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Abstract Alzheimer disease (AD) is one of several types of
chronic and very common dementing disorders, affecting
individuals aged 65 years or older. During the last five years,
an enormous growth in the field has enriched our under-
standing of this complex condition. Molecular genetic stud-
ies have identified at least three genes that, when mutated,
cause the autosomal dominant, early-onset familial form of
the disease. The late-onset, most common forms of the
disease are likely to be associated with various genetic sus-
ceptibility factors. The application of cell biological tech-
niques has given insight into basic aspects of the functions
of important proteins involved in disease progression, and
transgenic animal studies have further enriched our knowl-
edge of the pathophysiological aspects of the disease. More
efficient therapeutic drugs to retard its progression have
been developed, as well as techniques to identify the pre-
clinical phase of the disorder. Although we are still lacking
the molecular basis and order of events involved in the
disease process, the future for AD research, as well as for
AD patients, is more promising than ever before.
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Introduction

In elderly people, dementia with Lewy body (DLB) is the
most common cause of mild memory impairment (Perry
et al. 1998). This memory impairment is caused by the Lewy
bodies, which are composed of plaques and a few neu-
rofibrillary tangles (NFT), in the cortical and brain stem
structures. DLB also involves a disruption of the

microcolumnar ensemble in the association cortex, but
there is minimal neuronal loss. At the onset of illness, how-
ever, if DLB involves impaired cognition, it is difficult to
distinguish it from another condition, Alzheimer disease
(AD), which is the most common of all the dementias (St.
George-Hyslop 2000; Selkoe 2001). In patients with AD
and the Lewy body variant of AD, cholinergic function
is reduced and there are fewer, neocortical synapses and
a nearly complete loss of microcolumnar ensembles
(Haroutunian et al. 2000; Buldyrev et al. 2000). There is
also a population difference in the incidence rate and
plaque density between AD and DLB (Hendrie et al.
2001; Lippa et al. 1999). This difference can be of potential
use for differentiating the two disorders. Recently, more
neuropsychological tests and neurochemical markers have
also become available (Shimomura et al. 1998; Sabbagh
et al. 1999; Tumani et al. 1999) to distinguish between the
two disorders.

AD is the most feared cause of dementia and is an enor-
mous public health burden. Although it is an age-related
disease in the very old, not all aged people will develop AD
(Ebly et al. 1994). In the past 5 years, an exponential growth
in the field has enriched our understanding of this condition
with respect to genetic susceptibility factors, clinical diag-
noses, biology of mutant genes, and therapy. In this article,
an attempt is made to highlight some of these advances. For
a detailed account of the topic, readers are requested to
consult the other comprehensive reviews cited.

Pathology

AD is a complex, chronic, and genetically heterogeneous
neurodegenerative disorder affecting approximately four
million people in the United States and 20 million indivi-
duals worldwide (Haass and De Strooper 1999).
Neuropathologically, it is characterized by the presence
of abundant intracellular NFT — mainly consisting of
a hyperphosphorylated, microtubule-associated protein
called tau — and extracellular senile plaques (SP) contain-
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ing a large amount of a highly fibrillogenic peptide termed
�-amyloid peptide (A�), which aggregates into �-pleated
sheets. These neuropathological changes have also been
found in Alois Alzheimer’s first patient’s brain (Graeber et
al. 1998). Clinically, this age-related disorder is character-
ized by impairment in cognition and memory. It selectively
affects the neocortex, hippocampus, amygdala, basal fore-
brain, and anterior thalamus of the brain. A variability in
impairment among cognitive domains has also been re-
ported throughout the course of AD in some patients
(Johnson et al. 1999), which suggests that not all cognitive
domains are equally affected at a given time. Although the
relationship between neuropathological changes and cogni-
tive impairments in AD is not understood, the deposition of
NFT (which are also found to be present in non-demented
elderly individuals) and SP are considered to be contribut-
ing factors to the cognitive deficits (Haroutunian et al.
1999). In addition, cerebrovascular disease can also
influence AD pathology and promote dementia (Esiri et al.
1999).

