ORIGINAL ARTICLE

Masaki Mizutani · Toshimichi Yamamoto · Kouji Torii Hirokazu Kawase · Takashi Yoshimoto · Rieko Uchihi Miwa Tanaka · Keiji Tamaki · Yoshinao Katsumata

Analysis of 168 short tandem repeat loci in the Japanese population, using a screening set for human genetic mapping

Received: March 26, 2001 / Accepted: April 25, 2001

Abstract We devised a multiplex polymerase chain reaction (PCR) amplification and loading system for the convenient typing of 168 short tandem repeat (STR) polymorphic markers in a commercially available screening primer set for human linkage analysis. We genotyped all these 168 STR loci with 32 healthy unrelated Japanese, calculated allele frequencies at each STR locus, and performed three kinds of tests for Hardy-Weinberg equilibrium (HWE). Significant deviations from HWE in all three tests were observed at only three loci, and the average heterozygosity in the Japanese (0.733) was slightly lower than that in Caucasians (0.773). We also examined 32 Caucasians at some selected loci, to be compared with Japanese. Some markers showed greatly different heterozygosities or allelic distributions in Japanese and Caucasian populations. In two groups of STRs, those with and without irregular alleles (or interalleles), the former had a higher proportion of bimodal allelic distribution and possessed more alleles per locus than the latter. However, no significant differences in the observed and expected heterozygosities, or in the powers of discrimination, were found between the two groups. The present basic study of allele frequency databases of these STRs will contribute to further applications in forensic science and human genetics.

Key words Short tandem repeat · Polymorphism · Multiplex · Heterozygosity · Allele frequency · Japanese · Population

T. Yoshimoto \cdot R. Uchihi \cdot M. Tanaka \cdot Y. Katsumata Department of Legal Medicine and Bioethics, Graduate School of

Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan

Tel. +81-52-744-2119; Fax +81-52-744-2121 e-mail: yamachan@med.nagoya-u.ac.jp

K. Tamaki

Introduction

Short tandem repeat (STR) polymorphisms are widely used in various scientific fields, such as linkage analyses and diversity studies in human genetics, and personal identification and paternity tests in forensic science (Wijmenga et al. 1990; Schellenberg et al. 1992; Bowcock et al. 1994; Micka et al. 1996; Thomson et al. 1999), because they have relatively high heterozygosities and are more easily genotyped than other chromosomal markers. More than one million STRs (one/2kb) are widely distributed in the whole human genome (International Human Genome Sequencing Consortium 2001), and most of them consist of dinucleotide repeats, in particular, CA repeats (Gyapay et al. 1994). Although these dinucleotide STRs are most commonly used for genetic linkage mapping, there are some problems in genotyping, caused by their artifactual "stutter" bands, particularly in the sizing of heterozygous samples and/or mixed samples. Therefore, tetranucleotide STRs showing smaller "stutter" bands are mainly used in forensic practice (Micka et al. 1996; Thomson et al. 1999; Yamamoto et al. 1999; Sweet and Hildebrand 1999).

Dubovsky et al. created a set of STRs for the genetic linkage mapping of disease loci by combining highly polymorphic STRs that are distributed evenly throughout the human genome (Dubovsky et al. 1995). The first version of this set included a high percentage (49%) of dinucleotide STRs. The latest version of the screening set, the Human MapPair screening set 8A, contains 168 STR markers, spaced at an average genetic distance of 25 cM throughout the entire human genome. Most of the dinucleotide STRs were replaced by tetranucleotide STRs in this set, and this set consists of a high percentage (83%) of tetranucleotide STRs, allowing greater accuracy in the determination of their repeat sizes.

We investigated allele frequency distributions and heterozygosities at all 168 STR markers in the screening set 8A in the Japanese population. The results could be useful for the genetic mapping of human diseases, for forensic

M. Mizutani \cdot T. Yamamoto $(\boxtimes) \cdot$ K. Torii \cdot H. Kawase \cdot

Department of Legal Medicine, Sapporo Medical University, School of Medicine, Sapporo, Japan

applications, and for studies of population genetics, such as the origin of the Japanese.

