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Abstract Neural tube defects (NTD) are likely to result
from an interaction of several genes and environmental
factors. Because periconceptional folate intake reduces
the NTD risk in the fetus, and because mothers of children
with NTD showed elevated plasma homocysteine levels,
gene polymorphisms of the folate and homocysteine
pathway, such as 5,10-methylenetetrahydrofolate reductase
(MTHFR) 677CÆT, MTHFR 1298AÆC and cystathionine
â-synthase (CBS) 844ins68, have been implicated in the
etiology of NTD. Several studies have demonstrated that
these polymorphisms may indeed be associated with NTD
in some populations. In order to evaluate the role of these
polymorphisms and their interaction in NTD, we genotyped
417 individuals for case-control studies and 129 families for
transmission disequilibrium tests. We are the first to present
detailed data on MTHFR haploid genotypes in combina-
tion with CBS 844ins68. The MTHFR risk genotype
677CT/1298AC, known to be associated with decreased
enzyme activity and increased homocysteine, was found
significantly more often in patients than in controls (P 5
0.02). A CBS insertion allele in addition to MTHFR 677CT/
1298AC heterozygosity or MTHFR 677TT/1298AA
homozygosity did not result in an increased risk for
NTD. This is in agreement with the recently reported
homocysteine-lowering effect of the CBS 844ins68 allele in
carriers of MTHFR variants.
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Introduction

Nonsyndromic neural tube defects (NTD) are among the
most frequent congenital malformations, with an estimated
prevalence at birth of about 1 :1000 in most populations.
NTD are thought to be of multifactorial origin, involving
a number of as yet unknown genetic and environmental
factors. Randomized trials in different populations have
demonstrated that the occurrence and recurrence risk of
NTD is reduced by folic acid supplementation taken during
the periconceptional period (Berry et al. 1999; Czeizel and
Dudás 1992; MRC Vitamin Study Research Group 1991).
The protective effect of folic acid has led to a search
for candidate genes involved in its metabolic pathway.
The enzymes 5,10-methylenetetrahydrofolate reductase
(MTHFR) and cystathionine â-synthase (CBS), are promis-
ing candidates for folate-sensitive NTD, accounting for
about 70% of human NTD. Both enzymes participate in the
folate-dependent metabolism of homocysteine, and genetic
defects in these enzymes can cause hyperhomocysteinemia,
which has been found in mothers of NTD-affected children
(Mills et al. 1995). Because hyperhomocysteinemia is cor-
rectable by folic acid intake (Kang et al. 1988), it has been
speculated that decreasing the plasma homocysteine level
might be the mechanism responsible for the NTD-
preventive effect of folic acid (Mills et al. 1996; Piedrahita
et al. 1999).

MTHFR catalyzes the reduction of 5,10-methylene-
tetrahydrofolate (THF) to 5-methyl-THF, which is required
as a cosubstrate in the remethylation of homocysteine to
methionine. The thermolabile variant of MTHFR due to
the common polymorphism 677CÆT has reduced enzyme
activity (Frosst et al. 1995; van der Put et al. 1995), resulting
in mild hyperhomocysteinemia, especially if the folate sta-
tus is poor (Jacques et al. 1996). It has therefore been pos-
tulated that 677TT-homozygotes have an increased folate
requirement to regulate their homocysteine levels (Molloy
et al. 1997). Initial investigations showed that this polymor-
phism may be associated with NTD in some populations. A
significant increase in the 677TT homozygosity rate in NTD
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cases compared with controls was independently reported
in the Irish and Dutch populations (van der Put et al. 1995;
Whitehead et al. 1995). Subsequent population-based stud-
ies have confirmed the association of TT-homozygosity and
NTD (de Franchis et al. 1998; Shields et al. 1999), although
other studies of similar design have failed to do so
(Morrison et al. 1998; Speer et al. 1997; Stegmann et al.
1999). Recently, it was suggested that a second MTHFR
polymorphism, 1298AÆC, confers an additional NTD risk.
Combined heterozygosity of MTHFR 677CT/1298AC
tended to be more frequent in Dutch NTD patients than in
controls, although without reaching significance (odds ratio
[OR], 2.04; 95% confidence interval [CI], 0.89-4.70; van der
Put et al. 1998). Individuals with this genotype combination
showed reduced MTHFR activity, elevated plasma
homocysteine, and decreased plasma folate, although these
features were less pronounced than in 677TT homozygotes
(van der Put et al. 1998). Data for other populations failed
to confirm an association between NTD and MTHFR
677CT/1298AC (Barber et al. 2000; Stegmann et al. 1999;
Trembath et al. 1999).