Preclinical phase and diagnostic markers

The clinical feature of AD is chronic impairment of cogni-
tive function. This is accompanied by massive neuronal loss
in the hippocampus and frontal and temporal cortices due
to the deposition of NFT and SP, although an exception to
this has been reported (Poduslo et al. 1999). However, these
histological studies have been conducted on postmortem
brain tissue of AD patients, and they probably represent
the end result of the disease. In order to understand AD
and to develop strategies for its treatment and prevention,
an earlier detection of its pathology or clinical changes is
needed. For this purpose, persons with a mild cognitive
impairment that is abnormal for his or her age and educa-
tion is considered to have the initial preclinical sign of AD
(Fox and Rossor 1999; Burns 2000; Small et al. 2000). By
using this criterion, attempts have been made to identify the
symptoms in individuals at early stages of the disease. A
variety of methods, such as measuring the plasma concen-
tration of the 42-residue �-amyloid (Mayeux et al. 1999),
selective labeling of SP (Skovronsky et al. 2000), measure-
ment of cerebrospinal fluid �-amyloid (Andreasen et al.
1999), magnetic resonance imaging (MRI, Fox and Rossor
1999), family history of AD, mutational analysis of genes
involved in familial AD (Bookheimer et al. 2000), family
history of Down syndrome, and use of positron-emission
tomography (Rapoport 2000) have been developed. MRI
measurement of AD brains has shown a loss of entorhinal
cortex volume (Bobinski et al. 1999), and quantitative MRI
has become useful to measure cerebral atrophy at the
earliest stages of AD (Fox et al. 1999). However, it is not
known whether such measurements are useful for correlat-
ing with the future development of neuropathological
changes (Skoog 2000). In this regard, it is highly desirable to
use a combination of molecular genetic markers along with
other clinical methods (Growdon 1999).

Genetic factors: early-onset AD

AD is a polygenic and multifactorial disease that accounts
for approximately two-thirds of the dementia of late life.
Depending on its age of onset, it can be divided into early-
onset (before age 60) and late-onset AD (after age 60).
Early-onset AD is mostly an inherited dominant disorder.
Although causes of sporadic AD, the most common form,
are not yet understood, three genes have been found to play
an important role in familial autosomal dominant early-
onset AD, which is a relatively infrequent but devastating
form of the disorder (Selkoe 2001; Emilien et al. 2000;
Shastry and Giblin 1999; Shastry 1998; Hardy et al. 1998).
Mutations in genes of amyloid precursor protein (APP)
and presenilins 1 and 2 (PS1 and PS2) have been shown to
segregate in familial autosomal dominant early-onset cases
of AD (Goate et al. 1991; Rogaeva et al. 1995; Sherrington
et al. 1995; Murrell et al. 2000; Van Duijn et al. 1999;
Yasuda et al. 1999; Dermaut et al. 1999). Mutations in APP
(chromosome 21) and PS2 (chromosome 1) are believed to
account for less than 1% of all cases, whereas mutations in
PS1 (chromosome 14) may account for more than 40% of
early-onset cases of familial AD (Lendon et al. 1997;
Campion et al. 1999). Although the physiological roles of
APP and PS are beginning to be understood, most familial
AD mutations cause an increase in the production of the
more amyloidogenic peptide (PS1 mutations affect the
cleavage of APP at the amino-terminal end) that aggregates
to form amyloid deposits (Lichtenthaler et al. 1999;
Scheuner et al. 1996; Russo et al. 2000; Drouet et al. 2000).
Since the above mutations account for less than 7% of AD
cases and most AD cases are late-onset and sporadic, addi-
tional genes are likely to play roles in AD (Daw et al. 2000).
In this respect, it is interesting to note that genetic polymor-
phism in the promoter region of the phenylethanolamine n-
methyltransferase gene is associated with early-but not
late-onset AD (Mann et al. 2001).

Late-onset AD

Because traditional genetic methods are difficult to apply to
late-onset disorders (they exhibit more complex modes of
inheritance, and only a limited number of affected individu-
als from a recent generation have been identified), most
genetic susceptibility factors have been identified on the
basis of their biological functions. In addition, other meth-
ods such as population-based linkage disequilibrium have
been employed (Daw et al. 1999). These analyses have
identified susceptible loci on chromosomes 1, 9, 10, 12, and
13 for late-onset AD (Kehoe et al. 1999; Hiltunen et al.
1999; Scott et al. 1999; Ertekin-Taner et al. 2000; Bertram
et al. 2000; Myers et al. 2000). Additionally, late-onset AD
is associated with genetic polymorphisms in genes for
apolipoprotein E (APOE) (Saunders et al. 1993; Corder
et al. 1993); presenilin-1; butyrylcholine esterase K, an en-
zyme that can hydrolyze choline esters including acetylcho-



