely to be associated with CC genotype at
3,435 of the ABCB1 gene than with the TT genotype
(Siddiqui et al. 2003). This evidence also justifies the
clinical use of pharmacogenetic tests for drug-dosage
recommendation.

Concluding remarks

From the foregoing evidence, it is clear that there are
striking examples of allelic frequency differences in drug-
related genes that predispose individuals to different drug
responses in different populations (Cha et al. 2004).
DNA-based tests may, therefore, identify optimal dosing,
maximize drug efficacy, reduce the risk of toxicity and
related hospitalization, and improve drug selection
(Oscarson 2003; Evans and McLeod 2003). However,
before individualized medication makes its way to the
clinic, we need to know the functions of polymorphism,
gene–gene interaction rather than the individual gene ef-
fect, environmental factors (lifestyle of an individual),
and how these affect phenotypes (Xie et al. 2001; Gold-
stein et al. 2003). In addition, a high level of accuracy,
precision, and collection of a comprehensive set of data
and their interpretation are needed to allow proper
judgment for clinical applications (Hildebrandt 2004).
Wemay also have to think about expanding our efforts to

325



include proteomic and metabonomic studies along with
the genomic approach to achieve this challenging goal of
personalized medicine (Nebert and Vesell 2004).

The goal of individualized medicine may also over-
come the traditional trial-and-error method of treatment
that is inefficient and expensive. In addition, we also
have to consider social and ethical issues, such as dis-
crimination, privacy protection, and public confidence
(Breckenridge et al. 2004; Sankar et al. 2004). Its inte-
gration into clinical practice is also an important aspect
(Fierz 2004; Lesko and Woodcock 2004), and all health
care professionals must be urgently directed to genomic
education as applied to medicine. Moreover, its inte-
gration into society must be of importance (Webster
et al. 2004). Translation of pharmacogenetics and
pharmacogenomics data into clinical practice would
certainly provide significant opportunities to increase
the safety and efficacy of medicine. Such data will ulti-
mately allow clinicians to avoid drugs that adversely
affect patients or select doses on the basis of genotype of
an individual.
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