SHORT COMMUNICATION

Hiroyasu Iwasa · Masahiko Kurabayashi · Ryozo Nagai Yusuke Nakamura · Toshihiro Tanaka

Genetic variations in five genes involved in the excitement of cardiomyocytes

Received: May 22, 2001 / Accepted: June 8, 2001

Abstract We provide here 29 genetic variations, including 28 novel ones, in five genes that are potentially involved in the excitement of cardiomyocytes: we found 4 in *KCNA10*, 2 in *KCNK1*, 8 in *KCNK6*, 11 in *SLC18A1* (VMAT1), and 4 in *SLC6A2* (norepinephrine transporter). We also examined their allelic frequencies in a Japanese population of long QT syndrome-affected and nonaffected individuals. These data would be useful for genetic association studies designed to investigate acquired arrhythmias.

Key words Long QT syndrome · Single-nucleotide polymorphism · Japanese population · Norepinephrine transporter · VMAT1 · Two-pore domain potassium channel · *KCNA10*

Introduction

Long QT syndrome (LQTS), an arrhythmogenic disorder characterized by prolongation of the QT interval on electrocardiograms (ECGs), often causes syncope or sudden cardiac death as a result of recurrent and lethal arrhythmia. Five genes in which inherited mutations are responsible for this syndrome have been identified to date: *KCNA9*

H. Iwasa · Y. Nakamura · T. Tanaka (⊠) Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan Tel. +81-3-5449-5375; Fax +81-3-5449-5406 e-mail: toshitan@ims.u-tokyo.ac.jp

H. Iwasa · M. Kurabayashi Second Department of Internal Medicine, Gunma University School of Medicine, Gunma, Japan

R. Nagai

Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan

(*KVLQT1*, *KCNQ1*), *KCNH2* (*HERG*), *KCNE1*, *KCNE2*, and *SCN5A* (Bennett et al. 1995; Curran et al. 1995; Wang et al. 1996a,b; Splawski et al. 1997; Abbott et al. 1999). A mutant form in at least one of these five genes can be detected in nearly 40% of LQTS families, but the abnormalities responsible for the syndrome in the remaining families seem to be in other, unknown genes.

Potassium channels are the most heterogenous group of ion channels in terms of structure and function. Some are voltage-gated channels, and most LQTS-associated genes [KCNA9 (KVLQT1), KCNH2 (HERG), KCNE1, KCNE2] are voltage-gated potassium-channel genes. KCNA10, the most recently cloned voltage-gated potassium-channel gene, may potentially participate in the cardiac action potential (Lang et al. 2000). The most recently discovered class of potassium channel is the two-pore-domain potassium-channel family, although the physiological function of this class in cardiac myocytes has not yet been clarified. TWIK-1 (encoded by KCNK1), TASK-1 (encoded by KCNK3), and TWIK-2 (encoded by KCNK6) are potential candidates to generate a potassium current in the cardiac action potential.

As sympathetic denervation of the left heart can sometimes prevent sudden cardiac death of LQTS patients (Bhandari et al. 1984), molecules that might potentially play parts in sympathetic activity are also candidates. Heterozygous deficiency of *SLC18A2*, the gene encoding vesicular monoamine transporter (VMAT2), can induce a prolonged QT interval and sudden death in knockout mice (Itokawa et al. 1999). Information on variations among individuals in genes expressed in the monoaminergic system can provide better knowledge of arrhythmogenic conditions, and so other monoamine transporter 1 (VMAT1) (Weiche et al. 1994), and *SLC6A2*, encoding norepinephrine transporter, are also candidate genes linked to arrhythmogenic disorders (Shannon et al. 2000).

Here we report multiple single-nucleotide polymorphisms (SNPs) and other genetic variations among five candidate genes for LQTS along with their allelic frequencies among normal and LQTS-affected Japanese subjects.