B. Jochimsen et al.: Stetteria hydrogenophila 611

line (Tilly et al. 1999); very low-density lipoprotein receptor
(McIlroy et al. 1999); lipoprotein lipase, which hydrolyzes
triglycerides (Baum et al. 1999); choline acetyltransferase
(Baskin et al. 1999); deficiency in aldehyde dehydrogenase-
2, which metabolizes acetaldehyde produced from ethanol
to acetate (Kamino et al. 2000); estrogen receptor α (Brandi
et al. 1999); low-density lipoprotein receptor-related
protein, which is a receptor for APOE; α-2-microglobulin,
which is a serum protease inhibitor (Wavrant-DeVrieze
et al. 1999; Alvarez et al. 1999); α-1-chymotrypsin inhibitor;
bleomysin hydrolase (see review by Shastry and Giblin
1999); myeloperoxidase; dihydrolipoylsuccinyl transferase;
N-acetyl transferase; angiotensin-converting enzyme;
cathepsin D; transferrin; human leukocyte antigen (HLA)
(A2 allele); seretonin receptor; interleukin-6 (Tanzi 1999);
cystatin C (Finckh et al. 2000); and transcription factor
LBP-1c/CP2/LSF (Lambert et al. 2000). It is possible that
these genes act as risk factors for or a genetic modifier of
the more common forms of late-onset AD. Although some
of the above reports are controversial or refuted by others
(Wang et al. 2001; Maruyama et al. 2000; Farrer et al. 2000;
Small et al. 1999; Graeber 1999; Ki et al. 1999), these genes
are still valuable because such variability in effect may be
population specific and may increase the genetic suscepti-
bility of the disease in certain populations.

Functions of APOE

Among the above susceptibility factors, the APOE gene has
been widely accepted as a risk factor (Ganguli et al. 2000;
Raber et al. 2000) and has been extensively studied. The
APOE gene has three alleles called ε 2, ε 3 and ε 4, and the
most common allele is the ε 3. The presence of the ε 4 allele
of the APOE gene (chromosome 19) is found to accelerate
the age of onset of familial AD (early-onset) and to increase
the risk of developing the sporadic form of AD (late-onset).
Those patients with two ε 4 alleles are at a higher risk, while
ε 2 alleles have protective effect (the first Alzheimer patient
of Alois Alzheimer had genotype ε 3/ε 3). APOE is involved
in the transport of cholesterol (Porer 1994), and in the
normal brain, it efficiently binds to �-amyloid protein (A�).
This interaction may prevent the toxic aggregation of A�.
In AD, this property is presumably lost, thus facilitating
the accumulation of A� and the resulting plaque formation.
APOE also binds to ciliary neurotrophic factor (CNTF) and
potentiates its biological activity on hippocampal cells
(Gutman et al. 1997). It has also been shown that isoform-
specific APOE promotes deposition and fibrillization of A�
and neuritic degeneration (Bales et al. 1999; Holtzman et al.
2000). Although APOE’s association with AD is well recog-
nized, its role in the pathogenesis of AD is not clear. It is
neither required nor sufficient to cause AD, nor is it useful
in improving diagnosis (Russo et al. 1998; Tsuang et al.
1999).

Biology of APP and the PSs

In the past 5 years, the most active area of research has been
focused on the study of the biology of APP and the PSs
(De Strooper and Annaert 2000; Sisodia 1999; Selkoe 1998;
Thinakaran 1999; Checler 2001). These studies have helped
to resolve the decade-long question as to whether the for-
mation of plaques or tangles is the first or earliest event in
the development of AD. It is now believed that the deposi-
tion and formation of plaques is the beginning of the clinical
progression of AD because the A� level in the brain is
increased in the frontal cortex before tau pathology is
present (Naslund et al. 2000). This increase in the A� level
is also correlated with cognitive decline.