Materials and methods

Blood samples were obtained, with written informed consent, from 32 healthy unrelated Japanese volunteers (undergraduate students at our medical school who lived in or near Nagoya city). DNA was extracted from each sample as described previously (Tamaki et al. 1991). The 168 markers were genotyped using each primer set in the screening set 8A (Research Genetics, Huntsville, AL, USA), each one of which is labeled with any one of three different fluorescentcolored dyes (FAM, HEX, and TET). We divided these primer sets into groups that could be amplified in a single PCR tube (Table 1), and then performed multiplex PCR amplification. The PCR mixture (10 μ l) contained 1 × PCR Gold Buffer, 1.5 mM MgCl₂, 200 µM of each dNTP, 2.4 pmol of each STR primer set, 0.25 unit AmpliTag Gold polymerase (Perkin-Elmer, Norwalk, CT, USA), and 10ng of template DNA. Thermal cycling protocols began with 95°C for 11 min and then 26 cycles at 94°C for 45s, 57°C for 45s, and 72°C for 60s, followed by 72°C for 15 min. One µl of each of the PCR set products was mixed into 24.5 µl of deionized formamide and 0.5 µl of GeneScan-500 [TAMRA] Size Standard (PE Applied Biosystems, Foster City, CA, USA), according to the loading panel shown in Table 1. For example, for loading panel 1, 1μ l of each of the PCR set 1, 2, 3, and 4 products was mixed together into the formamide and standard mixture. Allels were separated in the POP-4 polymer (PE Applied Biosystems) with the GS STR POP 4 (1 mL) C Module, by capillary electrophoresis, using the Genetic Analyzer 310 (PE Applied Biosystems). Allele sizes for each STR were determined on the basis of sizing data analyzed by GeneScan Analysis software (PE Applied Biosystems). For some representative loci, we also examined 64 Caucasian chromosomes to calculate allele frequencies at each locus, and compared each allele frequency in Japanese and Caucasians, using the software GENEPOP 3.1b (Raymond and Rousset 1995). The Caucasian DNA samples (from the United Kingdom) were kindly provided by Dr. Yuri E. Dubrova, at the University of Leicester.

Tests for Hardy-Weinberg equilibrium (HWE) were carried out using a homozygosity test (Weir 1992), a likelihood ratio test (Chakraborty et al. 1991), and an exact test (Guo and Thompson 1992). As statistical properties, the observed heterozygosity, the unbiased estimates of expected heterozygosity (Edwards et al. 1992), and the power of discrimination (Fisher 1951) were calculated. Heterozygosities in Caucasians were obtained from the Research Genetics website (http://www.resgen.com), which does not give details about the source of these samples. The sequence data for each STR were obtained from the Genome Data base (GDB; http://gdbwww.gdb.org), the Cooperative Human Linkage Center (CHLC; http://lpg.nci.nih.gov/CHLC) and other organizations, and served for our reference to determine sizes at each STR locus.

Results and discussion

The 168 STR markers were grouped into 103 temporary multiplex PCR sets for genotyping by multiloading performed 21 times (Table 1). From the result of sizing, we temporarily named the shortest allele observed in the Japanese population at each locus as allele 1, and the larger alleles following at every repeat as alleles 2, 3, 4, 5, ... in order, taking into consideration the sequence data from the websites noted above. The irregular alleles observed were named according to an established recommendation (Gill et al. 1997). Using this temporary nomenclature for alleles, we genotyped and calculated allele frequencies at each locus. From these frequencies, three kinds of tests (the homozygosity test, likelihood ratio test, exact test) were performed to check deviation from HWE. The allele frequencies deviated from HWE (P values fell to less than 0.05) for 8 loci in the homozygosity test, 11 loci in the likelihood ratio test, and 13 loci in the exact test. However, it was only at 3 loci (D7S3051, D19S586, and D1S1588) that significant deviations from HWE were observed with all three tests. Furthermore, of the 8 loci whose P values were less than 0.05 in the homozygosity test, 5 showed very low observed heterozygosities (<0.60), resulting in large differences between the observed and expected heterozygosities. These results may have been caused by a contingent event, sampling error, or population substructure. An investigation using more samples would, presumably, explain this result.

