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are now believed to develop through a multistep process
that activates oncogenes and inactivates tumor suppressor
genes (Lopez-Otin and Diamandis 1998). Inactivation of a
tumor suppressor gene (TSG) often involves mutation of
one allele and loss or replacement of a chromosomal seg-
ment containing another allele. Loss of heterozygosity
(LOH) has been found on chromosomes 1p, 1q, 3p, 6q, 7p,
11q, 13q, 16q, 17p, 17q, 18p, 18q, and 22q in breast cancer
(Smith et al. 1993; Callahan et al. 1992; Sato et al. 1990;
Hirano et al. 2001a); the commonly deleted regions include
3p, 6q, 7p, 11q, 16q, and 17p (Smith et al. 1993; Hirano et al.
2001a). In addition, other gross alterations such as the aneu-
ploidy state and gene amplification, and small changes in-
cluding point mutations, small insertions, or deletions in
multiple genes are scattered through the genome of cancer
cells. In fact, most cancer research on the neoplastic cell in
the last 20 years has focused on genetic aspects. However,
the malignant cell has also acquired a different epigenotype.
The inheritance of information on the basis of gene expres-
sion levels is known as epigenetics, as opposed to genetics,
which refers to information transmitted on the basis of gene
sequence. The main epigenetic modification in mammals,
and in particular in humans, is the methylation of the cy-
tosine nucleotide residue.

DNA methylation is an enzymatic modification per-
formed by DNA methyltransferases. The added methyl
group does not affect the base pairing itself, but the pro-
truding of methyl groups into the major groove can affect
DNA–protein interactions (Razin and Riggs 1980). In eu-
karyotes, two different types of DNA methyltransferases
have been characterized: de novo methyltransferases, such
as Dnmt3a and Dmnt3b (Okano et al. 1998), which use
nonmethylated DNA as a subtrate; and maintenance
methyltransferases, such as Dnmt1 (Bestor et al. 1988),
which methylate hemimethylated DNA that is generated by
replication of methylated sites (Bestor 2000). Maintenance
methylation implies copying of the existing methylation
pattern of the old DNA strand onto the new one. There-
fore, DNA methylation can be heritable and can serve as
an epigenetic mark that is transmitted by mitotic or cell
division onto the progeny. DNA methylation of TSGs is a
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Abstract Solid tumors in humans are now believed to
develop through a multistep process that activates
oncogenes and inactivates tumor suppressor genes. Loss of
heterozygosity at chromosomes 3p25, 3p22–24, 3p21.3,
3p21.2–21.3, 3p14.2, 3p14.3, and 3p12 has been reported in
breast cancers. Retinoid acid receptor �2 (3p24), thyroid
hormone receptor �1 (3p24.3), Ras association domain fam-
ily 1A (3p21.3), and the fragile histidine triad gene (3p14.2)
have been considered as tumor suppressor genes (TSGs) for
breast cancers. Epigenetic change may play an important
role for the inactivation of these TSGs. Screens for pro-
moter hypermethylation may be able to identify other TSGs
in chromosome 3p. Alternatively, use of an “epigenetic
modifier” may enhance the response to another type of
agent for breast cancer.
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Introduction

Breast cancer is one of the most common malignancies
among women, and its cumulative risk by age 85 years is 1
in 8 women in the United States and 1 in 40 women in Japan
(American Cancer Society 1994). Solid tumors in humans
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frequent mechanism of transcriptional silencing in cancer
(Jones and Laird 1999; Baylin and Herman 2000). Recently,
Rhee et al. (2002) demonstrated that Dnmt1 and Dnmt3b
cooperate to silence genes in human cancer cells. The
molecular mechanisms underlying the specificity of methy-
lation are largely unknown. Croce et al. (2002) reported
that leukemia-promoting promyelocytic leukemia-retinoic
acid receptor fusion protein induces gene hypermethylation
and silencing by recruiting DNA methyltransferases to tar-
get promoters, and that hypermethylation contributes to its
leukemogenic potential. Retinoic acid treatment induces
promoter demethylation, gene reexpression, and reversion
of the transformed phenotype. The mechanistic link be-
tween genetic and epigenetic changes during transforma-
tion suggests that hypermethylation contributes to the early
steps of carcinogenesis (Croce et al. 2002).

Chromosome 3p allele loss is a frequent event in breast
cancer, and some candidate TSGs have been located in this
region (Table 1). Notably, epigenetic changes can mediate
inactivation of these TSGs (Bovenzi et al. 1999; Sirchia et al.
2000; Widschwendter et al. 2000; Li et al. 2002; Dammann
et al. 2001; Zochbauer-Muller et al. 2001). We would like to
outline the genetic and epigenetic analysis of chromosome
3p in breast cancer.