The A� (a 40–42 residue peptide) is the major consti-
tuent of the extracellular SP and is generated by two suc-
cessive proteolytic cleavages of �-APP. One enzyme,
�-secretase, cleaves the N-terminus of APP, and the other,
�-secretase, generates the C-terminus. APP functions as a
membrane receptor (Kang et al. 1987) and as a secreted
derivative that acts upon other cells. It undergoes phospho-
rylation, N- and O-glycosylation, and sulfation. It is ubi-
quitously expressed, and the 695-residue isoform is more
abundant in the nervous system, whereas the 751/770 amino
acid spliced form is found in nonneuronal cells. APP is
highly conserved, and it may mediate cell–cell adhesion
(Breen et al. 1991) and stimulate neurite outgrowth
(Kibbey et al. 1993).

As mentioned above, AD begins with the deposition of
A�, and its neurotoxicity is attributed to its ability to form
fibrils and to its aggregation (Lorenzo and Yankner 1994;
Pike et al. 1991; Lorenzo et al. 2000). This A� toxicity may
involve increased production of free radicals (Behl et al.
1994), A�-induced tau phosphorylation (Busciglio et al.
1995), interaction with the endoplasmic reticulum-
associated binding protein (Yan et al. 1997), binding to
the PSs (Dewji and Singer 1998) and binding to APP at
the neuronal membrane (Lorenzo et al. 2000). The interac-
tion between A� and APP is analogous to the pathogenic
mechanism proposed for prion disease, in which the abnor-
mal form (PrP-Sc) causes the normal form (PrP-C) of prion
protein to form plaques (Lorenzo et al. 2000), which are
believed to cause cell death. Additionally, a deficiency in
neprilysin (A�-degrading protease) could contribute to AD
by preventing the degradation of A� (Iwata et al. 2001), and
the accumulation of A� aggregates may impair the function
of the ubiquitin-proteasome system, thereby making it di-
rectly responsible for the neuronal degeneration (Bence
et al. 2001).

Presenilins 1 and 2 are serpentine-like, membrane-
bound, highly homologous and conserved proteins, mainly
localized in the endoplasmic reticulum and Golgi apparatus
(De Strooper et al. 1997, 1999; Haass and De Strooper
1999). PS1 is a 467-amino-acid polypeptide synthesized as a
zymogen that undergoes endoproteolysis to give a 30-kDa
N-terminal and a 20-kDa C-terminal fragment. Both frag-
ments are needed for its activity, and both PS1 and PS2 are
ubiquitously expressed in all tissues and cell lines (Haass
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and De Strooper 1999). In detergent-solubilized, cultured
human cells, PS1 has been shown to possess �-secretase
activity that can be inhibited by the transition-state-specific
inhibitor pepstatin and that also can be precipitated by anti-
PS1 antibody. The partially purified protein requires two
conserved transmembrane (TM) aspartates (Asp 257 in TM
6 and Asp 385 in TM 7) for its catalytic activity. Substitution
of either of these residues inactivates �-secretase activity
(Wolfe et al. 1999a, b; Selkoe and Wolfe 2000; Li et al. 2000;
De Strooper and Annaert 2000; de Strooper 2000; Sisodia
2000; Octave et al. 2000; Wolfe 2001; Small 2001; Wolfe and
Haass 2001; Zhang et al. 2001).

PS1 regulates APP processing (Palacino et al. 2000;
Marambaud et al. 1998; Xia et al. 1998, 2000) and com-
plexes with the C-terminal fragment of APP. It has a role in
Notch signaling (Ye et al. 1999; Struhl and Greenwald 1999;
De Strooper et al. 1999; Hardy and Israel 1999; Ray et al.
1999; Steiner et al. 1999), in neuronal differentiation during
neurogenesis (Handler et al. 2000), and in nuclear accumu-
lation of Ire-1 protein. Ire-1 is a bifunctional endoplasmic
transmembrane protein that functions as a sensor that de-
tects changes in the concentration of unfolded proteins
(Niwa et al. 1999; Katayama et al. 1999). PS1 in association
with various other proteins mediates cell survival and cell
fate through signal transduction and vesicular trafficking,
and a mutation in its gene causes defective trafficking of �-
catenin, which is involved in Wnt signaling (Takashima et
al. 1998; Zhang et al. 1998a, b; Smine et al. 1998; Buxbaum
et al. 1998; Nishimura et al. 1999; Tanahashi and Tabira
2000). Thus, PS1 interaction with a variety of proteins
shows that it potentially functions in signaling, apoptosis,
intracellular calcium homeostasis, cytoskeleton stabiliza-
tion, and cell–cell adhesion. All of these most likely play an
important role in the development of AD (Boothwell and
Giniger 2000).