Table 1 summarizes the size ranges, numbers of alleles, statistical properties of the 168 markers in the Japanese population, and the observed heterozygosity in Caucasians obtained from the Research Genetics website. The observed heterozygosity at 158 autosomal STRs ranged from 0.38 to 0.94 in the Japanese population, varying more widely than among Caucasians. The mean observed heterozygosity was 0.733, slightly below that in Caucasians (0.773). In some markers, the heterozygosity in the Japanese population was very different from that in the Caucasian population. For example, heterozygosities at D1S1588 and D18S481 were 0.38 and 0.91 in Japanese, against 0.68 and 0.76, respectively, in Caucasians. Spearman's correlation coefficient (Siegel 1956) between Japanese and Caucasians was 0.372, indicating considerably different allele distributions in the two populations. These results suggest the necessity of making a database for each population. We also calculated the expected heterozygosity at each locus, and found a mean value of 0.747. The variance of the expected heterozygosities (SD, 0.086) was significantly smaller than that of the observed heterozygosities (SD, 0.111). Figure 1 summarizes the distribution of the observed and expected heterozygosities in Japanese and the observed heterozygosity in Caucasians. Comparison of the Japanese allelic distributions with those of Caucasians at some representative loci showed a significant difference (P < 0.05) at almost all loci, using the software GENEPOP 3.1b (examples are shown in Fig. 2). Two alleles (alleles 1 and 2) of the D7S1823 locus are much more frequent in Japanese

Table 1. Multiplex PCR sets and statistical properties at each locus in the Japanese population

Loading Panel	PCR set	Locus	Marker	Repeat unit	Irregular allele	Size range	Allele	PD	Expected H.	Observed H.	Observed H. (Caucasian)
	1	D3S2418	ATA22E01	Tri		80-110	7	0.81	0.66	0.59	0.71
		D4S2361	ATA2A03	Tri		149–164	6	0.87	0.75	0.75	0.74
		D1S2134	GATA72H07	Tetra		253-289	5	0.86	0.74	0.81	0.84
		D5S1456	GATA11A11	Tetra		188-208	6	0.88	0.77	0.78	0.78
0	2	D6S1056	GATA68H04	Tetra		232-256	7	0.92	0.85	0.94	0.85
		D20S481	GATA47F05	Tetra		235-247	4	0.81	0.66	0.66	0.83
	3	D10S1239	GATA64A09	Tetra		155-179	5	0.78	0.60	0.59	0.75
		D3S2387	GATA22G12	Tetra	+	170-214	11	0.94	0.86	0.84	0.86
	4	D18S481	AFM321xc9	Di		181–193	7	0.87	0.78	0.91	0.76
	~	D 201400	GG 4 4 20 G10	75 .		100 116	2	0.64	0.52	0.50	0.66
	5	D2S1400	GGAA20G10	Tetra		108 - 116 142 171	3	0.64	0.52	0.59	0.66
		D1516/9	GGAA5F09	Tetra		143-171	8	0.92	0.85	0.81	0.84
1	6	D/S3051*	GATA13/H02	Tetra		144-176	9	0.89	0.79	0.59	0.75
1	_	D1/S1308	GIAIIA05	Tetra		294-310	2	0.75	0.60	0.56	0.66