Because failure of human neural tube closure is likely to
result from an interaction of several genes, the cystathion-
ine â-synthase (CBS) polymorphism 844ins68 has been in-
vestigated as an additional risk factor in NTD. All studies so
far have found that CBS 844ins68 alone was not associated
with NTD (Akar et al. 2000; de Franchis et al. 1997;
Morrison et al. 1998; Ramsbottom et al. 1997; Speer et al.
1999). Regarding a possible gene-gene interaction between
MTHFR and CBS, the results were conflicting. Three case-
control studies were unable to reveal a significant associa-
tion of MTHFR 677TT homozygosity in conjunction with
CBS 844ins68 heterozygosity and NTD (Morrison et al.
1998; Ramsbottom et al. 1997; Speer et al. 1999). However,
in the Italian sample, NTD patients homozygous for 677TT
significantly more often carried an additional CBS 844ins68
allele than 677TT controls (de Franchis et al. 1997). In the
American study, the difference in MTHFR-CBS combina-
tion data between patients and controls became significant
after pooling with Irish controls (Speer et al. 1999). It seems
that the CBS 844ins68 allele acts as an additional risk factor
for NTD, at least in some populations. In order to evaluate
a synergistic involvement of these folate and homocysteine
pathway genotypes in German NTD cases, we investigated
the distributions of the two MTHFR genotypes and CBS
844ins68 separately, and in combination with each other, in
patients, their parents, and controls. According to our re-
sults there was no statistically significant association for any
of the polymorphisms when evaluated separately. However,
our data provide evidence for an interaction between the
MTHFR polymorphisms, because the frequency of the
compound MTHFR genotype 677CT/1298AC is signifi-
cantly increased in NTD cases. The coexistence of a CBS
insertion allele with MTHFR 677TT/1298AA or CT/AC did
not result in an increased risk for NTD.

Methods

Probands and controls

The study group consisted of 184 German patients (169
nonfamilial, 15 familial) with a non-syndromic neural tube
defect (9 anencephalics, 3 encephaloceles, 172 spina bifida
aperta). Spina bifida aperta (SBA) families were recruited
from an ambulatory Spina bifida clinic, and fetuses were
obtained from the fetal pathology unit of our medical cen-
ter. The control population consisted of 233 unrelated
healthy German volunteers (males and females).

For the case-control association study, all NTD patients
and control subjects were genotyped for MTHFR 677C/T,
MTHFR 1298A/C, and CBS 844ins68. For the family-based
association study, 98 trios (mother, father, SBA child) and
31 parent-offspring pairs were genotyped to investigate
transmission disequilibrium of the MTHFR and CBS
alleles.

The study was approved by the Ethics Committee of the
University of Marburg, and informed consent was obtained
from patients, parents, and control individuals.

DNA analysis

Genotyping for MTHFR 677C/T and 1298A/C was done as
described by Stegmann et al. (1999), including an
amplification refractory mutation system (ARMS) test to
determine the haplotype of all individuals heterozygous at
both MTHFR sites (677CT-1298AC). Genotyping for CBS
844ins68 was performed using primers previously reported
by Ramsbottom et al. (1997). The 68-bp insertion in exon 10
of CBS was reported to cosegregate with the frequent mu-
tation 833TÆC (I278T) in cis (Kozich and Kraus 1992;
Kraus et al. 1998; Tsai et al. 1996). We verified the 833CÆT
nucleotide exchange on all insertion alleles by digesting the
polymerase chain reaction (PCR) product with the restric-
tion enzyme BsrI, as described by Kozich and Kraus (1992).

Statistics

The distributions of genotypes and genotype combinations
in cases and controls were compared using Fisher’s one-
sided exact test at a 5% significance level. The transmission
disequilibrium test (TDT) was applied to analyze trans-
mission disequilibrium in trios and parent-offspring pairs
(Sun et al. 1999).

Results

MTHFR genotypes 677C/T-1298A/C in combination with
CBS genotype 844ins68 for cases and controls (n 5 184 1
233 5 417) are given in Table 1.

Observed frequencies of the 677TT genotype (677T
allele) were 28/184 (15.2%) (0.38) in cases and 27/233
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(11.6%) (0.32) in controls, and observed frequencies of the
1298CC genotype (1298C allele) were 12/184 (6.5%) (0.30)
in cases and 25/233 (10.7%) (0.29) in controls. Comparison
of patients with controls revealed no significant difference
in 677TT (P 5 0.16) and 1298CC (P 5 0.08) homozygosity.
Analyses of the 98 family trios and the 31 parent-offspring
pairs failed to detect transmission disequilibrium for the
677T-allele (transmitted:nontransmitted, 57:57; P 5 1.00)
and the 1298C-allele (52 :53; P 5 1.00).