Functions of tau

The microtubule-associated phosphoprotein tau is the
major constituent of intraneuronal NTF, and its unusual
phosphorylation followed by aggregation has been sug-
gested to be a cause of neuronal degeneration (Mandelkow
and Mandelkow 1998; Billingsley and Kincaid 1997). It is
a highly soluble protein that occurs mainly in axons. It is
necessary for the outgrowth of neurites, and it stabilizes
neuronal microtubules, which are reported to protect neu-
ronal cells against A�-induced toxicity (Michaelis et al.
1998), implying that neurodegeneration may involve dam-
age to the cytoskeleton. Surprisingly, however, mice lacking
tau have few defects (Harada et al. 1994). The tau protein
contains an acidic N-terminal, a basic proline-rich middle,
and a C-terminal domain. There are six isoforms of tau
(352–441 amino acids) in the human brain. They are rich in
serine and threonine, and can be phosphorylated at more
than 20 residues (in AD) by many kinases, including cyclin-
dependent kinase 5 (Cdk-5) and cell-cycle kinase (cdc-2).
When tau is phosphorylated at serine 262 or at serine 214

(in an AD brain), it detaches from the microtubules, caus-
ing their breakdown.

Tau hyperphosphorylation is believed to occur before
aggregation, and, hence, it is considered to be the earliest
sign of neurodegeneration in AD. Dimerization and
nucleation are necessary for the formation of paired
helical filaments, and this process depends on a ligand
mechanism, so tau hyperphosphorylation is not considered
responsible for its aggregation (Friedhoff et al. 1998;
King et al. 1999; Schneider et al. 1999). The hyper-
phosphorylated tau from an AD brain binds to a prolyl
isomerase, pin 1, which is also a component of paired helical
fragments and is localized in the neuronal cells (Lu et al.
1999; Goeredt 1999). The significance of this interaction in
causing AD is not clear at present. However, aggregation
followed by breakdown of intracellular transport appears to
be a reasonable explanation for the neuronal degeneration
in AD.

Neuroinflammation, oxyradicals, and oxidative stress

There are other factors that are also thought to contribute
to the neurodegenerative process of AD, and these include
neuroinflammation, oxyradicals, and oxidative stress. There
is some evidence that the immune system plays a role in the
brain inflammatory process. Deposition of A� may activate
microglial cells (which aggregate along the plaques and
tangles), which may be involved in the inflammatory pro-
cess. Consistent with this is the observation that inflam-
matory cytokines are linked to the clinical progression of
AD dementia, and anti-inflammatory drugs can enhance
cognitive performance. Region-specific imbalance of
neurotrophin, which supports the survival, differentiation,
and maintenance of neurons, is likely to be another factor
contributing to the degeneration of specific neurons in the
hippocampal and cortical area (Tan et al. 1999; McGeer and
McGeer 2000; Halliday et al. 2000; Shepherd et al. 2000;
Leturman et al. 2000; Hock et al. 2000).

Metal-mediated oxyradical and peroxide formation and
aggregation of A�; the increase in the frequency of mito-
chondrial DNA mutation in the hippocampus and cerebel-
lum of an AD brain; an increase in the oxidation of lipids,
carbohydrates, proteins, and DNA (Markesbery 1999); an
increased level of oxidative stress-related enzymes (super-
oxide dismutase, hemeoxygenase-1, glucose-6-phosphate
dehydrogenase); and decreased activity of glutathione
transferase support the notion that oxidative stress may
cause neuronal and ischemic brain injury in AD (Gabbita et
al. 1998; Behl 1999; Huang et al. 1999; Liu et al. 1999; Chang
et al. 2000). It is conceivable that brain tissue is particularly
sensitive to free radicals because it lacks large amounts of
antioxidants when compared to many other tissues. Cell
culture and transgenic animal studies also demonstrate an
increased production of free radicals in neurons (Mattson
1997). However, it is not known whether free radicals are
the primary cause or the end result of AD. Long-term anti-
oxidant therapy before the preclinical phase of the disease



B. Jochimsen et al.: Stetteria hydrogenophila 613

may shed some light on the efficacy of antioxidants as drugs
to retard the progression of AD.

