Qing-Peng Kong • Yong-Gang Yao \cdot Chang Sun Chun-Ling Zhu • Li Zhong • Cheng-Ye Wang Wang-Wei Cai • Xiang-Min Xu • An-Long Xu Ya-Ping Zhang

Phylogeographic analysis of mitochondrial DNA haplogroup F2 in China reveals T12338C in the initiation codon of the ND5 gene not to be pathogenic

Received: 17 February 2004 / Accepted: 6 May 2004 / Published online: 22 July 2004
© The Japan Society of Human Genetics and Springer-Verlag 2004

Abstract

In this report, we studied on a homoplasmic T12338C change in mitochondrial DNA (mtDNA), which substituted methionine in the translational initiation codon of the NADH dehydrogenase subunit 5 gene (ND5) with threonine. This nucleotide change

[^0]was originally identified in two mtDNAs belonging to haplogroup F2 by our previous complete sequencing of 48 mtDNAs . Since then, a total of 76 F 2 mtDNAs have been identified by the variations occurring in the hypervariable segments and coding regions among more than 3,000 individuals across China. As the T12338C change was detected in 32 samples representing various sub-clades of the F2 haplogroup while not in 14 non-F2 controls, we believe that the T12338C change is specific to the F2 haplogroup. As F2 and its sub-clades were widely distributed in normal individuals of various Chinese populations, we conclude that T12338C is not pathogenic. In addition, based on the average distribution frequency, haplotype diversity and nucleotide diversity of haplogroup F2 in the populations across China, the T12338C nucleotide substitution seems to have been occurred in north China about 42,000 years ago. Our results provided a good paradigm for distinguishing a polymorphic change from a pathogenic mutation based on mtDNA phylogeny.

Keywords Mitochondrial DNA • Haplogroup F2 . T12338C • ND5 • Phylogeny • East Asian

Introduction

In the past two decades, many mutations, including point mutations, insertions, deletions, and rearrangements, have been detected in protein-coding genes as well as tRNA and rRNA genes in mitochondrial DNA (mtDNA), and were suggested to be pathogenic (Wallace et al. 1999; DiMauro and Schon 2001; Chinnery and Schon 2003). However, among these pathogenic mutations (http://www.mitomap.org), it is rare to find a mutation occurring in the conserved initiation codon of coding genes. Since the change of initiator amino acid from methionine to another
residue would hamper protein translation, it was natural to regard such a mutation as pathogenic. Hitherto, only three mtDNA mutations have been reported as occurring in the translational initiation codon: T3308C in the ND1 gene (Campos et al. 1997), T7587C in the COX II gene (Clark et al. 1999), and A8527G in the ATP6 gene (Dubot et al. 2004). Mutation T7587C was identified in a family with mitochondrial encephalomyopathy, and suggested to affect translation of COX II (Clark et al. 1999). Mutation T3308C was originally reported to be associated with bilateral striatal necrosis and MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes) syndrome (Campos et al. 1997), however, it was later proved to neither impair synthesis of ND1 polypeptide nor affect the activity of complex I, thus suggesting that T3308C might be a benign mutation (Vilarinho et al. 1999; Fernandez-Moreno et al. 2000). Rocha et al. (1999) reached the same conclusion by a phylogenetic analysis. All the mtDNAs harboring T3308C were classified into a particular haplogroup, L1b, which is widely distributed in current African and Iberian populations. The third mutation, A8527G, was recently identified in apparent normal individuals. Although the mutation disrupts the ATG initiation codon of the ATP6 gene, GTG, thus generated, usually encodes valine, may serve as a translational initiation codon in mitochondria (Dubot et al. 2004). The different effects of these mutations in respective cases raise the possibility of some unknown remediation pathway(s). Since the third codon in ND1 is ATG, one of the plausible explanations is that the third codon may serve as an alternative initiation codon to produce similar, but two amino acid short, polypeptide (Rocha et al. 1999; Fernandez-Moreno et al. 2000). Additional mutations and variations occurring in the initiation codon of mtDNA genes in human and other species would clarify the mechanism.

In this study, we report a homoplasmic nucleotide change T12338C in mtDNA, which occurs in the initiation codon of the ND5 gene and substitutes methionine with threonine (M1T). The nucleotide change was originally detected in two mtDNAs (GD7809 and QD8147) when we systematically surveyed mtDNAs belonging to all the major haplogroups specific to East Asian by complete mtDNA sequencing (Kong et al. 2003b). To substantiate whether the T12338C change is specific to haplogroup F2 and to learn more about the origin of haplogroup F2, we performed an extensive search for F2 in more than 3,000 Chinese mtDNAs in reported studies (Yao et al. 2000, 2002a, c, 2003; Tsai et al. 2001; Kivisild et al. 2002; Oota et al. 2002; Yao and Zhang 2002; Kong et al. 2003a; Tajima et al. 2003) and our unpublished data by motif-searching and/or (near-)matching methods (Yao et al. 2002a, 2003). Our phylogeographic study revealed that the T12338C change was specific to haplogroup F2 and occurred in normal individuals across China, thus
suggesting a polymorphic change rather than a pathogenic mutation.

Material and methods

Sampling

A total of 1,494 subjects from 28 populations across China were screened in this study. All of the individuals were confirmed to be unrelated before sampling and were given informed consent. To better understand the phylogeny of haplogroup F2, the previously reported data sets (Yao et al. 2000, 2002a, c, 2003; Tsai et al. 2001; Kivisild et al. 2002; Oota et al. 2002; Yao and Zhang 2002; Kong et al. 2003a; Tajima et al. 2003) were also included. As a result, a total of 3,090 mtDNAs from 57 populations across China were examined, and their detailed information was illustrated in Table 1.