LOH analysis of chromosome 3p

LOH at chromosome 3p occurs in many human malignan-
cies including breast cancers (Ali et al. 1989; Devilee et al.

1989). It is important to elucidate the region within 3p that
is involved in breast cancer, which could provide informa-
tion on genetic alterations in tumors and help to localize
sites of potential TSGs. Ali et al. (1989) reported a 30%
LOH of markers at 3p21–25. Sato et al. (1990) reported
LOH at 3p in 47% of 219 tumors analyzed by restriction
fragment length polymorphism. Matsumoto et al. (1997)
reported a frequency of 52% 3p LOH in 196 tumors
analyzed by conventional allelotyping. Maitra et al. (2001)
performed high-resolution allelotyping for LOH analysis on
microdissected samples from 45 primary breast cancers;
allele loss in some regions of chromosome 3p was detected
in 39 cases (87%). Chen et al. (1994) demonstrated that two
separate deletion regions (3p13–14 and 3p24–26) existed on
chromosome 3p. Mastumoto et al. (1997) were able to
define two noncontiguous regions of frequent LOH in their
analysis (3p24.3–25.1 and 3p14.2–21.1). Maitra et al. (2001)
revealed frequent LOH in 3p21.3, 3p22–24, 3p21.2–21.3,
3p25, 3p14.2, 3p14.3, and 3p12.

The chromosomal regions where allelic losses have been
detected are thought to include specific target genes whose
inactivation either is essential for transformation or pro-
vides a selective advantage associated with progression.
However, it is also possible for an LOH to be randomly
acquired and irrelevant but coselected with other specific
mutations important for tumor development. It is still
tempting to speculate that these discrete areas in chromo-
some 3p may harbor one or more TSGs critical to breast
carcinogenesis.

Candidate tumor suppressor genes in
chromosome 3p

Retinoid acid receptor �2

Retinoid acid receptor �2 (RAR�2) maps to chromosome
3p24 (Chambon 1996), a region that exhibits a high fre-
quency of LOH (Deng et al. 1996). Deng et al. (1996) re-
ported that LOH in normal terminal ductal–lobular units
adjacent to the tumor was seen in six of the ten cases with
confirmed LOH at 3p24 in the cancer. Maitra et al. (2001)
detected 3p24 LOH in precursor lesions. Retroviral trans-
duction of breast tumor cell lines with RAR�2 results in
inhibition of tumor cell proliferation (Seewaldt et al. 1995).
RAR�2 levels were found to be decreased or suppressed
in a number of malignant tumors, including lung cancer,
squamous cell cancer of the head and neck, and breast
cancer (Picard et al. 1999; Xu et al. 1997, 1999). These
findings suggest that RAR�2 plays an important role in
limiting the growth of many cell types, and that the loss of
this regulatory activity is associated with tumorigenesis.
RAR�2 inhibits the metastatic cascade in a mouse mam-
mary gland xenograft tumor model and is a potential candi-
date for therapeutic intervention in human breast cancer
(Treutin et al. 2002). RAR�2 can mediate retinoid action in
breast cancer cells by promoting apoptosis (Liu et al. 1996).
In vitro (Liu et al. 1996) and in vivo (Toma et al. 2000)

Table 1. LOH, sensitive microsatellite markers, and candidate TSGs
in chromosome 3p