Table 1. PCR primers used to cover the coding region of KCNA10, KCNK1, KCNK3, KCNK6, SLC18A1, and SLC6A2

Gene	Exon ^a	Forward primer	Reverse primer	Annealing temperature	GenBank accession number
KCNA10	1.1	AGG CTG AGG ATC TTC ATG C	GAA GGT GAA CCA CAC GAT G	62	NM_005549
	1.2	TGG TCT CGG TGT TGG TTG	GAG AAG AGA GAC AGG ATG GAC	62	NM_005549
KCNK1	1.1	AAA CAT CGC CCG AGA GAG C	GCG CAC GCA CGA GCT G	62	NM_002245
	1.2	GCG GCG GTG GAG AAG AT	CGA GGA GAA GAC CAC TGC G	62	NM_002243
	1.3	TTC CTG GTG CTG GGC TAC	GAC ACG CCG TAG TTG CTG	62	NM_002243
	1.4	AGC AGC AGC TGG AGC AGT	TGT GGG TTG TGG GCG AG	64	NM_002243
	2.1	CGC CTC AGT GAC CTT GTT CTC	AGA AGC CCC AGC GGA TGT	62	NM_002243
	2.2	GTG GTC CAG CGC ATC AC	GAT TCC AGG AAG TTC CAG TC	62	NM_002243
	2.3	CCG CTG TCT TCT CAG TCC TG	AAT AAA GGA GAC AGA AGG AGC AG	62	NM_00224
	3.1	ATG TTG AGA TCA CAC TAA GAC AGT	GGA GAA GGA CAG TTG GTC A	62	NM_00224
	3.2	TCA GGT GCA CAT CAT AGA GC	TGA CCC TGG TGC TCT AGC	58	NM_00224
KCNK3	1.1	GGT GGT GCT GAA GGG ACA	GAA GGT GCA CAC GAT GAG C	62	AF065163
	1.2	ATG AAG CGG CAG AAC GTG	CGC TCC AGC TCC TCG TAG	62	AF065163
	1.3	GCG CGC TAC AAC CTC AG	GAC GAC TCC CGG AGC CC	62	AF065163
	2	CTT TTT CTC CTC TTT CCC ACT	GTT GGC CAT GGA CAC GTC	60	AF065163
	intron2	AAG AAG GGG CTG GGC AT	CAG TGC TCG TAG TGG GAG AAG	60	AF065163
	3.1	ACT GTT TAC ACT CGT GCA TCA GC	ATG ACC GTG AGG CCC GTA	62	AF065163
	3.2	GCC TTC AGC TTC GTC TAC ATC	GTA GAC GTT GCG GAA GCC	62	AF065163
	3.3	CTC ATC CAC GGC GGC AG	GCG ACG AGT GGC TCT GCT	62	AF065163
	3.4	GAC CTC TCC ACG TCC GAC AC	GCC CCC AGG TGC TCC AG	62	AF065163
KCNK6	1	CTG GGT CTG GGA GCA CTG	CCC CGA GCA GAG CAG ATA	58	AF117708
CIVK0	2	AGA GCC TGC ACC CTT CAT	ATC CAA ATG TCA CCT TCT CAG	60	AF117708 AF281303
	2 3		GCC CAG GAA GAG GTA GAC TG		
	3 4	GCT ACT TAG GAG GAG GCT GAG		62	AF117708
		CAC TGC TGC TGA CTC ACG T	ATC ACC TGC TGT GCT CGT G	62	AF117708
SLC18A1	1	GCA ATT AAA TCT TTG TGG ACA	GAC ACA AAT CAC AAG GAA AGA T	58	NM_00305
	2.1	AAA TAT CAT CCT ACT ACT TGC A	CAG AAT GGT CCG GAG CA	55	NM_00305
	2.2	CCC CAG TCC GGC CAT CA	ACA GCA AAT TAA CCC TCA GCA	58	NM_00305
	3.1	CCA TCA CCT GTC CTC TTT GAC	GAT GGT GCT GGC AGT GTC A	62	NM_00305