DNA amplification and sequencing

The hypervariable segments I (HVS-I) and II (HVS-II) of mtDNA control region as well as the regions including potential variations were amplified and sequenced as described elsewhere (Yao et al. 2002a; Kong et al. 2003a,b).

Data analyses

The mtDNA sequences were edited and aligned by the DNAStar software package. Mutations were scored according to the revised Cambridge reference sequence (rCRS; Andrews et al. 1999). Length polymorphisms of A and/or C stretches in region 16180-16193 in HVS-I and region 303-315 in HVS-II were disregarded in the subsequent analysis. Each mtDNA was tentatively assigned to a haplogroup on the basis of the variations in the HVS-I and II control regions. The haplogroup status was further confirmed by detecting additional variations in other regions as described in our previous studies (Yao et al. 2002a, 2003; Kong et al. 2003a). A segment covering region 10171-10659 of the rCRS, which was suggested to be informative in defining East Asian specific haplogroups (Yao et al. 2002a), was adopted to specify the phylogenetic status of the F^{*} or R9* mtDNAs (the asterisk attached to haplogroups indicates that the sample was not able to be further classified into the sub-clade(s) of the haplogroup) in our previous studies (Yao et al. 2000, 2002a, c, 2003; Yao and Zhang 2002; Kong et al. 2003a) and unpublished data. For those published data sets (not from our laboratory) with only HVS-I and/or HVS-II information available, we recognized the potential F2 types by

Table 1 Frequency of mtDNA haplogroup F2 in Chinese ethnic populations
$\left.\begin{array}{lllllll}\hline \text { Population } & \text { Abbreviation } & \text { Location } & \begin{array}{l}\text { No. of samples } \\ \text { examined }\end{array} & \begin{array}{l}\text { No. of samples } \\ \text { with }\end{array} & \begin{array}{l}\text { F2 haplotype }\end{array} \\ & & & & & \text { Frequency } \\ (\%) & \text { References }\end{array}\right]$
matching and/or near-matching with the identified F2 types that have been tested for coding region information. To better understand the relationships among haplogroups, a network profile of haplogroup F2 was
constructed according to Bandelt et al. (2000). We also estimated the haplotype diversity and nucleotide diversity (Nei 1987) of haplogroup F2 by using the DnaSP package (Rozas and Rozas 1999).
Table 2 Sequence variations in 76 mtDNAs of haplogroup F2. When the analyzed sequences were identical to the revised Cambridge reference sequence, items are indicated with CRS. transversion, with "d" for deletion and with "+" for insertion. When sequence information was not available, items leave blank

Sample ${ }^{\text {a }}$	Location	Haplogroup	HVS-I (16000+)	$\begin{aligned} & \text { HVS-II }(30-407) \\ & (73,263, \text { and } 315+\text { C } \\ & \text { in addition) } \end{aligned}$	$\begin{aligned} & 10171-10659 \\ & (10000+)^{\mathrm{c}} \end{aligned}$	Nucleotide at 12338	References
GD48	Guangdong	F2	CRS	235 249d			Kivisild et al. (2002)
GD7810	Zhanjiang, Guangdong	F2	261	$194235249 \mathrm{~d} 309+$ C	310535586	C	Yao et al. (2002a)
GD49	Guangdong	F2	209304	249d $309+$ C			Kivisild et al. (2002)
Kaz28	Xinjiang	F2	304				Yao et al. (2000)
Miao 10	Kaili, Guizhou	F2	304	195 249d	310535586		This study
Miao5	Kaili, Guizhou	F2	304				This study
SD10316	Tai'an, Shandong	F2	304	249d $309+$ C	310535586	C	Yao et al. (2003)
Tibet27	Qinghai	F2	304		310535586	C	This study
SD10301	Tai'an, Shandong	F2	304519	249d	310535586	C	Yao et al. (2003)
QJ516	Qijiang, Chongqing	F2	304327362	249d	310535586	C	This study
Mg11	Qinghai	F2	217221304		310535586		Yao et al. (2002c)
WH6948	Wuhan, Hubei	F2	299304	249d $309+$ C	310535586	C	Yao et al. (2002a)
She 15	Fuquan, Guizhou	F2	051304	195 249d 309+CC	310535586		This study
Man 153	Inner Mongolia	F2a	187221291304	$\begin{gathered} 42+\mathrm{T} 195249 \mathrm{~d} \\ 275309+\mathrm{CC} \end{gathered}$	310535586		This study
YN281	Kunming, Yunnan	F2a	051291304	195 249d	310535586		Yao et al. (2002a)
QD8147 ${ }^{\text {d }}$	Qingdao, Shandong	F2a1	266291304	146 249d	310535586	C	Yao et al. (2002a)
SD10335	Tai'an, Shandong	F2a1	266G 291304519	249d $309+$ C	310535586	C	Yao et al. (2003)
SD10340	Tai'an, Shandong	F2a1	266G 291304519	$249 \mathrm{~d} 309+$ CC	310535586	C	Yao et al. (2003)
Tu58	Qinghai	F2a1	266G 291304325519	$249 \mathrm{~d} 309+$ CC	310535586	C	This study
Naxi80	Lijiang, Yunnan	F2a1	185 266A 291304519	249d	310535586	C	This study
Naxi83	Lijiang, Yunnan	F2al	185 266G 304519	249d			This study
Naxi73	Lijiang, Yunnan	F2al	185 266A 291304519	195 249d			This study
Bai21	Dali, Yunnan	F2a1	185 266A 291304				Yao et al. (2002c)
Nu17	Gongshan, Yunnan	F2a1	185258 266A 291304				Yao et al. (2002c)
Nu 22	Gongshan, Yunnan	F2a1	185258 266A 291304				Yao et al. (2002c)
Nu26	Gongshan, Yunnan	F2a1	185258 266A 291304				Yao et al. (2002c)
Nu30	Gongshan, Yunnan	F2a1	185258 266A 291304				Yao et al. (2002c)
Miaol	Kaili, Guizhou	F2a2	092A 291304				This study
Miao32	Kaili, Guizhou	F2a2	092A 291304				This study
Mulam13	Luocheng, Guangxi	F2a2	092A 291304				This study
Mulam15	Luocheng, Guangxi	F2a2	092A 291304				This study
GD50	Guangdong	F2a2	092A 291304	249d			Kivisild et al. (2002)
SD10360	Tai'an, Shandong	F2a2	092A 291304	249d	310535586		Yao et al. (2003)
XJ8414	Yili, Xinjiang	F2a2	092A 291304	249d 309 + CC	310535586	C	Yao et al. (2002a)
QJ534	Qijiang, Chongqing	F2a2	092A 291299304362519	249d $309+$ C	310535586	C	This study
SD10302	Tai'an, Shandong	F2a2	092A 289291304	$249 \mathrm{~d} 309+$ CC	310535586	C	Yao et al. (2003)
GD7836n	Zhanjiang, Guangdong	F2a2	092A 291304359	249d $309+$ C	310535586		Yao et al. (2002a)
Jing 100	Guangxi	F2a2	092A 291304311	195 249d		C	This study
Jing 126	Guangxi	F2a2	092A 291304311	195 249d			This study
Jing 140	Guangxi	F2a2	092A 291304311	195 249d			This study
Jing73	Guangxi	F2a2	092A 291304311	195 249d		C	This study
Jing83	Guangxi	F2a2	092A 291304311	195 249d			This study
Lisu12	Gongshan, Yunnan	F2a2	092A 170C 189291294304				Yao et al. (2002c)