Regions of LOH Microsatellite markers Candidate TSGs

3p25 VHL
D3S1351
D3S1597
D3S1111

3p24 RAR�2, TR�1
D3S 1286
D3S 1293
D3S 1283
D3S 2432
D3S 1537

3p21.3 RASSF1
D3S 4597
D3S 4604
D3S 4614
D3S 4622
D3S 4623
D3S 4624

3p14.2 FHIT
D3S 1295
D3S 1234
D3S 4103
D3S 1300
D3S 1600

3p12 DUTT1
D3S 1284
D3S 1274
D3S 1511

LOH, Loss of heterozygosity; TSGs, tumor suppressor genes
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studies suggest that RAR�2 could be induced by all-
trans-retinoic acid in breast cancer. All-trans-N-(4-
hydroxyphenyl)retinamide (4HPR), a synthetic retinoid
acid, is an activator of RAR�2. 4HPR is a promising drug for
the chemoprevention of breast cancer (Fisher et al. 1998).
This synthetic retinoid has been shown to be more effective
and less toxic than other retinoids for chemoprevention of
mammary cancer in animals (Moon et al. 1979). 4HPR was
the subject of a recent 5-year clinical trial conducted to
assess its usefulness in preventing contralateral breast can-
cer in a population of patients previously operated on for
breast cancer (Veronesi et al. 1999). The combined adminis-
tration of tamoxifen and 4HPR has proven to be additive
or synergistic in both the growth inhibition of the breast
cancer cell line MCF-7 and the prevention of N-methyl-N-
nitrosourea-induced mammary carcinoma in the rat (Ratko
et al. 1989). Because retinoids do not require estrogen re-
ceptors (ERs) for their action, they may affect neoplastic
transformation in ER-negative cells (Fraker et al. 1984), in
contrast to tamoxifen, whose primary mechanism of action is
through the ER.

To understand why RAR�2 activity is down-regulated or
lost in malignant tumors, researchers have made intense
efforts to identify possible alterations that affect either the
RAR�2 promoter or its regulatory factors (Seewaldt et al.
1995; Xu et al. 1997; Wu et al. 1997). We assessed LOH
on chromosome band 3p24 to correlate it with RAR�2
expression and other established prognostic parameters in
primary breast cancers (Yang et al. 2001a). Based on three
microsatellites, D3S 1283, D3S 1293, and D3S 1286, all of
the tumors were informative; of these, 12 (23%) exhibited
LOH. RAR�2 expression was lost in 42% (19/45) of de-
tected samples. We found that LOH on chromosome band
3p24 was not correlated with loss of RAR�2. Moreover,
no mutations were found in the promoter of breast cancer
(Widschwendter et al. 1997; Yang et al. 2001b). These re-
sults suggest that it is unlikely that changes in gene structure
could completely explain the altered RAR�2 expression. A
possible mechanism to be considered is suppression of the
RAR�2 gene by methylation in the promoter (Bovenzi
et al. 1999; Sirchia et al. 2000; Widschwendter et al. 2000).
We demonstrated that biallelic inactivation of the RAR�2
gene could result either from epigenetic inactivation of both
parental alleles, or from epigenetic modification of one al-
lele and deletion of the remaining allele (Yang et al. 2001b).
Unexpectedly, methylation status could not account com-
pletely for suppression of RAR�2 expression in breast can-
cer tumors (Widschwendter et al. 2000; Yang et al. 2001c).
Changes altering RAR�2 transcription in breast cancer
might be prevented in the presence of supraphysiological
levels of retinoic acid. This hypothesis was supported by the
findings that RAR�2 expression is selectively reduced in
several organs when vitamin A is deficient, and is enhanced
by retinoic acid (Kato et al. 1992; Verma et al. 1992). In
addition, transcription of RAR�2 is also regulated by core-
pressors and coactivators; thus, its suppression may be due
to aberrant expression of these cofactors. Previous studies
have indicated that orphan receptor chicken ovalbumin
upstream promoter transcription factor is required for in-

duction of RAR�2 in several types of cancer cells including
the breast (Lin et al. 2000).

Thyroid hormone receptor �1

Our findings that LOH of the 3p24 region harboring the
RAR�2 gene does not correlate with lack of RAR�2 ex-
pression may indicate that other genes of these regions,
probably not only RAR�2, play a role in determining the
pathological characteristics of the tumors (Yang et al.
2001a). The frequent region of allelic loss at 3p24.3 in
morphologically normal terminal ductal–lobular units also
encompasses the thyroid hormone receptor �1 (TR�1) gene
(Deng et al. 1996; Li et al. 1997). TR�1 regulates gene
expression when bound to thyroid response elements in
the proximity of target genes (Mangelsdorf et al. 2000). On
the basis of the presence or absence of the ligand, thyroid
hormone triiodothyronine (T3), TR�1 can act as a transcrip-
tional activator or silencer (Damm et al. 1989). Increasing
evidence has suggested that aberrant expression and/or
mutations in TR genes could be associated with carcino-
genesis. A reduction in the expression of mRNA for TR�1
and TR�2 was implicated in inappropriate expression of the
glycoprotein hormone α-subunit gene in nonfunctioning tu-
mors of the anterior pituitary and was proposed to contrib-
ute to uncontrolled tumor growth (Gittoes et al. 1997;
McCabe et al. 1999). Reduced expression of TR�1 was also
found in poorly differentiated fibroblast-like osteosarcoma
(Williams et al. 1994). However, in poorly differentiated
hepatocarcinomas, overexpression of TR�1 was correlated
with enhanced T3-induced proliferation (Lin et al. 1990,
1994). In neuroblastoma cells, Lebel et al. (1994) have also
demonstrated that T3 treatment of TR�1-overexpressing
cultures arrests proliferaton in the G0/G1 phase of the cell
cycle, and induces morphological and functional differen-
tiation. These results suggest that aberrant expression of
TR�1 may be associated with different types of tumors and/
or different states of differentiation. Functionally impaired
�1 mutants have been detected in thyroid papillary cancer
(Puzianowska- Kuznicka). Li et al. (2002) could not detect
TR�1 mutations but observed a variable degree of TR�1
promoter hypermethylation in two of five breast cancer cell
lines and in all 11 cases of primary breast cancer examined.
Moreover, biallelic inactivation of TR�1 by LOH and/or
methylation was also suggested.

