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Abstract Osteoporosis is believed to result from interplay
among multiple environmental and genetic determinants,
including factors that regulate bone-mineral density
(BMD). Recent quantitative trait locus analysis in human
suggested a possible involvement of chromosomal region
1p36.2—p36.3 for determination of BMD. The brain natri-
uretic peptide (BNP, also named NPPB) gene lies within
this candidate region for BMD determination. Over-
expression of the BNP resulted in skeletal overgrowth in
transgenic mice. Association analysis between nucleotide
variations of the BNP gene and radial BMD in 378
Japanese postmenopausal women revealed a significant as-
sociation of the —381T/C variation of the BNP gene with
radial BMD (r = 0.17, P = 0.01). Homozygous T-allele
carriers had the lowest BMD values (0.395 = 0.056 g/cm?),
homozygous C-allele carriers had the highest (0.429 =
0.051 g/cm®), and heterozygous individuals had intermediate
radial BMD values (0.405 + 0.048 g/cm®), indicating a dos-
age effect. Accelerated bone loss also correlated with the —
381 T allele in a 5-year follow-up study (r = 0.21, P = 0.017).
These results suggest that variation of BNP may be an
important determinant of postmenopausal osteoporosis, in
part through the mechanism of accelerated postmenopausal
bone loss.
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Introduction

Osteoporosis is characterized by low bone-mineral density
(BMD) and by deterioration of the micro-architecture of
bone tissue with a consequent increase in fragility and
susceptibility to fracture. BMD, an important predictor of
fracture, appears to be determined by genetic as well as
environmental factors (Giguere and Rousseau 2000;
Stewart and Ralston 2000).

Natriuretic peptides comprise a family of three structur-
ally related molecules: atrial natriuretic peptide, brain natri-
uretic peptide (BNP; also known as B-type natriuretic
peptide), and C-type natriuretic peptide (CNP) (LaPointe
et al. 1996; Maack 1996). Accumulating evidence indicates
that natriuretic peptides are important regulators of
bone and cartilage differentiation and maintenance, whose
biological actions are mediated through two types of
guanylyl cyclase (GC)-coupled receptor subtypes (GC-A
and GC-B) (Yamamoto et al. 1996; Suda et al. 1998; Chusho
et al. 2001; Yasoda et al. 1998; Hasegawa et al. 1994). For
instance, transgenic mice overexpressing BNP presented
with skeletal overgrowth (Suda et al. 1998). The targeted
disruption of a related gene, CNP, in mouse resulted in
congenital abnormalities in skeletal development (Chusho
et al. 2001).

A quantitative trait locus (QTL) analysis on BMD in
human suggested a possible involvement of chromosomal
region 1p36.2—-p36.3, spanning approximately 7Mb, for de-
termination of BMD (Devoto et al. 2001). The responsible
gene within the region has not been defined to date (Spotila
et al. 2000; Albagha et al. 2002).

Because of the chromosomal location within the QTL
candidate region, as well as skeletal abnormalities displayed
in BNP-transgenic mice, we investigated the association
between genetic variations in the BNP gene and radial
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Table 1. Summary of analyzed polymorphisms on BNP gene

NCBI Allele %
No. Name Location JSNP ID* dbSNP® frequency Heterozygosity
1 -2158A/G Promoter IMS-JST106520 — 0.88:0.12 19
2 -1563A/G Promoter — 151800773 Monomorphic 0
3 -1299G/T Promoter IMS-JST106522 — 0.86:0.14 21
4 -381T/C Promoter IMS-JST083611 — 0.84:0.16 24
5 R25L Exon 1 (+) — 1s5227 Monomorphic 0
6 R47H Exon 2 (+) — 1s5229 Monomorphic 0
7 M93L Exon 2 (+) — 185230 Monomorphic 0

SNP, Single-nucleotide polymorphism

#JSNP ID, Number from the Japanese SNP database (http://snp.ims.u-tokyo.ac.jp/index_ja.html)
°dbSNP ID, Number from the dbSNP database of NCBI (http:/www.ncbi.nlm.nih.gov/SNP/)

BMD levels and rate of bone loss in a 5-year longitudinal
follow-up study.

Subjects and methods
Subjects

DNA samples were obtained from the peripheral blood of
378 postmenopausal Japanese women. Mean age and body
mass index (BMI) with standard deviation (SD) was 58.4 *
8.6 (range 32-69) years and 23.7 £ 3.61 (range 14.7-38.5)
kg/m’, respectively. The BMD of radial bone (expressed
in g/cm’®) of each participant was measured by dual energy
X-ray absorptiometry using a DTX-200 (Osteometer
Meditech, Hawthorne, CA, USA). To calculate adjusted
BMD, we normalized the measured BMD for differences in
age and BMI by multiple regression analysis (Kleinbaum et
al. 1998; Tsukamoto et al. 2000), using the Instat 3 software
package (GraphPad Software, San Diego, CA, USA). The
adjustment equation for the study samples was as follows:
[adjusted BMD (g/cm®)] = [measured BMD (g/cm?®)] —
0.006375 X {58.39 — [age (years)]} + 0.008961 X {23.65 —
[BMI (kg/cm?®)]}. BMD in the distal radius was measured
according to the Guidelines for Osteoporosis Screening in a
health check-up program in Japan (Orimo et al. 2001). All
subjects were nonrelated volunteers who gave their
informed consent prior to the study. No participant had
medical complications or was undergoing treatment for
conditions known to affect bone metabolism, such as pitu-
itary diseases, hyperthyroidism, primary hyperparathyroid-
ism, renal failure, adrenal diseases, or rheumatic diseases,
and none was receiving estrogen replacement therapy.