	3.2	TAG CAT GGA TGA ATG ACA CTG	TAC TCC TGT GTA CCC TGC G	58	NM_003053
	4	GTG CCT GTT GGA ATT GTA TCT	GAT AAA ATC AAA GGT AAT CAG TGA	58	NM_003053
	5	AGT TAT CTT GCT ATT CTC TCT GC	CAT GTA AAT ATA GGA TCT GAG GTA	58	NM_003053
	6	GGG CCA GCT GCA TCT GTA	ACA CCT CGG GAA CAC CTG	58	NM_003053
	7	ACC CTC ACC TCT GGA ATC TG	ACC TGG GCT GTC ACC TGC	55	NM_003053
	8	CCA GCT AAT CAG TAG ACA CGC	TGC ATT CAG CCA TCC TGT AT	58	NM_003053
	9	TAT GCA CTG TAC AAA TGG ACA T	GGG AGA CTG TTC TGT GAG CA	58	NM_003053
	10	CGG CTG CTC ACA GAA CAG T	CAT TGA ACG AAA GGA CTC ATG	58	NM_003053
	11	TAC GAG ACA AGG CAT TTT AGA	CTC TTC CAT CTT ACA TTT CTA CTG	58	NM_003053
	12	GAC CCA TCT GGA GTC CTG AT	TTG TTT TCT TTG AGG GCA CT	58	NM_003053
	13	GAC CCA TCT GGA GTC CTG AT	TTG TTT TCT TTG AGG GCA CT	58	NM_003053
	14	CTG ACT GTG TCC TGT TTG CTC	AAA GAG TAG ACA GGG GAA AGT G	58	NM_003053
	15	ATA GAC ACT TAT GAC TTT GAT GTA T	CTC TTT TAA CAG TCG GTG CT	58	NM_003053
	16	AAA AAT GAT AAT AAT GTG CAG TG	GGT CAC TGA GGC ATC ATG A	58	NM_003053
SLC6A2	1.1	AAA GTT CCT CTC GCC AGC	CAG CAG GCA CTG GAC GC	60	X91117
	1.2	GGT GAA GGA GCG CAA C	CAA ATT CCC AGC CCG AC	58	X91117
	2	ACT CTG CCC CTG TGT CCT C	CCT TTA TGA ACA ACC GTG ACT	60	X91120
	3.1	CTC CTA CCT TAC CCC CTG TC	GCT TGG GGT CGG TAC AGT	62	X91121
	3.2	CTG CCC TGG ACC GAC TG	CAA GCA CTG GCC TCA ACA	62	X91121
	4	CCC TCC CCT CTC CTC TG	TAA GTG AAA GAG AAA CAC AGA GAT	60	X91122
	5	CAC CTG AAC TTA TCC ATT GC	CAA GGC TTG GTG GTC ACT	60	X91123
	6	TGA TGG CTT TTG TCT GCT G	CCC CAC AAG AGT CAA TCC	60	X91124
	7	GGG ACT TGA CCT CAC TGT GC	CTC AGC TCC CGC CTC AGT	62	X91125
	8	CCA TTG ATG AGG TCC TTG CTG T	CAG TGG GAT GGG GGA TAG GTA T	58	X91126
	9	GAG ACC CTA ATT CCT GCA C	ATT GAA ATG CGG CCT CAG	62	X91127
	10	AAT CAG TTC CCA CGT TTG AC	GGA GGA CTG GGA GCT GAG	62	X91127
	11	GGC CTG CCC TGT GTG TGC	CCC CCT CCC CAC ATG CAG	65	X91118
	12.1	CTT TCT CTC CCT TCT CTG C	GCT GAG GAA CTT ATA GAT GAC G	58	X91118
	12.2	ATC GCC CTG TCC TCC ATG CC	GTC TTC CCC CTC AGC	62	X91118
	13	GCA GGA TCA AAT AGC AGG TG	CCA GGG GTC TAG GCT TCA C	62	X91119
	14.1	TCT GTC CCC ACC ATG TCA TC	AAG AGA GGA TCA GAA AGG ACA ACT	65	X91119