Table 2 (Continued)

Sample ${ }^{\text {a }}$	Location	Haplogroup	HVS-I (16000 +)	HVS-II (30-407) (73, 263, and $315+$ C in addition) ${ }^{\text {b }}$	$\begin{aligned} & 10171-10659 \\ & (10000+)^{\mathrm{c}} \end{aligned}$	Nucleotide at 12338	References
Dai51	Xishuangbanna, Yunnan	F2a2	092A 170T 189291304				Yao et al. (2002c)
Lisu34	Gongshan, Yunnan	F2a2	092A 170T 189291304				Yao et al. (2002c)
Lisu45	Gongshan, Yunnan	F2a2	092A 170T 189291304				Yao et al. (2002c)
Lisu30	Gongshan, Yunnan	F2a2	092A 170T 183T 189291304400				Yao et al. (2002c)
Nu14	Gongshan, Yunnan	F2a2	092A 170T 183T 189291304				Yao et al. (2002c)
XJ8407	Yili, Xinjiang	F2a3	203239291304	249d $309+$ C	310535586	C	Yao et al. (2002a)
YND303	Kunming, Yunnan	F2a3	203291304519	249d 309+C	310535586	C	This study
Tu40	Qinghai	F2a3	203291304519	$249 \mathrm{~d} 309+$ C			This study
Hui38	Yili, Xinjiang	F2a3	093203291304		310535586	C	This study
QH9477	Qinghai	F2a3	093203291304		310535586	C	This study
Mg242	Inner Mongolia	F2a3	126203291304	249d 309 + C	310535586	C	Kong et al. (2003a)
QHD20	Qinghai	F2a3	126203291304				This study
GD7842	Zhanjiang, Guangdong	F2b	129189304	207 249d	310535586	C	Yao et al. (2002a)
Mg46	Yili, Xinjiang	F2b	203304		310535586	C	This study
Tibet34	Qinghai	F2b	203304		310535586	C	This study
LN7601	Fengcheng, Liaoning	F2b	129203304	195 249d	310535586	C	Yao et al. (2002a)
YNC13	Kunming, Yunnan	F2b	093203304519	249d	310535586	C	This study
GD7809 ${ }^{\text {d }}$	Zhanjiang, Guangdong	F2b	086203304	249d	310535586	C	Yao et al. (2002a)
Lahu95	Yunnan	F2b	086167203304519				Yao and Zhang (2002)
Lahu63	Yunnan	F2b	086167203304318				Yao and Zhang (2002)
Lahu65	Yunnan	F2b	086167203304318				Yao and Zhang (2002)
Lahu74	Yunnan	F2b	086167203304318				Yao and Zhang (2002)
Lahu81	Yunnan	F2b	086167203304318				Yao and Zhang (2002)
Lahu82	Yunnan	F2b	086167203304318				Yao and Zhang (2002)
Lahu84	Yunnan	F2b	086167203304318				Yao and Zhang (2002)
Lahu87	Yunnan	F2b	086167203304318				Yao and Zhang (2002)
Lahu88	Yunnan	F2b	086167203304318				Yao and Zhang (2002)
Sani21	Nuxi, Yunnan	F2b	$086167203304318474+$ G				Yao et al. (2002c)
Li39	Hainan	F2c	304527	249d $309+$ C	265310535586	C	This study
Li50	Hainan	F2c	304527	$249 \mathrm{~d} 309+$ C	265310535586	C	This study
GD124	Meizhou, Guangdong	F2c	304527	249d	265310325535586	C	This study
WH6974	Wuhan, Hubei	F2c	192304	249d	265310535586	C	Yao et al. (2002a)
YNC105	Kunming, Yunnan	F2c	086 304G	$151152249 \mathrm{~d} 309+\mathrm{C}$	265310535586598	C	This study