	7	D7S2846	GATA31A10	Tetra		169-189	6	0.86	0.72	0.69	0.76
	0	D1056//	GGAA2FII	Tetra		197-221	/	0.93	0.84	0.78	0.81
	8	D1184464	GATA64D03	Tetra		226-250	1	0.90	0.76	0.66	0.78
		D1S1660	GATA48B01	Tetra		227-247	6	0.88	0.81	0.88	0.78
		D11S1999	GATA23F06	Tetra		104-132	8	0.87	0.70	0.72	0.80
	9	D14S617	GGAA21G11	Tetra		136–174	7	0.89	0.76	0.72	0.78
		D3S2460	GATA68F07	Tetra		154-166	4	0.83	0.69	0.72	0.76
		D158655	ATA28G05	Tri		133–148	4	0.73	0.59	0.66	0.72
2	10	D7S1823	GATA30D09	Tetra		205-233	8	0.92	0.82	0.91	0.85
		D5S1505	GATA62A04	Tetra		246-270	7	0.92	0.84	0.78	0.80
	11	D5S2500	GATA67D03	Tetra	+	151-175	8	0.87	0.76	0.72	0.82
		D5S820	GATA6E05	Tetra		182-206	6	0.91	0.78	0.72	0.77
	12	D5S1725	GATA89G08	Tetra		184–208	7	0.88	0.79	0.75	0.77
	12	D1(02(1)		 :		114 122	(0.02	0.64	0.50	0.60
3	13	D1652616	AIA41E04	1 fi Totro		114-132	5	0.82	0.64	0.56	0.69
	14	D034/4	UATA31	Tetta		149-105	5	0.01	0.00	0.47	0.77
	14	D185858	ATA23G05	1 fi Totro		190-205) 10	0.80	0.64	0.53	0.75
	1.7	D1152000	GATAZODOI	Tetta	Ŧ	190-230	10	0.95	0.92	0.64	0.87
	15	D1888/8	GATA/EI2	Tetra		158-186	7	0.91	0.82	0.91	0.76
	16	D382488	ATA20G07			211-238	7	0.80	0.70	0.00	0.74
	16	D198591	GATA44F10	Tetra		92-108	5	0.81	0.72	0.72	0.74
	17	D1/31293	GGAA/DII	Tetta	Ŧ	204-290	9	0.95	0.85	0.64	0.85
		DXS6789	GATA31F01	Tetra		115–147	5				
	18	D7S1824	GATA32C12	Tetra		162-190	7	0.81	0.68	0.56	0.82
4			GGAAT1B07	Penta		181–196	4				
		DXS9896	GATA124E07	Tetra		186-234	8				
	19	D22S689	GATA21F03	Tetra		203-227	7	0.88	0.74	0.72	0.76
		DYS389	GATA30F10	Tetra		244-256	4				
		D228602	GATA11D12	Totro	+	150 202	14	0.02	0.82	0.60	0.00
	20	D223083	Mfd232	Tetra	Ŧ	139-203	14	0.92	0.82	0.09	0.90
5	20	D158642	GATA27A03	Tetra	+	196-212	7	0.87	0.74	0.66	0.81
	21	D198254	Mfd238	Tetra		112_140	, 7	0.01	0.79	0.72	0.75
	21	D0S1118	GATA71E08	Totro		127 172	°	0.01	0.82	0.84	0.81
	22	D931110	0ATA/1E00	D:		137-173	07	0.91	0.82	0.64	0.81
	23	D225420	AFMI21/XI4	Di		144-130	/	0.88	0.75	0.69	0.77
6	24	D2S1384	GATA52A04	Tetra		132-156	7	0.86	0.71	0.78	0.80
		D14S606	GATA30A03	Tetra		260-276	5	0.71	0.48	0.53	0.73
	25	D58807	GATA3A04	Tetra		164-204	6	0.86	0.73	0.63	0.76
		D8S1128	GATA21C12	Tetra		230-258	7	0.82	0.68	0.72	0.76
	26	D15S643	GATA50G06	Tetra	+	198-224	10	0.94	0.85	0.84	0.86
		D9S934	GATA64G07	Tetra		202-230	8	0.90	0.77	0.81	0.76
	27	D2S1399	GGAA20G04	Tetra		133-177	12	0.94	0.87	0.88	0.80
	28	D2S1356	ATA4F03	Tri		222–249	8	0.91	0.80	0.78	0.76
	20	D149204	GATA ADOA	Totro		187 011	7	0.01	0.70	0.72	0.70
	29	D143500 D198586*	GATA23B01	Tetra		231-247	5	0.91	0.79	0.72	0.73
	30	D18552	GGAT2A07	Tetra		212_256	5	0.81	0.66	0.72	0.72
	20	D15S822	GATA88H02	Tetra		234–302	16	0.94	0.87	0.88	0.77

