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Abstract Case-control studies provide a powerful
approach for detecting disease-susceptibility genes or
assessing gene–environment interactions. We investi-
gated the situation in which the gene being studied plays
a role in several diseases, and the allele frequency among
subjects free of the disease of interest consequently de-
creases with age as subjects die from other diseases. The
logistic model is one approach frequently used for ana-
lyzing case-control data, but it cannot accommodate this
dependence of genotype and age. Using a log-linear
model, we therefore proposed a hierarchical procedure
that could be used as a valid method for assessing
interactions in such situations. We then applied this
procedure to observed data on Alzheimer’s disease and
the apolipoprotein E gene in Japan. We were able to
derive an appropriate inference on whether the interac-
tion was a gene–age interaction or merely a bias due to
death from other diseases.
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Introduction

When researchers verify the effects of genes or gene–
environment interactions on common diseases or age-
related diseases, such as diabetes, cancer, or coronary
heart disease, they usually regard age as a confounding
factor and calculate an age-specific or pooled odds ratio
or age-adjusted odds ratio by stratification. However, if
the investigators aim to study how disease and genetic
risk factors or their associations are related to age, they
must assess the interactive effects of age and genes or age
and the disease. If the gene being studied plays a role in
several diseases, and the allele frequency among subjects
free of the disease of interest consequently decreases
with age as subjects die of other diseases, then it becomes
possible that bias due to death from other diseases can
result in a quasi-association between age and the gene,
and that the Hardy-Weinberg equilibrium would not
apply in the control subjects.

One example is that of the apolipoprotein E (apoE)
gene at locus 19q13.2, which is associated with Alzhei-
mer’s disease (AD) and coronary heart disease (CHD).
ApoE has three common alleles: e2, e3, and e4, with
varying frequencies in populations around the world
(Corbo et al. 1999). Carriers of the e4 allele have a
higher risk of CHD and AD than people with the most
common genotype, e3/e3, and carriers of the e2-allele
have a lower risk (Ou et al. 1998; Wilson et al. 1994;
Farrer et al. 1997).

In many studies, apoE genotype has been found to be
associated with age of onset of AD. The more e4 alleles
there are, the younger the age at disease onset. Onset
tends to occur later among persons with the e2/e3
genotype (Corder et al. 1993; Corder et al. 1994; Borg-
aonkar et al. 1993). This tendency has been reported in
various ethnic populations, and Farrer et al. (1997)
concluded that the apoE e4 effect is evident at all ages
between 40 and 90 years but diminishes after age 70.
However, in the meta-analysis of Farrer et al. (1997) and
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in many other studies, it is reported that the apoE e4
effect is greater among Caucasian than among Japanese
older people (especially older than 70 years); this dif-
ference is not as obvious in younger populations.

In populations aged 80 years or more, the frequency
of occurrence of e4 carriers is lower, and that of e2 is
higher, than in younger people (Asada et al. 1996;
Gerdes et al. 2000). In the Caucasian population, this
difference in e4 allele frequency between older and
younger people is greater than in the Japanese popula-
tion. The prevalence of CHD is much higher in Cauca-
sians (except in the French) than in Japanese, but that of
AD is almost the same in both populations (Health and
Welfare Statistics Association, 2002).

In light of the above research, we considered the pos-
sibility of bias due to death fromCHD.Population-based,
case-control studies are often conducted to evaluate the
association between genes and AD, and the odds ratio is
used as a measure. Usually, case and control subjects are
sampled from people who are still alive. Hence, if the
prevalence or incidence of CHD does indeed affect e4
allele frequencies, then data collected from only AD cases
would be biased because of deaths from CHD.

In such a situation where the e4 allele frequency
among disease-free subjects decreases with age, we need
to assess the parameters governing the control group,
because we need to determine whether the estimated
interaction effect is due to a decrease in allele frequency
in the control group or a decrease in the risk associated
with the allele. One approach frequently used to analyze
case-control data is the logistic model, but it cannot be
used to assess the parameters governing the control
group. Umbach and Weinberg (1997) pointed out the
above problem and proposed maximum likelihood
methods based on log-linear models that explicitly
impose the independence of genotype and exposure to
assess the gene–environmental interaction.

We used the model proposed by Umbach and
Weinberg (1997) to devise a hierarchical procedure using
log-linear models to estimate genetic effects and the ef-
fects of gene–age interaction and to assess possible bias.
Next we applied realistic data on Alzheimer’s disease
and apoE in Japan to the model. We also briefly discuss
the strengths and weaknesses of the method.