[^1]
Results

Identification of mtDNA haplogroup F2

As had been revealed by our recent study (Kong et al. 2003b), all the characteristic nucleotide variations for haplogroup F2 were located in the coding regions. Thus, it is generally hard to select F2 mtDNAs solely on the basis of sequence information from the hypervariable segments in the control region, but F2a is easily recognized by the variation at the 16291 position from the other F haplogroups and R9* (Yao et al. 2002a). By sequencing of the segment $10171-10659$, it is easy to distinguish the haplogroup F2 from the rests by nucleotide variations at 10310, 10535, and 10586. As a result, a total of 76 haplogroup F 2 mtDNAs were identified (Table 2). Comparing with 19 other mtDNAs belonging to other haplogroups (Table 3), several features are discernible. (1) Five mtDNAs with the variations at both 10310 and 10609 were assigned to
haplogroup F1, and their haplogroup status was further confirmed by the variation at 12406. Two of these had motif 16302-16304-16497-249d, and three others were with motif 16172-16304-249d. (2) Ten mtDNAs bearing only the variation at 10310 in segment 1017110659 was assigned to (an) unidentified lineage(s) in F . Seven of them had motif 16207-16304-16399-146249d, and three others had motif 16218-16304-16311249d. Further analysis showed that the seven mtDNAs with motif 16207-16304-16399-146-249d were characterized by two specific variations at 12396 and 12408 , hence belonging to a new haplogroup designated as "F4." (3) The last four samples (two with motif 16157-16256-16304-16335-236-249d and the other two with motif 16304-16362) were found not to have any variations characteristic to F1, F2, F3 (Kong et al. 2003b), or F4, thus belonging to a new lineage (viz., pre-F) in haplogroup R9. Additional information is needed to further specify the phylogenetic positions of these samples.
number of position is indicated for transition, the number with a suffix (i.e. A, C, G, and T) for transversion, with "d" for deletion and with " + " for insertion. When sequence information was not available, items leave blank

Table 3 Sequence variations in non-F2 type mtDNAs. When the analyzed sequence was identical to the revised Cambridge reference sequence, items are indicated with CRS. When (a) nucleotide change(s) was detected compared to the CRS sequence, only the

Sample ${ }^{\text {a }}$	Location	Haplogroup	HVS-I (16000 +)	HVS-II (30-407) (73, 263, and $315+\mathrm{C}$ in addition) ${ }^{\text {b }}$	$\begin{aligned} & 10171-10659 \\ & (10000+)^{\mathrm{c}} \end{aligned}$	Nucleotide at 12338	Other polymorphisms	References
Man10	Fengcheng, Liaoning	F1	302304497		310609	T	12406	This study
Man17	Fengcheng, Liaoning	F1	302304497		310609	T	12406	This study
Li26	Hainan	F1	$\begin{aligned} & 172187304343 \\ & 519 \end{aligned}$	249d 309 + C	310609	T	12406	This study
QJ81	Qijiang, Chongqing	F1	172304465519	249d 309 + C	310609	T	12406	This study
Zhuang73	Luocheng, Guangxi	F1	172304465					$\begin{gathered} \text { Yao et al. } \\ (2002 \mathrm{c}) \end{gathered}$
GD0091	Chaoshan, Guangdong	F4	207304399	$\begin{aligned} & 146152281249 \mathrm{~d} \\ & 309+\mathrm{C} \end{aligned}$	310	T		This study
YND617	Kunming, Yunnan	F4	179207304399	$146249 \mathrm{~d} 309+$ CC	310	T		This study
QH9678	Qinghai	F4	207304362399		310	T		This study
XJ8440	Yili, Xinjiang	F4	207304362399	146152 249d	310	T	1239612408	$\begin{aligned} & \text { Yao et al. } \\ & \text { (2002a) } \end{aligned}$
Zhuang30	Guangxi	F4	$\begin{aligned} & 126140207304 \\ & 362399 \end{aligned}$					Yao et al. (2002c)
YNC237	Kunming, Yunnan	F4	$\begin{aligned} & 207304362399 \\ & 497 \end{aligned}$	146152 249d	310	T	1239612408	This study
YND379	Kunming, Yunnan	F4	$\begin{aligned} & 093207304362 \\ & 399497 \end{aligned}$	$\begin{aligned} & 146152207249 \mathrm{~d} \\ & 309+\mathrm{C} \end{aligned}$	310	T	1239612408	This study
Mulam6	Luocheng, Guangxi	F^{*}	218304311		310	T		This study
Li56	Hainan	F^{*}	218304311519	249d 309+C	310	T		This study
Zhuang43	Guangxi	F*	$\begin{aligned} & 129218265304 \\ & 311355 \end{aligned}$					Yao et al. (2002c)
Mulam42	Luocheng, Guangxi	R9*	304362	CRS	CRS	T		This study
Dail00	Xishuangbanna, Yunnan	R9*	304362	CRS	CRS	T		Yao et al. (2002c)
She61	Fuquan, Guizhou	R9*	$\begin{aligned} & 157256266304 \\ & 311335 \end{aligned}$	236 249d	CRS			This study
YN170	Kunming, Yunnan	R9*	157256304335	236249 d	CRS			Yao et al. (2002a)

[^2]
Phylogeny of the haplogroup F2

The network profile of haplogroup F2 revealed that this haplogroup was divided into three major branches, designated as "F2a" (defined by the variation at 16291; Yao et al. 2002a), "F2b" (recognizable by the variation at 10810; Table 4), and "F2c" (characterized by the variation at 10265) (Fig. 1). Haplogroup F2a comprises three major clades, F2a1 (recognizable by the variation at 16266), F2a2 (characterized by a transversion (T/A) at 16092), and F2a3 (defined by the variation at 16203). It is evident that the sub-clades of F 2 show regional distribution. For instance, most of the F2b and F2a3 types, as well as all the F2al types, are confined to north or north-origin populations. In contrast, individuals belonging to haplogroup F2c are prevalent in south China.