Genotyping for molecular variants in the BNP gene

We examined in our test population seven polymorphisms
(SNPs) archived in the National Center for Biotechnology
Information database for SNPs (NCBI dbSNP; http:/
www.ncbi.nlm.nih.gov/SNP/) and the Japanese SNP (JSNP)
database  (http://snp.ims.u-tokyo.ac.jp/index.htmlamino);

three SNPs from JSNP were confirmed to be polymorphic
in our test population, whereas four other SNPs archived in
the NCBI dbSNP turned out to be monomorphic in our test
population, as described in Results (Table 1).

Genotypes of SNPs were determined using the SNP de-
pendent PCR (Sd-PCR) method, a refined allele-specific
PCR to discriminate polymorphic sequences, as described
previously (Iwasaki et al. 2002). In brief, the Sd-PCR trans-
forms nucleotide differences (G, A, T, or C) between two
alleles at a single site into size differences between the
respective alleles. The procedure incorporates double-
nucleotide mismatches at the 3’ end of polymorphic (for-
ward) primers representing each allele, one mismatch
corresponding to the natural SNP to be tested and the other
designed to allow distinct allelic discrimination through al-
most exclusive amplification of one allele over the other.

Two allele-specific primers (AS primers) and one re-
verse primer were prepared per SNP. AS primers (long and
short) have a five-base difference between them, and each
has a polymorphic nucleotide of the SNP sequence at the 3’
ends and an additional artificial mismatch introduced near
the 3’ end. These primer sets allowed distinct discrimination
of alleles. Each genomic DNA sample (10ng) was amplified
with 250nM of each primer (two polymorphic forward, and
a reverse) in a 10-ul reaction mixture containing 10mM
deoxyribonucleoside triphosphates, 10mM Tris-HCI,
1.5mM MgCl,, 50mM KCI, 1U Taq DNA polymerase, and
0.5mM fluorescence-labeled deoxycytidine triphosphate
(ROX-dCTP; Perkin-Elmer, Norwalk, CT, USA). The Sd-
PCR reaction was carried out on a thermal cycler (Gene-
amp system 9600, Perkin-Elmer) with initial denaturation at
94°C for 4min, followed by five cycles of stringent
amplification (94°C for 20s, 64°C for 20s, 72°C for 20s) and
then 25 cycles of 94°C for 20s, 62°C for 20s, and 72°C for
20s, terminating with a 2-min extension at 72°C. Allele
discrimination was carried out by electrophoresis and laser
scanning of the DNA fragments on an ABI Prism 377 DNA
system using GeneScan Analysis Software ver2.1 (Applied
Biosystems, Foster City, CA, USA). To confirm the
accuracy of the Sd-PCR method, we carried out direct
resequencing using the ABI Prism BigDye Terminator
system (Applied Biosystems).



Statistical analysis

BMD data of each subject were normalized with age and
BMI, using Instat 3 software package (GraphPad Software)
via multiple regression analysis (Iwasaki et al. 2002). Quan-
titative association between genotypes and adjusted BMD
values (g/cm’) was analyzed via one-way analysis of vari-
ance (ANOVA) with regression analysis as a post hoc test.
Three genotypic categories of each SNP were converted
into incremental values, 0, 1, and 2, corresponding to the
number of chromosomes possessing a minor allele nucle-
otide. Statistical significance was determined by ANOVA,
F-test. To ascertain the Hardy-Weinberg equilibrium
among genotypes of the subjects, a chi-square test was used.
Prediction of binding sites for transcription factors was per-
formed using MatlInspector V2.2 (http://transfac.gbf.de/cgi-
bin/matSearch/matsearch.pl) based on the TRANSFAC4.0
database (http://transfac.gbf.de/TRANSFAC/index.html).

Results

The BNP gene was examined for association with BMD as
one of the likely candidates for osteoporosis susceptibility
genes. We first examined the polymorphic nature of seven
archived SNPs in 32 chromosomes of the subjects from our
test population; three SNPs were archived in the JSNP da-
tabase, and four SNPs were archived in the NCBI-dbSNP
database, as shown in Table 1. Three SNPs from the JSNP
database were moderately polymorphic, whereas the other
four SNPs from the NCBI-dbSNP database turned out to be
monomorphic in the test population.