Ras association domain family 1A

Ras association domain family 1 (RASSF1) maps to chro-
mosome 3p21.3. It spans 7.6kb of genomic DNA, has a
predicted Ras association domain and homology to the Ras
effector Nore 1 (Dammann et al. 2000). The RASSF1 gene
encodes two major transcripts, RASSF1A and RASSF1C,
which are produced by alternative promoter selection and
alternative messenger RNA splicing. RASSF1A is encoded
by RASSF1 exons 1A, 1C, and 2–5. RASSF1C is encoded by
RASSF1 exons 1–5. The start sites for RASSF1A and
RASSF1C are approximately 2kb apart and have two inde-
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pendent CpG island-containing putative promoter regions.
RASSF1A is predicted to encode a 39-kDa peptide that
contains an N-terminal diacylglycerol-binding domain and
a Ras association domain. RARSSF1A promoter hyper-
methylation was detected in many breast cancer cell lines
and 49%–62% of primary breast cancers (Burbee et al.
2001; Dammann et al. 2001). However, Agathanggelou et
al. (2001) reported RASSF1A promoter hypermethylation
in 9% of primary breast cancers; the lower hypermethy-
lation frequency may result from sample selection bias.
Burbee et al. (2001) demonstrated that the frequency of
RASSF1A gene silencing virtually parallels that of the inci-
dence of the LOH for chromosome 3p21, the region that
harbors the gene. Methylation and LOH may be the major
loss of function pathways for the RASSF1A gene because
somatic mutations appear to be rare in this gene (Dammann
et al. 2000). Dammann et al. (2001) detected a constant
methylation frequency of RASSF1A in all of the different
grades of the mammary cancers. RASSF1A inactivation was
already very high in grade I tumors. Furthermore, some
methylation is also detected in 7.5% of the samples, which
were classified as normal tissue removed with tumor sur-
gery. Thus, methylation of RASSF1A may be an early event
during breast cancer pathogenesis.

The fragile histidine triad gene

The fragile histidine triad (FHIT) gene has been mapped
to 3p14.2 of human chromosome 3 (Ohta et al. 1996). The
most common fragile site of the human genome, FRA3B,
maps within the FHIT gene (Ohta et al. 1996). The presence
of the FRA3B fragile site within FHIT suggests that the
fragility of this gene may make FHIT susceptible to rear-
rangements induced by a variety of environmental carcino-
gens. It also suggests that the degree of chromosomal
fragility at this site may contribute to the degree of cancer
susceptibility. In sporadic breast cancer, LOH within the
FHIT gene has been observed at different frequencies
(Ahmadian et al. 1997; Man et al. 1996; Ingvarsson et al.
1999; Huiping et al. 2000; Yang et al. 2002). Similar dele-
tions of the FHIT gene have been observed in preneoplastic
lesions (Ahmadian et al. 1997), suggesting that FHIT dele-
tions could be an early event in a significant fraction of
breast cancer. LOH at FHIT is associated with tumor pro-
gression and patient survival (Ingvarsson et al. 2001).
Gatalica et al. (2000) have demonstrated that the expres-
sion of Fhit protein is related inversely to disease progres-
sion in patients with breast cancer. Campiglio et al. (1999)
analyzed Fhit expression in 185 breast cancers and indicated
that a decrease or an absence of Fhit protein expression
is associated with high proliferation and large tumor size.
We assessed Fhit expression using immunohistochemistry
in 166 invasive breast cancers (Yang et al. 2001d) and found
that loss of Fhit expression is associated with higher malig-
nant phenotypes and appears to be a prognostic factor in
breast cancer.