T12338C is characteristic of haplogroup F2

Our previous analyses of the major haplogroups in East Asian by using complete sequences revealed that the T12338C variation is exclusively detected in two samples of haplogroup F2 (GD7809 and QD8147; Kong et al. 2003b). Extensive search with more than 1,000 published complete mtDNA sequences (Ingman et al. 2000; Finnilä et al. 2001; Maca-Meyer et al. 2001; Torroni et al. 2001; Derbeneva et al. 2002; Herrnstadt et al. 2002; Kivisild et al. 2002 and references therein; Ingman and Gyllensten 2003; Mishmar et al. 2003) revealed two additional cases with the T12338C variation, with one in a P type (Ingman and Gyllensten 2003) and another in a H1 type (Herrnstadt et al. 2002). To further clarify whether the T 12338 C variation is characteristic of haplogroup F2 or not, 32 samples were selected from our collection described in Table 2 so as to include at least one sample from respective sub-clades, and subjected to PCR amplification and subsequent direct sequencing for detecting the variation. As a control, 14 samples belonging to non-F2 haplogroups selected from the samples listed in Table 3 were also analyzed. Our results revealed that the T12338C nucleotide substitution was detected in all the F2 samples analyzed but not in any non-F2 samples (Tables 2, 3). Further analyses showed that the T12338C variation was completely linked with the T1005C, T1824C, A7828G, T10535C, G10586A, and G13708A variations (Table 4), thus showing T12338C is one of the characteristic variations specific to haplogroup F2.

Discussion

In this study, we report a homoplasmic nucleotide change, T12338C, which results in substitution of highly conserved methionine at the translation start site of the ND5 gene with threonine (M1T). The T12338C change is tightly associated with other nucleotide variations
Table 4 Relevant nucleotide variations in major sub-clades of haplogroup F2. Only varied nucleotid
dots. When information for nucleotide sequences is not available, the items have been left blank
Haplogroup Representative sample Nucleotide variations at the indicated position

Fig. 1 Network profile of haplogroup F2 samples observed in Chinese. The network is constructed on the basis of 76 F2 mtDNAs identified in 57 Chinese ethnic populations. As the nucleotide at site 16519 is known to be extremely hypervariable, it is disregarded in the construction. Representative sample names are indicated in the circles, and the circle size is proportional to the number of samples to be belonged among the pool. Relevant nucleotide variations compared with the revised Cambridge Reference Sequence (rCRS) indicate on the branches in the number of the position. Recurrent mutations are underlined, and the asterisk indicates the root of haplogroup F2

including T1005C, T1824C, A7828G, T10535C, G10586A, and G13708A. Thus, these variations together characterize the F2 haplogroup. Considering the fact that mitochondria of haplogroup F2 was distributed widely in normal populations across China though with relatively low frequencies (Table 1), and no evidence suggesting any association of the haplogroup with mitochondrial disorders, it is clear that T12338C is a polymorphic variation rather than a pathogenic mutation. This case is similar to that of T3308C, which is specific to haplogroup L1b and has been proven to be benign (Rocha et al. 1999; Fernandez-Moreno et al. 2000). Intriguingly, since the third codon of the ND5 gene also encodes methionine, similar to that of the ND1 gene, it is plausible that the third codon of the ND1 and ND5 genes would act as a surrogate when the initiation codon was impaired (Rocha et al. 1999; FernandezMoreno et al. 2000). In the COX II gene, the second methionine codon in frame is located 48 nucleotides downstream of the translational initiation site. Even though this codon could take a similar proxy role as discussed for the ND1 and ND5 genes, it is still uncertain whether the resultant polypeptide with 16 residues shorter is functional. Thus, it is not surprising that a similar phenomenon caused by T7587C in the COX II gene leads to a mitochondrial disorder (Clark et al. 1999). Nucleotide changes occurring in the translational initiation codon are also observed in mtDNAs of
primates (Table 5). Two and four cases have been reported for the ND1 and ND5 genes, respectively, in chimpanzees (Horai et al. 1995), macaques, and patas (Hayasaka et al. 1996). It seems that the first codon in proposed cDNA sequence for the ND1 and ND5 genes are not crucial, and the adjacent downstream ATG in frame could take a role in translational initiation.