PCR, polymerase chain reaction ^a Exons followed by dots and sequential numbers were subdivided for analysis

		Amino acid change	Regions	Frequency of minor allele		Number of chromosomes examined	
Gene	Nucleotide change ^a			LQTS	control	LQTS	control
KCNA10	348G>A	E116E	Exon1	0.36	0.35	160	188
	399G>T	R133R	Exon1	0.11	0.09	160	100
	658G>A	V330M	Exon1	0.08	0.07	160	100
	741G>A	L247L	Exon1	0.33	0.30	160	100
KCNK1	nt(-17)(ins12)		5'UTR	0.48	0.47	160	100
	600C>T	A200A	Exon2	0.005	0.01	160	100
KCNK6	-144G		5'UTR	0.01	0.03	160	190
	-63G>T		5'UTR	0.005	Rare ^b	160	190
	294C>T	F98F	Exon1	0.005	Rare ^b	160	190
	449C>T	T150I	Exon3	0.02	0.04	160	500
	576T>C	F192F	Exon3	0.06	0.08	160	190
	718+9G>C	Intronic variant	Intron3	0.005	Rare ^b	160	190
	719-10G>A	Intronic variant	Intron3	0.005	Rare ^b	160	190
	775G>A	V259M	Exon4	0.09	0.08	160	190
SLC18A1	10A>C	T4P	Exon2	0.37	0.37	160	100
	31C>T	R11W	Exon2	0.005	0.006	160	194
	293G>C	S98T	Exon3	0.29	0.28	160	180
	407T>C	T136I	Exon3	0.30	0.27	160	194
	447G>A	M149I	Exon3	0.005	0.005	160	180
	489-14(insA)	Intronic variant	Intron4	0.09	0.09	160	192
	809A>T	D270L	Exon7	0.005	0.005	160	196
	815G>C	A272P	Exon7	0.005	0.005	160	196
	814+21A>C	Intronic variant	Intron7	0.38	0.36	160	180
	1065C>T	L355L	Exon11	0.09	0.07	160	192
	1094+13G>A	Intronic variant	Intron11	0.08	0.06	160	190
SLC6A2	362G>A	A121Q	Exon2	0.005	0.005	160	190
	1022+6A>T	Intronic variant	Intron6	0.005	Rare ^b	160	188
	1287G>A	T429T	Exon9	0.26	0.26	160	100
	1590+23T>C	Intronic variant	Intron11	0.03	0.04	160	188

5'UTR, 5' untranslated region; LQTS, long QT syndrome

^aNucleotide numbering starts from the ATG start codon

^bRare indicates that it was not identified in normal controls

Materials and methods

In the course of a search for mutations in these candidate genes in Japanese LQTS patients, we identified 29 SNPs that were present in the genomic DNA of probands of 80 independent LQTS-affected families, but in which no mutation had been detected in genes responsible for LQTS. Our screening method was described previously (Itoh et al. 1998). In brief, we prepared genomic DNA from blood samples according to standard protocols after obtaining written informed consent from each participant. All exons of each gene being scrutinized, as well as flanking intronic sequences, were amplified by newly designed polymerase chain reaction (PCR) primers to cover the coding region of each gene (Table 1) and analyzed by single-strand conformation polymorphism (SSCP) analysis. Aberrant conformers were directly sequenced with an ABI 3700 DNA Analyzer (Applied Biosystems, Foster City, CA, USA). In the two genes most recently screened (KCNK6 and KCNA10), all LQTS-affected samples were screened by direct sequencing analysis.

To investigate the allelic frequencies of each polymorphism in our control population, we distinguished allelespecific sequences either by using PCR-RFLP (restriction fragment length polymorphism) techniques or by hybridizing allele-specific oligonucleotides to DNA from normal, unrelated individuals in the manner described by Saiki et al. (1986).

Results and discussion

In total, we confirmed 27 SNPs (4 in KCNA10, 1 in KCNK1, 8 in KCNK6, 4 in SLC6A2, 10 in SLC18A1) and two insertion/deletion polymorphisms, and we examined the frequency of each allele in the Japanese population as summarized in Table 2. Of the two insertion/deletion polymorphisms, one was a single-nucleotide insertion/deletion in SLC18A1 and the other was an insertion/deletion of 12 nucleotides, TTTGGCTTTGGC, in the 5' untranslated region (5'UTR) of KCNK1. We found no polymorphism in coding regions or flanking sequences of KCNK3. These polymorphisms have not been reported previously, except for the 1287G>A polymorphism in SLC6A2 (Stober et al. 1996). The frequency of each polymorphism showed no significant difference between LQTS and control samples.