Proposed methods

Consider a simple scenario: a population with two genotypes (G),
0–t levels of age group, and no confounders but age. Let G be 1 for
the disease-susceptible genotype and 0 for the ’common genotype’;
let the Tt (age group=t) be 1 for a group of t subjects and 0
otherwise; let disease status (D) be 1 for cases and 0 for controls.

A typical analysis of such case-control data would use the
logistic regression model:

logit P D G; Ttjð Þð Þ ¼ l1 þ a1tTt þ b1Gþ c1tGTt

Interest is focused on the unknown parameters a1, b1, and c1,
which assess the effects of age level, genotype, and genotype-by-age
interactions, respectively: exp (a1) is the odds ratio relating disease
to age among the common genotype subjects; exp (b1) is the odds

ratio relating disease to genotype among the lowest age group; and
the interaction parameter exp (c1), is the ratio of the odds ratio
relating disease to genotype among the age group Tt=t versus that
among the age group Tt=0.

log ldgt ¼ l0 þ a0tTt þ b0Gþ c0tGTt þ l1Dþ a1tDTt þ b1DG
þ c1tDGTt ð1Þ

An alternative and equivalent analysis for this 2·2·t table,
employs a linear model for the logarithm of the expected count ldgt
(expected count of disease status D=d, genetic status G=g, and
age group Tt=t) that fully parameterizes the all cells, namely:

Here, l0, a0 t, b0t, and c0 t parameterize the joint distribution
of genotype and age among the controls, and including l1 con-
strains the fitted marginal totals for both cases and controls to
match those observed. The parameters of interest are a1, b1, and
c1, as same as those of the logistic model, which assess the effects
of age levels, genotypes, and genotype-by-age interactions,
respectively. The logistic model and the log-linear model provide
the same parametric description of disease risk: a1t, b1t, and c1t
have exactly the same interpretations in both models. The log-
linear model, however, explicitly models the control parameters,
l0, a1t, b1t, and c1t.

When we have assessed whether or not the genotype is associ-
ated with disease, we can then make a comparison between a re-
duced model and the full model by the maximum likelihood ratio
test. Using log-linear models, we propose the following procedure
(Fig. 1) for inferences regarding the main genetic effect and its
interactions.

Inference regarding the main gene effect

Using the log-linear model, we first test the null hypothesis H01: the
genotype is not associated with the disease [thus, b1=c1 t=0 for
any t in model (1)] by a likelihood ratio test that compares model
(2)

log ldgt ¼ l0 þ a0tTt þ b0Gþ c0tGT þ l1Dþ a1tDT ð2Þ

and the full model (1).

Fig. 1 Proposed hierarchical procedure. In this figure, S denotes
‘significant’ and NS denotes ‘not significant’ of the maximum
likelihood ratio test. For example, if one tests the deviance for
model (2), namely, H01, and the result is not significant, then the
model (2) is considered as the adequate model for the data
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Inference regarding the association between genotype and age

If model (2) does not fit the data, we can then make a comparison
between a conditional independence model (3)

log ldgt ¼ l0 þ a0tTt þ b0Gþ l1Dþ a1tDTt þ b1DG ð3Þ

and the full model (1), to test the null hypothesis H02: the genotype
is not associated with age (thus, c0t=c1 t=0 for any t). In this case,
’conditional independence’ means that age and genotype are
mutually independent in both the case and the control groups.

If the null hypotheses H01 and H02 are significantly con-
tradicted—in other words, the genotype is associated with disease
and age—we then assess whether the effect of genotype varies
according to age.

Inference regarding gene–age interaction

Enforced independence model

To assess gene–environment interactions, Umbach and Weinberg
(1997) proposed maximum likelihood methods based on log-linear
models that explicitly imposed independence between genotype and
exposure, because we can estimate multiplicative gene–environment
interactions only when the environmental factor and the genotype
are independent in the population.We focusedon the likelihood ratio
testing of each model, whereas they focused on estimates of the
parameters. Here we can consider age to be an environmental factor.
If the gene being studied plays a role in only one disease, and the allele
frequency amongdisease-free subjects does decrease greatlywith age,
then we can loosely consider age and genotype to be independent in
the control group. Thus, c0t is constrained to zero in model (1) to get:

log ldgt ¼ l0 þ a0tTt þ b0Gþ l1Dþ a1tDTt þ b1DGþ c1tDGTt ð4Þ

Here, l0, a0t, and b0 parameterize the independent distribution
of genotype and age among the controls, and the other four
parameters represent the disease risk. In particular, a0 is the log-
odds of age among the controls, and b0 is the log-odds of having
the variant genotype among the controls. The parameters a1, b1,
and c1 t assess the effects of age, genotype, and gene–age interac-
tion, respectively, and l1 constrains the fitted marginal totals for
cases and for controls to match those observed. Using model (4),
we can test H03: c0 t=0 for any t, by comparing models (1) and (4).