Haplogroup is normally of higher prevalence and has more genetic diversity at the place it occurred than the radiated area. To speculate where the F2 haplogroup (viz., T12338C) originated, we simply aggregated the data form respective populations into northern and southern groups according to their locations and/or et-hono-origin (we did not include samples WH Han and QJ Han because they were located in the Changjiang River region where populations migrate considerably). Although this strategy has been criticized (Yao et al. 2002a), this method would enlarge the sample size and make the comparison less affected by the sample size bias. A slightly higher frequency of haplogroup F2 was identified in the northern group $(45 / 1,473)$ than in the southern group $(27 / 1,524)$. The haplogroup diversity and nucleotide diversity in F2 are slightly higher in the northern group $(0.940 \pm 0.021$ and 0.0106 ± 0.0006, respectively) than those in the southern group (0.915 ± 0.033 and 0.0075 ± 0.0008, respectively). These results suggest that the F2 haplogroup might originate in north China. This suggestion is also supported by two

Table 5 Mutations and/or variations occurring in the initiation codon of mitochondria genes. NA, not available

Changes in nucleotide sequences	Changes in amino acid sequences	Gene	Accession number	Organism	References
ATA \rightarrow ACA	MPM \rightarrow TPM	ND1	NA	Homo sapiens	Campos et al. (1997), Fernandez-Moreno et al. (2000), Polyak et al. (1998), Vilarinho et al. (1999), Rocha et al. (1999) and Opdal et al. (2002)
ATA \rightarrow AGA	M \rightarrow termination	ND1	NA	Homo sapiens	Opdal et al. (2002)
ATG \rightarrow ACG	MAH \rightarrow TAH	COX II	NA	Homo sapiens	Clark et al. (1999)
ATG \rightarrow GTG	MNE \rightarrow VNE	ATP6	AY370877	Homo sapiens	Dubot et al. (2004)
ATA \rightarrow ACA	MTM \rightarrow TTM	ND5	AY255168	Homo sapiens	Kong et al. (2003b)
ATA \rightarrow ACA	MTM \rightarrow TTM	ND5	AY255180	Homo sapiens	Kong et al. (2003b)
ATA \rightarrow ACA	MTM \rightarrow TTM	ND5	AY289092	Homo sapiens	Ingman and Gyllensten (2003)
ATA \rightarrow ACA	MTM \rightarrow TTM	ND5	NA	Homo sapiens	Herrnstadt et al. (2002)
ATA \rightarrow ACA	MPM \rightarrow TPM	ND1	NC_001643	Pan troglodytes	Horai et al. (1995)
ATA \rightarrow ACA	MPM \rightarrow TPM	ND1	NC_001644	Pan paniscus	Horai et al. (1995)
ATA \rightarrow ACA	MIM \rightarrow TIM	ND5	D85291	Erythrocebus patas	Hayasaka et al. (1996)
ATA \rightarrow ACA	MIM \rightarrow TIM	ND5	D85287	Macaca nigra	Hayasaka et al. (1996)
ATA \rightarrow GTA	MIM \rightarrow VIM	ND5	D85285	Macaca nemestrina	Hayasaka et al. (1996)
ATA \rightarrow GTA	MIM \rightarrow VIM	ND5	D85286	Macaca silenus	Hayasaka et al. (1996)

features in the phylogeographic analysis of F2 (Fig. 1). (1) The potential root types of F2 were more prevalent in the populations from north China or of the northern origin. (2) Almost all the major sub-clades of F2 were distributed in the northern populations except for F2c (which is exclusive to south China). By counting the transitions in region 16090-16365 (Forster et al. 1996; Saillard et al. 2000), we calculated the age of haplogroup F2 to be $41,700 \pm 13,700$ years. These results suggested that haplogroup F2 might originate and expand in north China before the last Glacier Age. The prevalence of subhaplogroups of F2, for examples F2c and F2a2, in south China might reflect back-migration events from north China to south China afterwards (Yao et al. 2002a).

Our current study also raises a concern in identifying pathogenic mtDNA mutations. Several surveys have revealed that mutation C5178A is associated with longevity and other disorders (Kokaze et al. 2003 and references therein). According to our study, the C5178A variation is exclusive associated with haplogroup D (Yao et al. 2002b), and it is well known that haplogroup D is prevalent in northern Chinese (Yao et al. 2002a; Kong et al. 2003a) and Japanese (Maruyama et al. 2003). Thus, the most results of association of C5178A with, i.e., a disease phenotype would rather reflect the existence of population stratification (Ardlie et al. 2002) and/or inadequate sampling. Another paper reporting an association of G15497A with obesity (Okura et al. 2003) comprises a similar case, since G15497A together with T8200C and G15323A are characteristic to haplogroup G1, a prevalent form in northeastern Asia (Bandelt et al. 2003; Kong et al. 2003b). Such a hasty conclusion in association studies between nucleotide changes in mtDNA with disorders could be avoidable if the authors should refer to phylogenetic information of mtDNA.

In conclusion, our mutational and phylogeographical analyses with human mtDNA indicate that the T12338C change is one of the characteristic variations associated
with haplogroup F2, thus polymorphic, and not a pathogenic mutation.

Acknowledgements The work was supported by the National Key Natural Science Foundation Program of China, Chinese Academy of Sciences (KSCX2-SW-2010), Natural Science Foundation of China (NSFC), and Natural Science Foundation of Yunnan Province.

References

Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N (1999) Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 23:147
Ardlie KG, Lunetta KL, Seielstad M (2002) Testing for population subdivision and association in four case-control studies. Am J Hum Genet 71:304-311
Bandelt H-J, Macaulay V, Richards M (2000) Median networks: speedy construction and greedy reduction, one simulation, and two case studies from human mtDNA. Mol Phylogenet Evol 16:8-28
Bandelt H-J, Herrnstadt C, Yao Y-G, Kong Q-P, Kivisild T, Rengo C, Scozzari R, Richards M, Villems R, Macaulay V, Howell N, Torroni A, Zhang Y-P (2003) Identification of native American founder mtDNAs through the analysis of complete mtDNA sequences: some caveats. Ann Hum Genet 67:512-524
Campos Y, Martin MA, Rubio JC, Gutierrez del Olmo MC, Cabello A, Arenas J (1997) Bilateral striatal necrosis and MELAS associated with a new T3308C mutation in the mitochondrial ND1 gene. Biochem Biophys Res Commun 238:323-325
Chinnery PF, Schon EA (2003) Mitochondria. J Neurol Neurosurg Psychiatry 74:1188-1199
Clark KM, Taylor RW, Johnson MA, Chinnery PF, ChrzanowskaLightowlers ZM, Andrews RM, Nelson IP, Wood NW, Lamont PJ, Hanna MG, Lightowlers RN, Turnbull DM (1999) An mtDNA mutation in the initiation codon of the cytochrome C oxidase subunit II gene results in lower levels of the protein and a mitochondrial encephalomyopathy. Am J Hum Genet 64:1330-1339
Derbeneva OA, Sukernik RI, Volodko NV, Hosseini SH, Lott MT, Wallace DC (2002) Analysis of mitochondrial DNA diversity in the aleuts of the commander islands and its implications for the genetic history of beringia. Am J Hum Genet 71:415-421