Table 1. Continued

Loading Panel	PCR set	Locus	Marker	Repeat unit	Irregular allele	Size range	Allele	PD	Expected H.	Observed H.	Observed H. (Caucasian)
7	31	D21S2052	GATA129D11	Tetra		120-148	8	0.91	0.82	0.84	0.77
	32	D14S1426	GATA136B01	Tetra	+	129–157	11	0.89	0.79	0.81	0.78
	33	D1S1609	GATA50F11	Tetra		175-203	8	0.88	0.77	0.72	0.80
	34	D18S843	ACT1A01	Tri		181–193	5	0.83	0.74	0.84	0.75
	35	D20S480	GATA45B10	Tetra		278–306	8	0.92	0.85	0.91	0.76
		D4S1627	GATA7D01	Tetra		176-200	7	0.91	0.81	0.75	0.81
	36	F13A1	SE30	Tetra	+	178-188	4	0.73	0.57	0.53	0.78
	27	D181665	GATA61A06	Tetra		220-252	1	0.89	0.77	0.72	0.74
8	37	D382843 D482639	GATA154B05 GATA90B10	Tetra		157 - 101 158 - 190	9	0.89	0.76	0.69	0.85
0	38	D7S1842	GGAA6D03	Tetra		123–147	7	0.91	0.79	0.72	0.83
	39	D17S1303	GATA64B04	Tetra		221-241	6	0.88	0.77	0.81	0.70
	40	D20S470	GGAA7E02	Tetra		273-313	9	0.95	0.89	0.84	0.87
	41	D12S1045 D3S2432	ATA29A06 GATA27C08	Tri Tetra		75–90 131–155	5 7	0.86 0.90	0.79 0.79	0.94 0.72	0.80 0.83
	42	D21S1432	GATA11C12	Tetra		129–145	5	0.83	0.71	0.75	0.63
		D1S1597	GATA27E01	Tetra		156–176	6	0.87	0.75	0.78	0.71
9	43	D168753	GGAA3G05	Tetra		149-169	6	0.90	0.78	0.72	0.79
	44	D1151984	GATA65C02	Tetra		1/9-203	1	0.91	0.62	0.78	0.79
	44	D1181392	GATA6B09	Tetra		117-129	4	0.70	0.03	0.72	0.79
	46	D1151392 D11S2359	ATA27C09	Tri	+	210-229	7	0.80	0.76	0.69	0.73
10	47	D2S1394	GATA69E12	Tetra		159–175	5	0.85	0.71	0.72	0.70
	18	DJ31470	GATA/0007	Tetra		103-205	10	0.92	0.81	0.81	0.62
	49	D7S2212	GATA90D07 GATA87D11	Tetra		173-203	5	0.87	0.73	0.78	0.73
		D100005				00.406	10	0.04	0.05	0.01	0.01
	50	D138285 D208171	AFM309va9 AFM046vf6	Di Di		80–106 128–140	12	0.94	0.85	0.81	0.81
11	51	ACTC	ACTC	Di		64-90	9	0.93	0.81	0.78	0.87
	01	D9S158	AFM073yb11	Di		213-225	7	0.83	0.74	0.81	0.69
	52	D8S264	143xd8	Di		121-141	10	0.93	0.84	0.78	0.83
	~ -	D3S2427	GATA22F11	Tetra	+	200-250	13	0.95	0.89	0.88	0.87
	53	D18549	GATA4H09	Tetra		167–191	7	0.89	0.77	0.81	0.77
		D16S764	GATA42E11	Tetra		98–110	4	0.76	0.58	0.56	0.70
	54	D4S2366	GATA22G05	Tetra Tetra		116-136	6	0.90	0.80	0.69	0.79
	55	D2S1328	GATA27A12	Tetra		140-102 134-158	3 7	0.88	0.60	0.75	0.75
12	55	D3\$4545	GATA164B08	Tetra		200-236	6	0.86	0.72	0.66	0.82
	56	D12S372	GATA4H03	Tetra		172-188	5	0.86	0.73	0.75	0.76
		D2S2976	GATA165C07	Tetra	+	194–228	10	0.74	0.48	0.53	0.85
	57	PAH D10S1435	PAH GATA88F09	Tetra Tetra		226–250 251–271	6 6	0.86 0.86	0.71 0.74	0.59 0.75	0.80 0.75
		D8S373	UT721	Tetra		190-222	8	0.94	0.83	0.72	0.78
10	58	D8S1113	GGAA8G07	Tetra		212-232	6	0.80	0.65	0.56	0.81
		DXS7132	GATA72E05	Tetra		280-296	5				
	59	D1888//	GATA64H04	Tetra		113-133	6	0.86	0.70	0.69	0.68
13	60 61	D151588*	ATA2E04	1 fi Totro		115 202	4	0.74	0.58	0.38	0.68
	62	D2132055	GGAT3E08	Tetra		160 180	12	0.95	0.85	0.00	0.88
	63	D2S1363	GATA23D03	Tetra		166_206	*	0.84	0.70	0.81	0.79
	64	D9S922	GATA21F05	Tetra	+	256-272	6	0.87	0.75	0.01	0.78
			C AT A 170D07	Tata		106 106	<i>E</i>				
	65	D6S1017	GATA1/2D05 GGAT3H10	Tetra Tetra		100–120 154–178	5 4	0.77	0.69	0.75	0.68
	05	D10S1225	ATA24F10	Tri		179–191	5	0.85	0.74	0.75	0.76
		D128375	GATA3F02	Tetra		163–183	6	0.86	0.77	0.88	0.74
14	66	D4S1625	GATA107	Tetra		191-203	4	0.81	0.66	0.66	0.74
		D2S2972	GATA176C01	Tetra	+	217–237	7	0.89	0.76	0.66	0.77