Previous studies have demonstrated that point mutations
are very infrequent in FHIT (Ahmadian et al. 1997;

Gonzalez et al. 1998; Kannan et al. 2000). Hypermethy-
lation seems to play an important role in FHIT inactivation
(Zochbauer-Muller et al. 2001).

Discussion and future directions

In addition to the candidate TSGs described earlier,
DUTT1 (3p12) may be a new candidate TSG for breast
cancer (Sundaresan et al. 1998). Its tumor-suppressing
activity and protein patterns in tumors are unknown.
Chromosome 3p25 has been reported to have a significantly
adverse effect on postoperative survival (Matsumoto et al.
1999; Hirano et al. 2001a, 2001b). Lininger et al. (1999) also
suggest that TSG in this region contributes to carcino-
genesis of apocrine cancer of the breast. The Von Hippel
Lindau (VHL) gene may be a candidate. Kim et al. (1998)
have demonstrated that VHL controls cell cycle progres-
sion by regulation of p27Kip1 at both the mRNA and pro-
tein levels. However, no mutations were identified in the
VHL gene regions studied in breast cancer cell lines (Bailly
et al. 1995). It is possible that the VHL gene or another
putative TSG also undergoes inactivation by the increas-
ingly apparent epigenetic pathway of promoter methylation
rather than by mutation, but this remains to be determined.
Identification of nested 3p21.3 homozygous deletions in
small cell lung cancers and a breast cancer line directed
positional cloning efforts to a 630-kb region, which was
narrowed subsequently to a 120-kb subregion by a breast
cancer homozygous deletion (Lerman and Minna 2000;
Sekido et al. 1998). A group of candidate tumor suppressor
genes (designated CACNA2D2, PL6, 101F6, NPRL2,
BLU, RASSF1, FUS1, HYAL2, and HYAL1) has been
identified in a 120-kb critical tumor homozygous deletion
region (found in lung and breast cancers) of human chro-
mosome 3p21.3. The RASSF1A isoform of the RASSF1
gene, which has been studied extensively for promoter me-
thylation in a variety of tumors, including lung and breast
cancer, was found to be frequently epigenetically inacti-
vated in these tumors, and shows the ability to suppress lung
cancer malignant growth (Burbee et al. 2001; Dammann et
al. 2000). Ji et al. (2002) studied the effects of six of these
3p21.3 genes (101F6, NPRL2, BLU, FUS1, HYAL2, and
HYAL1) on tumor cell proliferation and apoptosis in hu-
man lung cancer cells by recombinant adenovirus-mediated
gene transfer in vitro and in vivo. They found that forced
expression of wild-type FUS1, 101F6, and NPRL2 genes
significantly inhibited tumor cell growth by induction of
apoptosis and alteration of cell cycle processes. Further re-
search should be addressed if these genes are TSGs for
breast cancer.

Frequent hypermethylation has been identified in the
TSGs on chromosome 3p (Yang et al. 2001b; Bovenzi et al.
1999; Sirchia et al. 2000; Widschwendter et al. 2000; Li et al.
2002; Dammann et al. 2000; Burbee et al. 2001; Dammann
et al. 2001; Zochbauer-Muller et al. 2001). It will be interest-
ing to investigate whether this methylation occurs as part of
the aging process, a phenomenon that has been described
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for other genes (Ahuja et al. 1998). Hypermethylation and
LOH may be the major loss of function pathways for these
TSGs because somatic mutations appear to be rare, and the
mechanisms fit the revised Knudson two-hit theory (Jones
and Laird 1999). Similar to LOH (Maitra et al. 2001),
hypermethylation also occurs in precursor lesions
(Lehmann et al. 2002). This raises the question regarding
which event, LOH or epigenetic change, occurs first in
breast cancer development. The development of sporadic
breast cancers is driven by heritable phenotypic changes,
which are due to both genetic and epigenetic events. Per-
haps either one is effective in initiating the disease process.
However initiated, the molecular and mechanistic hetero-
geneity of sporadic cancers suggests that the cause of a
tumor may be as specific as the individual in which it has
arisen. Therefore, both diagnostic and treatment options
need to be tailored to address this aspect.

Epigenetically mediated gene silencing in breast cancer
heavily impacts future research in this area. Screens for
promoter hypermethylation should be considered as one of
the important methods for searching for TSGs in breast
cancer. Although heritable, epigenetic changes are poten-
tially reversible. A better understanding of epigenetic regu-
lation of TSGs in gene-specific fashion will help efforts to
modulate gene expression selectively, with the ultimate goal
of improved breast cancer prevention and therapy.
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