The MTHFR genotype combinations 677CT/1298CC,
TT/AC, and TT/CC were not observed (Stegmann et al.
1999; van der Put et al. 1998). All individuals homozygous
for one MTHFR mutation were homozygous wild-type
for the other (677TT/1298AA and CC/CC). Haplotyping
proved that combined heterozygotes always carried the two
mutations in trans (677CT/1298AC). The frequency of this
compound heterozygous genotype CT/AC was significantly
increased in patients (45/184) compared with controls (38/
233; P 5 0.02).

We found CBS 844ins68 heterozygosity (homozygosity)
in 21/184; 11.4% (1/184; 0.5%) of cases and in 39/233; 16.7%
(3/233; 1.3%) of controls. In all CBS 844ins68 alleles, the
833TÆC mutation was found in cis. There was no signifi-
cant difference in CBS genotype distribution (insertion

[ins]/ins 1 wild-type [wt]/ins) comparing patients (22/184)
and controls (42/233, P 5 0.051). Analysis of the trios and
parent-offspring pairs revealed no transmission disequilib-
rium (transmitted:nontransmitted, 14 :16; P 5 1.00). The
overall insertion allele frequency in the 417 individuals was
0.082 (68/834).

All CBS 844ins68 homozygotes were MTHFR 677CC.
The lack of a 677T allele in combination with homozygosity
for CBS 844ins68 is probably due to the low population
frequency of the insertion allele and not to a true linkage
disequilibrium. To evaluate a CBS-MTHFR gene-gene
interaction, we tested whether patients with the MTHFR
genotypes 677TT/1298AA or CT/AC more frequently car-
ried additional CBS 844ins68 alleles than controls (Table 2).
The coexistence of a CBS insertion allele with MTHFR TT/
AA or CT/AC genotype did not result in an increased risk
for NTD (P 5 1.00).

Discussion

The mechanism by which low folate and elevated homocys-
teine disrupt neural tube development in humans is still
unexplained. For the targeted Cart1 knockout mouse and
the spontaneously arisen Splotch phenotype, folic acid
treatment has been reported to decrease the risk of NTD
(Fleming and Copp 1998; Zhao et al. 1996). However, folate
deficiency alone did not lead to NTD in mice (Heid et al.
1992), consistent with the well supported hypothesis that
the preventive effect consists not simply of compensating a
nutritional deficiency (Mills et al. 1996). Possibly, folate acts
by lowering homocysteine. High doses of homocysteine can
induce NTD in chicken embryos, a teratogenic effect that is
preventable by folic acid (Rosenquist et al. 1996). The
results of these experiments in animal models have encour-
aged the examination of functional relevant gene polymor-
phisms of the folate and homocysteine pathway in relation
to human NTD.

Population-based association studies of single polymor-
phisms have produced conflicting data, probably due to
phenotypic heterogeneity, ethnic differences in genotype
distributions, and the polygenic etiology in NTD. There-
fore, in the present study, we took into consideration the
different phenotypes and used ethnically homogeneous
case-control groups. With regard to the polygenic etiology,
we especially focused on the impact of possible interactions
between folate and homocysteine pathway genotypes.

Table 1. Combinations of MTHFR 677C/T-1298A/C haploid
genotypes with CBS 844ins68 genotypes in 184 patientsa and 233
controls

CBS
MTHFR wt-wt wt-ins ins-ins Total

677 C C 32 8 1 41 Controls
1298 A A 17 2 0 19 Patients

677 C C 36 9 2 47 Controls
1298 A C 33 8 1 42 Patients

677 C C 22 3 0 25 Controls
1298 C C 10 2 0 12 Patients

677 C T 42 13 0 55 Controls
1298 A A 35 3 0 38 Patients

677 C T 34 4 0 38 Controls
1298 C A 41 4 0 45 Patients

677 T T 25 2 0 27 Controls
1298 A A 26 2 0 28 Patients

MTHFR haplotype frequencies

T 147/466 5 0.32 Controls
A 139/368 5 0.38 Patients

C 184/466 5 0.39 Controls
A 118/368 5 0.32 Patients

C 135/466 5 0.29 Controls
C 111/368 5 0.30 Patients

MTHFR, 5,10-Methylenetetrahydrofolate reductase gene; CBS,
cystathione â-synthase gene; wt, wild-type; ins, insertion
a including: 9 anencephalic cases: 1 3 CC/AA — wt/wt, 1 3 CC/AC —
wt/ins, 2 3 CT/AA — wt/wt, 3 3 CT/AC — wt/wt, 2 3 TT/AA —
wt/wt and 3 encephalic cases: 2 3 CC/AA — wt/wt, 1 3 CT/AA —
wt/wt

Table 2. CBS 844ins68 evaluated as an additional risk factor in
individuals with selected MTHFR genotypes

MTHFR risk
genotypes CBS Cases Controls P

677 T T wt-wt 26/28 25/27 1.00
1298 A A wt-ins 2/28 2/27

677 C T wt-wt 41/45 34/38 1.00
1298 C A wt-ins 4/45 4/38
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Three polymorphisms were investigated: MTHFR
677CÆT, MTHFR 1298AÆC, and CBS 844ins68.