DiMauro S, Schon EA (2001) Mitochondrial DNA mutations in human disease. Am J Med Genet 106:18-26
Dubot A, Godinot C, Dumur V, Sablonniere B, Stojkovic T, Cuisset JM, Vojtiskova A, Pecina P, Jesina P, Houstek J (2004) GUG is an efficient initiation codon to translate the human mitochondrial ATP6 gene. Biochem Biophys Res Commun 313:687-693
Fernandez-Moreno MA, Bornstein B, Campos Y, Arenas J, Garesse R (2000) The pathogenic role of point mutations affecting the translational initiation codon of mitochondrial genes. Mol Genet Metab 70:238-240
Finnilä S, Lehtonen MS, Majamaa K (2001) Phylogenetic network for European mtDNA. Am J Hum Genet 68:1475-1484
Forster P, Harding R, Torroni A, Bandelt H-J (1996) Origin and evolution of Native American mtDNA variation: a reappraisal. Am J Hum Genet 59:935-945
Hayasaka K, Fujii K, Horai S (1996) Molecular phylogeny of macaques: implications of nucleotide sequences from an 896base pair region of mitochondrial DNA. Mol Biol Evol 13:1044-1053
Herrnstadt C, Elson JL, Fahy E, Preston G, Turnbull DM, Anderson C, Ghosh SS, Olefsky JM, Beal MF, Davis RE, Howell N (2002) Reduced-median-network analysis of complete mitochondrial DNA coding-region sequences for the major African, Asian, and European haplogroups. Am J Hum Genet 70:1152-1171
Horai S, Hayasaka K, Kondo R, Tsugane K, Takahata N (1995) Recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs. Proc Natl Acad Sci USA 92:532-536
Ingman M, Gyllensten U (2003) Mitochondrial genome variation and evolutionary history of Australian and New Guinean aborigines. Genome Res 13:1600-1606
Ingman M, Kaessmann H, Paabo S, Gyllensten U (2000) Mitochondrial genome variation and the origin of modern humans. Nature 408:708-713
Kivisild T, Tolk HV, Parik J, Wang Y, Papiha SS, Bandelt H-J, Villems R (2002) The emerging limbs and twigs of the East Asian mtDNA tree. Mol Biol Evol 19:1737-1751
Kokaze A, Ishikawa M, Matsunaga N, Yoshida M, Sekine Y, Sekiguchi K, Satoh M, Harada M, Teruya K, Takeda N, Uchida Y, Tsunoda T, Takashima Y (2003) Longevity-associated mitochondrial DNA 5178 A/C polymorphism modulates effects of daily drinking and cigarette consumption on serum triglyceride levels in middle-aged Japanese men. Exp Gerontol 38:1071-1076
Kong Q-P, Yao Y-G, Liu M, Shen S-P, Chen C, Zhu C-L, Palanichamy MG, Zhang Y-P (2003a) Mitochondrial DNA sequence polymorphisms of five ethnic populations from northern China. Hum Genet 113:391-405
Kong Q-P, Yao Y-G, Sun C, Bandelt H-J, Zhu C-L, Zhang Y-P (2003b) Phylogeny of East Asian mitochondrial DNA lineages inferred from complete sequences. Am J Hum Genet 73:671676
Maca-Meyer N, González AM, Larruga JM, Flores C, Cabrera VC (2001) Major genomic mitochondrial lineages delineate early human expansions. BMC Genetics 2:13
Maruyama S, Minaguchi K, Saitou N (2003) Sequence polymorphisms of the mitochondrial DNA control region and phylogenetic analysis of mtDNA lineages in the Japanese population. Int J Legal Med 117:218-225
Mishmar D, Ruiz-Pesini E, Golik P, Macaulay V, Clark AG, Hosseini S, Brandon M, Easley K, Chen E, Brown MD, Sukernik RI, Olckers A, Wallace DC (2003) Natural selection shaped regional mtDNA variation in humans. Proc Natl Acad Sci USA 100:171-176