Loading Panel	PCR set	Locus	Marker	Repeat unit	Irregular allele	Size range	Allele	PD	Expected H.	Observed H.	Observed H. (Caucasian)
	67	D12S395 D6S1277	GATA4H01 GATA81B01	Tetra Tetra	+	222–246 281–309	9 6	0.87 0.84	0.79 0.72	0.78 0.81	0.76 0.72
	68	D10S1248	GGAA23C05	Tetra		238–258	6	0.91	0.80	0.72	0.75
	69	D7S1819	GATA24F03	Tetra		163–187	7	0.86	0.76	0.63	0.73
		D13S894	GATA86H01	Tetra		186–198	4	0.78	0.59	0.63	0.64
	70	D16S3253	GATA22F09	Tetra		166–198	7	0.87	0.75	0.84	0.71
		D15S657	GATA22F01	Tetra		329–353	7	0.92	0.85	0.88	0.82
15	71	D10S2325	GAAT5F06	Penta		110–155	9	0.93	0.84	0.91	0.85
	72	D3S1744	GATA3C02	Tetra		133–165	9	0.91	0.82	0.69	0.80
	73	D14S592	ATA19H08	Tri		216-240	9	0.90	0.82	0.84	0.68
	74	D6S2439	GATA163B10	Tetra		222-250	7	0.90	0.79	0.75	0.87
	75	D14S1280	GATA31B09	Tetra		281–297	5	0.85	0.71	0.66	0.70
	76	D12S1064	GATA63D12	Tetra		170-202	9	0.88	0.78	0.75	0.82
		D1S534	GATA12A07	Tetra	+	194–218	9	0.90	0.77	0.81	0.83
16	77	DXYS154		Di		225-251	10				
10		D4S2431	GGAA19H07	Tetra	+	224–264	12	0.87	0.76	0.78	0.82
	78	D17S928	AFM217yd10	Di		131–159	14	0.94	0.87	0.84	0.79
	79	D21S1446	GATA70B08	Tetra	+	206–224	5	0.81	0.64	0.59	0.69
	80	D1S1612	GGAA3A07	Tetra		102-130	8	0.89	0.80	0.81	0.83
		D4S1652	GATA5B02	Tetra		133-145	4	0.78	0.58	0.56	0.82
	81	D17S1301	GATA28D11	Tetra		139–159	6	0.83	0.69	0.69	0.65
17		D19S433	GGAA2A03	Tetra	+	195–213	10	0.90	0.78	0.69	0.77
	82	D8S1119	ATA19G07	Tri		171–191	7	0.88	0.80	0.78	0.80
		D98925	GATA2/AII	Tetra		180-196	5	0.90	0.79	0.72	0.82
	83	D10S1432	GATA8/G01	Tetra	+	159–179	7	0.88	0.74	0.66	0.74
	84	D3S2390	GATA31E08	Tetra		227-251	7	0.02	0.02	0.01	0.01
	85	D/S3046	GATA118G10	Tetra		321-349	8	0.92	0.82	0.81	0.81
		D10S1426	GATA73E11	Tetra		154–174	5	0.83	0.70	0.66	0.74
	86		GATA184A08	Tetra		168-200	9	0.92	0.86	0.91	0.78
		D1S518	GATA7C01	Tetra		188–212	7	0.91	0.78	0.66	0.84
	87	D10S1213	GGAA5D10	Tetra		85-129	10	0.88	0.72	0.81	0.80
10	00	D031033	GATA04D02	Tetta Tri		294-314	0	0.90	0.80	0.75	0.81
18	80 80	D1251042	AIAZ/A00	1 fl Totro		114-132	/ 0	0.95	0.85	0.75	0.81
	09	D051152	GATA20E05	Tetra		212 222	6	0.95	0.87	0.88	0.80
	90	D331700	GATA0F00	Tetta Tri		212-252	5	0.90	0.78	0.78	0.70
	91	D432394	ATA20B08	111		233-231	5	0.70	0.03	0.75	0.79
		D8S1106	GATA23D06	Tetra		134–146	4	0.83	0.68	0.75	0.73
	92	D13S796	GATA51B02	Tetra		146-166	6	0.89	0.79	0.78	0.80
	02	D128391	GATATIH08	Tetra		207-247	11	0.93	0.86	0.88	0.88
	93	D138317	GATA/GIU GATA62E03	Tetra		1/5-195 274-290	6 5	0.90	0.82	0.91	0.79
19	04	D932109	ATA 18 A 07	Tri		101 125	5	0.85	0.68	0.50	0.64
	05	D354520	GATA128C02	Tetra		101-125	5	0.82	0.08	0.39	0.00
	95	D334323	GGAA20C10	Tetra		147-103	7	0.88	0.78	0.69	0.72
	97	D138787	GATA23C03	Tetra		247_263	5	0.72	0.61	0.09	0.72
	71	D155767	0/11/25005	retta		247 205	5	0.77	0.01	0.11	0.72
		D6S1027	ATA22G07	Tri		110–134	7	0.83	0.70	0.53	0.77
	98	D16S2624	GATA81D12	Tetra		127-147	6	0.81	0.65	0.59	0.70
	00	D205482	GATA51D03	Tetra		140-164	/	0.87	0.75	0.39	0.08
20	99 100	D1/S1290	GATA49C09	Tetra		177 190	8	0.88	0.80	0.88	0.84
20	100	D252908	UATA1/8009	Tetra		177 100	4	0.04	0.40	0.41	0.72
	101	D185844	AIAIH00	1 fi Totas		1//-198	0 5	0.87	0.76	0.81	0.76
	102	DAS0810	GATA09U12	Tetra		214-238	ט ד	0.00	0.80	0.60	0.77
	103	D135/93	GA1A43H03	retra		248-272	/	0.89	0.80	0.09	0.77