Partial association model

We can test whether the degree of association between age and
genotype is the same in both the case and the control groups,
namely, H04: c1t=0 for any t, by using the log-linear model

log ldgt ¼ l0 þ a0tTt þ b0Gþ c0tGTt þ l1Dþ a1tDTt þ b1DG ð5Þ

Interpretation

When H04 is not contradicted significantly, we can infer that the
genetic effect does not vary with age. Furthermore, if not H03, but
H04, is significantly contradicted, then we can interpret the esti-
mator of c1t in model (4) as the coefficient of gene–age interaction.
When both H03 and H04 are significantly contradicted, however, it
is not obvious whether the apparent interaction is a gene–age
interaction or merely a bias caused by death from other diseases. In
such cases, we have to check which model—model (4) or model
(5)—fits the data better. These two models are not nested, so the
likelihood ratio test is not directly applicable. However, the two
models can be compared by using the ratio of the likelihood for
models (4) and (5) given data D, because

K ¼ log PrðD Modelð4ÞÞj
PrðD Modelð5ÞÞj

¼ log PrðD Modelð4ÞÞj
PrðD Modelð1ÞÞj � log PrðD Modelð5ÞÞj

PrðD Modelð1ÞÞj
¼ 1

2� DðModelð5Þ � DðModelð4ÞÞ½ �
ð6Þ

where D(Model(4)) and D(Model(5)) are, respectively, the devi-
ances for models (4) and (5), with the same degree of freedom
because they have the same number of parameters.

K can reinforce the interpretation of gene–age interaction. If the
data fit model (4) better than they fit model (5), then K� 0.
Contrary, if the data fit model (5) better than model (4), then
K� 0.

Application of the proposed method to data
on Alzheimer’s disease and the apoE gene

To illustrate how to apply the log-linear model and assess bias due
to death from other known or unknown diseases, we examined
case-control study data on the association between Alzheimer’s
disease and apoE in Japanese subjects, with additional subject to
the published data (Asada et al. 2000). The data in Table 1 show
that the disease group consists of people aged 45 to 91 years with
Alzheimer’s disease, and the controls are healthy people aged 45 to
93 years. The genotype categories are presence (either heterozygous
or homozygous) or absence of the apoE allele e4, and there are six
age categories.

We calculated the logistic estimate of the common odds ratio in
each age group and the age-adjusted odds ratio, and we performed
a Breslow-Day test for homogeneity of the odds ratios. The results
of these tests are summarized in Table 1. They show that there is
evidence that age modifies the risk of AD related to the presence of
the e4 allele. In addition, the test for homogeneity was significant

Table 1 Data of subjects classified by age, Alzheimer’s disease (AD) and the variant allele of apoE gene. CI confidence interval,
+ genotype with e4, ) genotype without e4

Age group (years) Odds ratio (95% CI) Control AD cases Total

Genotype

) + ) +

<60 1.8 (1.1–2.9) 109 54 79 71 313
61–65 4.0 (2.1–7.4) 65 31 29 55 180
66–70 3.7 (2.3–6.0) 90 41 61 103 295
71–75 3.6 (2.2–6.0) 82 32 77 108 299
76–80 2.6 (1.4–4.7) 57 20 82 75 234
81–85 1.6 (0.6–4.3) 19 8 39 27 93
86> 0.5 (0.1–2.1) 9 10 9 5 33

Age-adjusted odds ratio (95% CI)=2.7 (2.1–3.4)
Test for homogeneity ,2=14.2 (p<0.03)
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(Breslow-Day P<0.03). From the results of our analyses, we sug-
gest that the risk of the apoE gene varies with age. However, we
cannot conclude whether the risk truly varies with age or whether
this was merely a bias due to variation in genotype frequency with
age in the population, such that the frequency of genotypes with
the e4 allele in control subjects decreased slightly with age.

Table 2 presents the results of application of the logistic models
and the log-linear models to this data, according to our proposed
procedure. We used SAS (Ver. 8.1) to fit all models. H01 and H02

were significantly contradicted, so that the genotype was associated
with AD and age in our data (Table 2). However, the likelihood
ratio test of hypothesis H03 that c0 t=0 gave P=0.93, and that of
hypothesis H04 that c1t=0 gave P=0.05. The K value was 5.2.
These results suggest that the effect of the apoE gene varies with
age. Furthermore, the results show that there was very little evi-
dence of age-related bias in genotype frequencies in the control
group in this study.