Some nonsynonymous polymorphisms (R11W, D270L, and A272P in SLC18A1, and R121Q in SLC6A2) were each

detected in only one of the probands of independent LQTSaffected families. However, since these variations did not cosegregate with the disease, we consider that they did not cause LQTS. We also found some silent SNPs and intronic variants in one of the LQTS-affected samples, but none of them seemed to lead to splicing abnormalities. Hence, at present we consider these five substitutions to be rare polymorphisms.

We believe that the data reported here will provide useful information for association studies designed to identify genes related to nonfamilial arrhythmias, for instance, druginduced arrhythmia.

Acknowledgments This work was supported in part by a Grant-in-Aid from the Ministry of Education, Science, Sports, and Culture of Japan. We are grateful to Kaori Sato for secretarial assistance.

References

- Abbott GW, Sesti F, Splawski I, Buck ME, Lehmann MH, Timothy KW, Keating MT, Goldstein SA (1999) MiRP1 forms I_{kr} potassium channels with *HERG* and is associated with cardiac arrhythmia. Cell 97:175–187
- Bennett PB, Yazawa K, Makita N, George AL Jr (1995) Molecular mechanism for an inherited cardiac arrhythmia. Nature 376:683–685
- Bhandari AK, Scheinman MM, Morady F, Svinarich J, Mason J, Winkle R (1984) Efficacy of left cardiac sympathectomy in the treatment of patients with the long QT syndrome. Circulation 70:1018– 1023
- Curran ME, Splawski I, Timothy KW, Vincent GM, Green ED, Keating MT (1995) Molecular basis for cardiac arrhythmia: *HERG* mutations cause long QT syndrome. Cell 80:795–803

- Itoh T, Tanaka T, Nagai R, Kikuchi K, Ogawa S, Okada S, Yamagata S, Yano K, Yazaki Y, Nakamura Y (1998) Genomic organization and mutational analysis of *KVLQT1*, a gene responsible for familial long QT syndrome. Hum Genet 103:290–294
- Itokawa K, Sora I, Schindler CW, Itokawa M, Takahashi N, Uhl GR (1999) Heterozygous VMAT2 knockout mice display prolonged QT intervals: possible contributions to sudden death. Brain Res Mol Brain Res 71:354–357
- Lang R, Lee G, Liu W, Tian S, Rafi H, Orias M, Segal AS, Desir GV (2000) KCNA10: a novel ion channel functionally related to both voltage-gated pottasium and CNG cation channels. Am J Physiol Renal Physiol 2278:F1013–F1021
- Saiki RK, Bugawan TL, Horn GT, Mullis KB, Erlich HA (1986) Analysis of enzymatically amplified beta-globin and HLA-DQ alpha DNA with allele-specific oligonucleotide probes. Nature 324:163– 166
- Shannon JR, Flattem NL, Jordan J, Jacob G, Black BK, Biaggioni I, Blakely RD, Robertson D (2000) Orthostatic intolerance and tachycardia associated with norepinephrine-transporter deficiency. N Engl J Med 342:541–549
- Splawski I, Tristani-Firouzi M, Lehmann MH, Sanguinetti MC, Keating MT (1997) Mutations in the hminK gene cause long QT syndrome and suppress I_{Ks} function. Nat Genet 17:338–340
- Stober G, Nothen MM, Porzgen P, Bruss M, Bonisch H, Knapp M, Beckmann H, Propping P (1996) Systematic search for variation in the human norepinephrine transporter gene: identification of five naturally occurring missense mutations and study of association with major psychiatric disorders. Am J Med Genet 67:523–532
- Wang Q, Li Z, Shen J, Keating MT (1996a) Genomic organization of the human SCN5A gene encoding the cardiac sodium channel. Genomics 34:9–16
- Wang Q, Curran ME, Splawski I, Burn TC, Millholland JM, VanRaay TJ, Shen J, Timothy KW, Vincent GM, de Jager T, Schwartz PJ, Towbin JA, Moss AJ, Atkinson DL, Landes GM, Connors TD, Keating MT (1996b) Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet 12:17–23
- Weiche E, Schafer MK, Erickson JD, Eiden LE (1994) Localization of vesicular monoamine transporter isoforms (VMAT1 and VMAT2) to endocrine cells and neurons in rat. J Mol Neurosci 5:149–164