Comparing NTD patients with controls, we found no
significant difference in allele and genotype frequencies
for any polymorphism regarded separately (Table 1).
Similarily, our family-based analyses detected no linkage
disequilibrium. The lack of association between the single
MTHFR genotypes and German NTD cases is in agreement
with our previous results and with data from other studies
(Boduroglu et al. 1999; Mornet et al. 1997; Morrison et al.
1998; Shaw et al. 1998). Our MTHFR genotype and allele
frequencies showed intermediate values, comparable to fre-
quencies in North European-derived populations (Botto
and Yang 2000; Fletcher and Kessling 1998).

So far, only a few studies have looked for an association
between the CBS insertion allele and NTD in Caucasians
(Akar et al. 2000; de Franchis et al. 1997; Morrison et al.
1998; Ramsbottom et al. 1997; Speer et al. 1999). As in our
present study, none of them found an association. We found
a rate of CBS 844ins68 homozygosity of 0.96% (4/417 indi-
viduals), corresponding well to the expected proportion,
given the insertion allele frequency of 0.08. Our low ho-
mozygosity rate is in agreement with population data dem-
onstrating that CBS 844ins68 homozygosity is rare in black
Africans (4%) and nearly absent in Europeans and Asians
(less than 1%) (Franco et al. 1998; Pepe et al. 1999).

In a combined analysis, we detected a significantly in-
creased frequency of the MTHFR haploid genotype 677CT/
1298AC among patients compared with controls (P 5 0.02).
Therefore, in contrast to our previous study, our data now
provide evidence for an interaction between both MTHFR
polymorphisms. In our 1999 study, we presented the more
conservative two-sided P values, whereas we now give one-
sided P values. However, for the present study, even the
two-sided test resulted in a P value of less than 0.05. Exclu-
sion of the cranial phenotypes (n 5 12) from all computa-
tions did not change statistical significance.

A comparison with findings in the literature is difficult,
because our data consist of experimentally established hap-
loid genotypes, whereas in other studies the 677CT/1298AC
genotypes are mostly inferred from the absent combina-
tions 677CT/1298CC, 677TT/1298AC, and 677TT/1298CC.
Although the risk genotype 677CT/1298AC was proposed
by van der Put et al. (1998), the Dutch and American data
so far have failed to show unambigious significance (Barber
et al. 2000; Trembath et al. 1999; van der Put et al. 1998).
Our study is the first to present reliable and statistically
significant data for an association of MTHFR risk genotypes
with NTD. The risk genotypes 677TT/1298AA and CT/AC
may be of biological significance, because they have been
shown to be associated with decreased MTHFR enzyme
activity and elevated plasma homocysteine (Weisberg et al.
1998).

Another important enzyme in the control of plasma
homocysteine levels is CBS, which catalyzes the first step
in the catabolic pathway. In order to explore a possible
MTHFR-CBS gene-gene interaction as an NTD risk factor,
we tested whether the MTHFR risk genotypes 677TT/
1298AA and CT/AC were associated with an additional

CBS 844ins68 allele in NTD patients (Table 2). In contrast
to the Italian study (de Franchis et al. 1997), but in agree-
ment with other studies (Morrison et al. 1998; Ramsbottom
et al. 1997; Speer et al. 1999), we could not detect an addi-
tional risk conferred by the CBS insertion allele (P 5 1.00).
After pooling their own American group with published
Irish controls, Speer et al. (1999) found a significant effect.
However, pooling groups of different ethnic origin appears
problematic in association studies sensitive to stratification
effects.

The lack of association of CBS 844ins68 with NTD
should be regarded in context with recent findings that the
insertion allele is not associated with increased homocys-
teine plasma levels. Instead, hyperhomocysteinemia due to
thermolabile MTHFR was absent in those 677TT-
homozygote individuals who carried an additional CBS
844ins68 allele (de Stefano et al. 1998; Tsai et al. 1999). In
contrast to initial concepts (Sebastio et al. 1995), the inser-
tion creates an alternative splice site eliminating both se-
quence variants, 833TÆC and 844ins68, resulting in normal
mRNA and enzyme (Tsai et al. 1996). At present, it is not
clear how the observed homocysteine-lowering effect is
produced in these individuals. In any case, CBS 844ins68
obviously is not responsible for elevated homocysteine lev-
els. Therefore, CBS 844ins68 seems not to be a good candi-
date for NTD in connection with hyperhomocysteinemia.
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