*Significant deviations (P < 0.05) from Hardy-Weinberg equilibrium (HWE) were observed in all three tests used (see text for details) PD, Power of discrimination; H, heterozygosity

Table 1. Continued

Fig. 1. Distribution of expected and observed heterozygosities (Exp. H [black bars] and Obs. H [white bars]) in the Japanese population and the observed heterozygosity (Obs. H [gray bars]) in the Caucasian population

frequency

frequency

Fig. 2a-d. Examples of allele distributions in representative loci in the Japanese (black bars) and Caucasian (gray bars) populations. a At D7S1823; b at D2S2976; c at GATA184A08; d at D13S894

than in Caucasians. The most frequent allele, allele 4, at D2S2976 reached a frequency of 72% in Japanese, but the frequency was only 28% in Caucasians. The heterozygosity at this locus was only 0.53 in Japanese, against 0.84 in Caucasians. At the GATA184A08 marker, the Japanese alleles were distributed more equally than the Caucasian alleles.

On the other hand, D13S894 showed very similar allelic distributions in both populations. At the three loci D7S1823, D2S2976, and GATA184A08, significant differences (P < 0.05) were observed between Japanese and Caucasians, while no significant differences were seen at the D13S894 locus.

We divided 130 autosomal tetranucleotide STRs in the screening set into two groups; those with and those without irregular alleles. One group consisted of 19 loci with irregular alleles found in this study, and the other group consisted of the other 111 loci, without irregular alleles. Comparison of the allele frequency distributions (Table 2) revealed that most of the loci with irregular alleles (79%) had two or more peaks of allele frequency distribution, while most of the loci without irregular alleles (76%) showed single-peak allele frequency distribution. The number of alleles per

allele

5

6

7

4

Fig. 3a,b. Typical examples of allele distribution in loci with and without irregular alleles, **a** at D3S2427 and **b** at D6S1056, in the Japanese population. The Exp. H, Obs. H, and power of discrimination values were 0.89, 0.88, and 0.95, respectively, for D3S2427; and 0.85, 0.94, and 0.92, respectively, for D6S1056

3

2

Table 2. Correlation between irregular alleles and properties of markers

Irregular allele	With	Without
Number of markers	19	111
Bimodal markers (%) ^a	79	24
Mean number of alleles per locus	9.47	6.62
Observed heterozygosities	0.732	0.732
Expected heterozygosities	0.763	0.745
Power of discrimination	0.880	0.864
Departure from HWE (%) ^b	7.0	6.3

^a Proportion of loci with bimodal allele distribution

^bProportion of loci with P value of less than 0.05 in the three tests for HWE

locus was also larger in loci with irregular alleles (9.5) than in loci without irregular alleles (6.6). There were, however, no significant differences among observed heterozygosities, expected heterozygosities, and powers of discrimination between the two groups. Figure 3 shows a typical example of the allele distribution locus in each group. Although the number of alleles at D3S2427 showing bimodal distribution was about twice more than that at D6S1056, showing almost equal allele frequency at each allele except allele 1, both loci had very high observed heterozygosities (0.88 at D3S2427 and 0.94 at D6S1056). Also, no significant differences concerning the proportion of loci departing from HWE were found between STR loci with and without irregular alleles. Therefore, STR loci without irregular alleles are preferable for use in practice because of their simplicity and convenience in typing.