Discussion

The hierarchical procedure proposed herein provides an
answer to the annoying problem of how to avoid mis-
reading the results of analyses of samples from popula-
tions with variations in allele frequency. Logistic models
are applied to most case-control study data. Our result
shows that this procedure using log-linear models can
not only measure the association between a gene and
disease but can also assess the bias of the estimator.
Logistic models cannot do this.

We used the model proposed by Umbach and
Weinberg (1997), but we focused particularly on likeli-
hood ratio testing of each model, whereas they focused
on estimates of parameters. Furthermore, we proposed a
measure, ’K’, to compare models (4) and (5) for assess-
ment of age-related bias. As mentioned above, K can
reinforce the interpretation of gene–age interaction, but
its standard calibration—like that of Akaike’s Infor-
mation Criterion (AIC) (Akaike 1970) or Bayes fac-
tor—cannot be defined explicitly. We therefore needed
to interpret the results in the light of both the K value
and hypothesis testing.

We use as our example the apoE gene that is asso-
ciated with variations in the risk of AD and CHD;
however, there does not seem to be much of a bias
component in our data. We thought that this might be
because of a lower rate of CHD death in Japan. Table 3

shows the results of application of the logistic models
and the log-linear models to the hypothetical data based
on the result of Fig. 2 in Gerdes et al (2000) and Fig. 4
in Farrer et al (1997). We assumed the data is sufficiently
large to detect gene–age interaction in Caucasian pop-
ulations, so we set each age group as having 1,200 cases
and 1,200 controls. The result is that both H03 and H04

are significantly contradicted, so it is not obvious whe-
ther the apparent interaction is a gene–age interaction or
merely a bias caused by death from other diseases. To
compare the model (4) and the model (5), we calculated
K and get K=)50.6. Then, we can infer that the data fit
model (5) better than model (4), and it suggests that the
effect of gene–age interaction might be biased.

We applied our method to data on AD and the apoE
gene. Not only in the case of AD but also in many
common diseases, there is potential for the gene being
studied to play a role in several other diseases, and the
allele frequency among subjects free of the study disease
will consequently decrease with age as patients die from
these other diseases (example: breast and ovarian cancer
and the BRCA1 gene). We suggest that our method
could be extended to this problem of other diseases and
genes. In addition, this model can be extended to any
number of loci, any number of alleles, or any number of
age categories and environmental risk factors, the only
major practical limitation being the sample size needed
to estimate an increasing number of effects with high
precision.

Our procedure can determine only the likelihood of
bias of the estimator caused by death from other dis-
eases. If bias is likely and the investigator would like to
assess the bias quantitatively, then he or she will have to
conduct a prospective study and apply a competing risks
analysis. However, prospective studies, such as cohort
studies, are difficult to conduct because of time and cost
constraints. If a case-control study is to be used instead
to infer gene–age interactions, the cases and controls
must be sampled adequately and as much data as pos-
sible on other diseases in which the gene is involved must
be collected.
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Table 2 Log likelihood and residual deviance for models fitted to
the Alzheimer’s disease (AD) case-control data in Table 1. DF
degree of freedom

Model Log likelihood Hypothesis Deviance DF P>

Equation (1) 4528.3
Equation (2) 4469.2 H01 118.2 7 0.00
Equation (3) 4510.9 H02 34.9 12 0.00
Equation (4) 4527.3 H03 2.0 6 0.93
Equation (5) 4522.1 H04 12.4 6 0.05

H01 The genotype is not associated with the disease
H02 The genotype is not associated with age
H03 The genotype is not associated with age in controls
H04 The degree of association between age and genotype is the
same in both groups

Table 3 Log likelihood and residual deviance for models fitted to
the hypothetical case-control data.DF degree of freedom

Model Log likelihood Hypothesis Deviance DF P>

Equation (1) 94131.4
Equation (2) 93655.3 H01 476.1 7 0.00
Equation (3) 93608.5 H02 522.9 12 0.00
Equation (4) 94018.1 H03 113.3 6 0.00
Equation (5) 94118.7 H04 12.7 6 0.05

H01 The genotype is not associated with the disease
H02 The genotype is not associated with age
H03 The genotype is not associated with age in controls
H04 The degree of association between age and genotype is the
same in both groups
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