Nei M (1987) Molecular evolutionary genetics. Columbia University, New York
Okura T, Koda M, Ando F, Niino N, Tanaka M, Shimokata H (2003) Association of the mitochondrial DNA $15497 \mathrm{G} / \mathrm{A}$ polymorphism with obesity in a middle-aged and elderly Japanese population. Hum Genet 113:432-436
Oota H, Kitano T, Jin F, Yuasa I, Wang L, Ueda S, Saitou N, Stoneking M (2002) Extreme mtDNA homogeneity in continental Asian populations. Am J Phys Anthropol 118:146-153
Opdal SH, Vege A, Egeland T, Musse MA, Rognum TO (2002) Possible role of mtDNA mutations in sudden infant death. Pediatr Neurol 27:23-29
Polyak K, Li Y, Zhu H, Lengauer C, Willson JK, Markowitz SD, Trush MA, Kinzler KW, Vogelstein B (1998) Somatic mutations of the mitochondrial genome in human colorectal tumours. Nat Genet 20:291-293
Rocha H, Flores C, Campos Y, Arenas J, Vilarinho L, Santorelli FM, Torroni A (1999) About the "Pathological" role of the mtDNA T3308C mutationellipsis. Am J Hum Genet 65:14571459
Rozas J, Rozas R (1999) DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15:174-175
Saillard J, Forster P, Lynnerup N, Bandelt H-J, Norby S (2000) mtDNA variation among Greenland Eskimos: the edge of the Beringian expansion. Am J Hum Genet 67:718-726
Tajima A, Sun CS, Pan IH, Ishida T, Saitou N, Horai S (2003) Mitochondrial DNA polymorphisms in nine aboriginal groups of Taiwan: implications for the population history of aboriginal Taiwanese. Hum Genet 113:24-33
Torroni A, Rengo C, Guida V, Cruciani F, Sellitto D, Coppa A, Calderon FL, Simionati B, Valle G, Richards M, Macaulay V, Scozzari R (2001) Do the four clades of the mtDNA haplogroup L2 evolve at different rates? Am J Hum Genet 69:1348-1356
Tsai LC, Lin CY, Lee JC, Chang JG, Linacre A, Goodwin W (2001) Sequence polymorphism of mitochondrial D-loop DNA in the Taiwanese Han population. Forensic Sci Int 119:239-247
Vilarinho L, Chorao R, Cardoso ML, Rocha H, Nogueira C, Santorelli FM (1999) The ND1 T3308C mutation may be a mtDNA polymorphism. Report of two Portuguese patients. J Inherit Metab Dis 22:90-91
Wallace DC, Brown MD, Lott MT (1999) Mitochondrial DNA variation in human evolution and disease. Gene 238:211-230
Yao Y-G, Zhang Y-P (2002) Phylogeographic analysis of mtDNA variation in four ethnic populations from Yunnan Province: new data and a reappraisal. J Hum Genet 47:311-318
Yao Y-G, Lu X-M, Luo H-R, Li W-H, Zhang Y-P (2000) Gene admixture in the silk road region of China: evidence from mtDNA and melanocortin 1 receptor polymorphism. Genes Genet Syst 75:173-178
Yao Y-G, Kong Q-P, Bandelt H-J, Kivisild T, Zhang Y-P (2002a) Phylogeographic differentiation of mitochondrial DNA in Han Chinese. Am J Hum Genet 70:635-651
Yao Y-G, Kong Q-P, Zhang Y-P (2002b) Mitochondrial DNA 5178A polymorphism and longevity. Hum Genet 111:462-463
Yao Y-G, Nie L, Harpending H, Fu Y-X, Yuan Z-G, Zhang Y-P (2002c) Genetic relationship of Chinese ethnic populations revealed by mtDNA sequence diversity. Am J Phys Anthropol 118:63-76
Yao Y-G, Kong Q-P, Man X-Y, Bandelt H-J, Zhang Y-P (2003) Reconstructing the evolutionary history of China: a caveat about inferences drawn from ancient DNA. Mol Biol Evol 20:214-219

[^0]: Accession numbers and URLs for the sequence data of mtDNA control region (including HVS-I and HVS-II) of F2 types in this article are as follows: GenBank, http://www.ncbi.nlm.nih.gov/web/ Genbank (accession numbers: AY522667-AY522718).
 Q.-P. Kong • Y.-G. Yao - C. Sun • C.-L. Zhu • C.-Y. Wang Y.-P. Zhang (凶)

 Laboratory of Cellular and Molecular Evolution, and Molecular Biology of Domestic Animals, Kunming Institute of Zoology,
 Chinese Academy of Sciences, Kunming,
 650223, China
 E-mail: zhangyp1@263.net.cn
 Tel.: + 86-871-5198993
 Fax: + 86-871-5195430
 Q.-P. Kong • L. Zhong • Y.-P. Zhang

 Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming, 650091, China
 Q.-P. Kong • C. Sun • C.-Y. Wang

 Graduate School of the Chinese Academy of Sciences, Beijing, 100039, China

 Present address: Y.-G. Yao
 The Wilmer Eye Institute,
 Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
 W.-W. Cai

 Department of Biochemistry, Hainan Medical College, Haikou, 571101, China
 X.-M. Xu

 Department of Medical Genetics, First Military Medical University, Guangzhou, 510515, China
 A.-L. Xu

 College of Life Sciences, Zhongshan University, Guangzhou, 510275, China

[^1]: ${ }^{\text {b }}$ All the samples analyzed had 73,263 , and $315+\mathrm{C}$ in addition to (a) change(s) indicated. For a example, GD48 had 73, 235, 249d, 263, and $315+$ C ${ }^{\circ}$ For the indicated samples, region 10171-10659 was sequenced in this study except for those reported by Yao et al. (2002a) ${ }^{\mathrm{d}}$ Samples QD8147 and GD7809 were completely sequenced by Kong et al. (2003b)

[^2]: ${ }^{\text {a }}$ The abbreviation for each sample is indicated in Table 1
 ${ }^{\mathrm{b}}$ All the samples analyzed had 73, 263, and $315+\mathrm{C}$ in addition to (a) change(s) indicated. Mulam42 and Dai100 had 73, 263, and $315+$ C, too
 ${ }^{c}$ For the indicated samples, region 10171-10659 was sequenced in this study except for except for XJ8440 and YN170