The present study provides basic data for investigating linkage analyses in genetic diseases and for use in forensic practice (e.g., in personal identification and paternity tests). Consequently, this database would be useful for selecting STR loci suitable for forensic applications in the Japanese population, and for constructing an optimal multiplex STR typing system. Furthermore, a future comparative study of these STR loci in Japanese and other ethnic populations would give precise information about their genetic relationships.

Acknowledgments We are grateful to Dr. Yuri E. Dubrova for providing Caucasian DNA samples. This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture of Japan.

References

- Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, Kidd JR, Cavalli-Sforza LL (1994) High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368:455–457
- Chakraborty R, Fornage M, Gueguen R, Boerwinkle E (1991) Population genetics of hypervariable loci: analysis of PCR based VNTR polymorphism within a population. In: Burke T, Dolf G, Jeffreys AJ, Wolff R (eds) DNA fingerprinting: approaches and applications. Birkhauser Verlag, Berlin, pp 127–143
- Dubovsky J, Sheffield VC, Duyk GM, Weber JL (1995) Sets of short tandem repeat polymorphisms for efficient linkage screening of the human genome. Hum Mol Genet 4:449–452
- Edwards Å, Hammond HA, Jin L, Caskey CT, Chakraborty R (1992) Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. Genomics 12:241–253
- Fisher RA (1951) Standard calculations for evaluating a blood-group system. Heredity 5:95–102
- Gill P, Brinkmann B, d'Aloja E, Anderson J, Bar W, Carracedo A, Dupuy B, Eriksen B, Jangblad M, Johnsson V, Kloosterman AD, Lincoln P, Morling N, Rand S, Sabatier M, Scheithauer R, Schneider P, Vide MC (1997) Considerations from the European DNA profiling group (EDNAP) concerning STR nomenclature. Forensic Sci Int 87:185–192
- Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48:361–372
- Gyapay G, Morissette J, Vignal A, Dib C, Fizames C, Millasseau P, Marc S, Bernardi G, Lathrop M, Weissenbach J (1994) The 1993–94 Genethon human genetic linkage map. Nat Genet 7:246–339
- International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

0.00

- Micka KA, Sprecher CJ, Lins AM, Theisen Comey C, Koons BW, Crouse C, Endean D, Pirelli K, Lee SB, Duda N, Ma M, Schumm JW (1996) Validation of multiplex polymorphic STR amplification sets developed for personal identification applications. J Forensic Sci 41:582–590
- Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248– 249
- Schellenberg GD, Bird TD, Wijsman EM, Orr HT, Anderson L, Nemwns E, White JA, Bonnycastle L, Weber JL, Alonso E, Potter H, Heston LL, Martin GM (1992) Genetic linkage evidence for a familial Alzheimer's disease locus on chromosome 14. Science 258:668–671
- Siegel S (1956) Nonparametric statistics for the behavioral sciences. McGraw-Hill, New York
- Sweet D, Hildebrand D (1999) Saliva from cheese bite yields DNA profile of burglar: a case report. Int J Legal Med 112:201–203

- Tamaki K, Yamamoto T, Uchihi R, Katsumata Y, Kondo K, Mizuno S, Kimura A, Sasazuki T (1991) Frequency of HLA-DQA1 alleles in the Japanese population. Hum Hered 41:209–214
- Thomson JA, Pilotti V, Stevens P, Ayres KL, Debenham PG (1999) Validation of short tandem repeat analysis for the investigation of cases of disputed paternity. Forensic Sci Int 100:1–16
- Weir BS (1992) Independence of VNTR alleles defined as fixed bins. Genetics 130:873–887
- Wijmenga C, Frants RR, Brouwer OF, Moerer P, Weber JL, Padberg GW (1990) Location of facioscapulohumeral muscular dystrophy gene on chromosome 4. Lancet 336:651–653
- Yamamoto T, Uchihi R, Nozawa H, Huang XL, Leong YK, Tanaka M, Mizutani M, Tamaki K, Katsumata Y (1999) Allele distribution at nine STR loci — D3S1358, vWA, FGA, TH01, TPOX, CSF1PO, D5S818, D13S317 and D7S820 — in the Japanese population by multiplex PCR and capillary electrophoresis. J Forensic Sci 44:167– 170