Among the three polymorphic SNPs as defined
earlier, promoter SNP -381T/C, localized at 283bp up-
stream of the transcription initiation site (referenced contig;
NT_004488.10 from GenBank), revealed a significant corre-
lation with variation in radial BMD (r = 0.13, P = 0.01).
Statistical analyses of two other SNPs did not reach statisti-
cal significance (-2158A/G; r = 0.06, P = 0.23, -1299G/T;
r = 0.03, P = 0.58). As to the -381T/C SNP, homozygous
T-allele carriers had the lowest adjusted BMD (0.395 =
0.056 g/cm®), heterozygous individuals had an intermediate
adjusted BMD (0.405 + 0.048g/cm’), and homozygous
C-allele carriers had the highest adjusted BMD (0.429 =
0.051 g/cm?®), implying an allelic dose effect of this variation
on influences to BMD (Fig. 1).

Accelerated bone loss in T-allele carriers in a 5-year follow-
up study. To test whether bone loss of postmenopausal
women is affected by the variation of the BNP gene, we
examined the 5-year bone loss of the 126 subjects who had
been followed up longitudinally for over 5 years. Five-year
bone loss (g/cm”) was calculated for each individual by sub-
tracting the adjusted BMD value obtained in the BMD
measurement carried out 5 years previously from the BMD
value measured in the recent analysis (Fig. 2). A significant
difference in S-year bone loss was identified between
women with the T-allele homozygotes for the —-381T/C SNP
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Fig. 1. Association of —381T/C variations with adjusted-radial bone
mineral density (BMD). Adjusted BMD of three genotypically
classified subgroups among 378 subjects were plotted. Open circles
indicate mean values and error bars indicate standard deviations. The
correlation between the number of minor alleles possessed and the
adjusted BMD was tested by linear regression analysis (P = 0.01)

(0.048 = 0.030g/cm*, n = 90) and other women (0.036 *
0.023g/cm’, n = 36) (P = 0.017). The results suggest that
genetic variation of BNP contributes to the development of
osteoporosis, in part through the mechanism of accelerated
postmenopausal bone loss. We hypothesized that T-allele
homozygotes for the BNP —-381 SNP is an important risk
factor for decreased BMD in postmenopausal women.

Discussion

In the work reported here, we showed an association of the
—381T/C SNP variation in the promoter region of the BNP
gene with radial BMD in a population of postmenopausal
Japanese women. Adjusted BMD was lowest in T/T ho-
mozygotes, intermediate among heterozygotes, and highest
among C/C homozygotes in the test population. The data
implied that variation in the promoter region of the BNP
gene might have affected bone metabolism in these women,
eventually introducing variation in BMD. Lowered BMD in
postmenopausal women could be a result of accelerated
bone loss and/or lesser acquisition of bone mass before
maturation. A correlation between rate of bone loss and
variation of the BNP gene was indicated by analysis of bone
loss over 5 years in a longitudinal follow-up study. The
correlation may suggest that the main contribution of the
BNP variation is to increase bone turnover and bone loss.

The -381 variation may be important on theoretical
grounds because it is located just upstream of the gene
transcription initiation site. Predictive analysis of binding
motifs for transcription factors using the MatInspector pro-
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Fig. 2. Five-year longitudinal bone loss between subjects harboring the
T allele of the —381T/C single-nucleotide polymorphism and other
subjects in 126 postmenopausal women. Mean values of adjusted BMD
are plotted on the diagram from data at 5 years previously (1995) to
those at a recent measurement (2000). Open circles indicate values
among C homozygous and heterozygous individuals. Open squares are
for individuals with T homozygotes. Lines are synonymous to regres-
sion lines drawn for each genotypically classified subject group. A
significant difference was indicated for the inclination of two lines
(P =0.017)

gram revealed that the —381T/C variation is located within
the consensus binding sequence of d-crystallin/E2-box fac-
tor 1 (8-EF1; GGACACCIGGA) and upstream stimula-
tory factor (ACACCTIGG), both of which contain an E-box
binding element (CAnnTG) inside them (Sekido et al. 1994;
Dillner and Sanders 2002; Viollet et al. 1996). Because 8-
EF1 is an important transcription factor that distributes in
many organs including connective tissues of the skeletal
system (Davies et al. 2002; Funahashi et al. 1993; Terraz et
al. 2001; Sooy and Demay 2002), it regulates not only tissue-
specific expression of the crystalline gene in the lens, but
also many genes including collagens and osteocalcin genes
important for bone and cartilage development and mainte-
nance (Funahashi et al. 1993; Terraz et al. 2001; Sooy and
Demay 2002). Altered promoter function could account for
the different clinical features of bone mass in individuals,
which should be examined in the future by means of a
binding assay for each transcription factor, or by a promoter
activity test using reporter constructs, for example.

In summary, we showed a significant association of the —
381T/C variation in the promoter region of the BNP gene
with radial BMD of postmenopausal Japanese women.
Structural inspection suggests a possible contribution of a
transcription factor delta-EF1 binding to the SNP site. The
possibility cannot be ruled out, however, that this SNP
marker may itself be in linkage disequilibrium with other
unmeasured and functional variants at or near BNP that are

the true mechanistic basis for the associations. Functional
studies will be required to rule out these possibilities.
Nevertheless, our data is in accord with the previous data
from human QTL linkage analysis in search of an os-
teoporosis susceptibility gene at 1p36.2—p36.3.
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