Animal models

Various lines of transgenic mice have been developed
by overexpressing APP, mutant APP and the PSs, the C-
terminal fragment of APP, and the APOE ε 4 allele. These
mice produced a variety of phenotypes, among which some
features are similar to human AD. For instance, mice
overexpressing human mutant APP exhibited memory defi-
cits and amyloid plaque deposition (Games et al. 1995;
Hsiao et al. 1996; Sturchler-Pierrat et al. 1997; Lamb et al.
1999; Chen et al. 2000), while mice harboring PS mutations
exhibited increased production of amyloid � peptide 42/43,
increased neurodegeneration, mild pulmonary fibrosis
and hemorrhage, and disturbance of calcium homeostasis
(Duff et al. 1996; Holcomb et al. 1998; Herreman et al. 1999;
Guo et al. 1999a, b; Chui et al. 1999; Schneider et al. 2001).
Additionally, mice carrying human the APOE ε 4 allele
but not the ε 3 allele showed impaired cognitive perfor-
mance (Raber et al. 2000). Interestingly, mice lacking
the high affinity nicotine receptor (� 2 subunit of the
nicotinicacetylcholine receptor) exhibited loss of hippoc-
ampal neurons and alterations in the cortical region during
aging (Zoli et al. 1999). Although these mice have provided
some valuable information on human AD and can be used
as an assay system, none of them are considered to be a
fully equivalent model for human AD. This is supported by
the fact that the chemical structure and morphology of
transgenic mouse plaques are not equivalent to those of
human AD. If such differences are found to be widespread
between animal systems and human AD, then the develop-
ment of therapeutic drugs using animal models may be
hampered (Kuo et al. 2001).

Treatment

At present, it is a strongly held view that AD begins with the
deposition of large numbers of SPs (this is known as the
amyloid hypothesis), which then induce NFTs. These then
lead to neuronal dysfunction, resulting in the clinical ap-
pearance of symptoms, and death (Morris 1999). Alterna-
tively, NFTs initiate the cascades of events that ultimately
result in recognizable symptoms of AD. If either of these
hypotheses is correct, then, theoretically at least, it is pos-
sible to interfere with the progression of the disorder by
reducing or inhibiting the formation of SPs or NFTs
(Wagner and Munoz 1999) in the brain. For instance, devel-
opment of specific inhibitors of �- and �-secretase should
help by reducing the production of SPs and NFTs in the AD
brain. A hopeful approach will be to begin antidementia
treatment before the disease strikes. Regenerating the dam-
aged nervous system is an alternative approach, although
it is not readily applicable at present (Horner and Gage
2000; Selkoe 1999).

Drugs that inhibit acetylcholine esterase (e.g., tacrine
and donepezil) are the most recent development in the
treatment of AD, but side effects such as nausea, hepato-
toxicity, vomiting, and abdominal pain, as well as their mar-
ginal benefit for the patients, have severely limited their use
(Flicker 1999). Additionally, many companies are develop-
ing more specific and powerful inhibitors, but whether these
drugs will make a difference for patients with respect to
their daily living activities and cognitive functions without
any unacceptable side effects remains to be determined
(Mayeux and Sano 1999; De Strooper and Konig 1999). An
equally efficient method to reduce the production and
deposition of A� is A� peptide immunization. Recently,
some success has been reported in animal models with this
approach (Schenk et al. 1999; Janus et al. 2000; Morgan
et al. 2000). Because several molecular targets and animal
models are now available, it is hoped that an effective
therapy for this devastating disorder will be developed in
the near future.

Concluding remarks

A voluminous body of literature in the field suggests that
gene mutations cause genetically inherited, early-onset AD,
while the most common form, late-onset AD, is likely due
to genetic risk factors (Tanzi 1999). Although research has
grown exponentially during past 5 years and cell biological
functions of APP, PSs, and APOE are beginning to be
understood, we are still lacking the molecular basis and
order of events involved in the disease process. The cur-
rently held view (amyloid hypothesis) is that AD begins
with the deposition of large numbers of SPs. This then sets
up a series of events, including alteration of tau, which in
turn lead to neuronal dysfunction and dementia. Although
there is a wealth of information suggesting that A� deposi-
tion occurs before NFT formation, there is no compelling
evidence for the toxicity of A� in AD pathogenesis. Amy-
loid deposits have also been found in normal brains as well
as in nondemented elderly individuals (Wujek et al. 1996;
Neve and Robakis 1998). There is also no correlation be-
tween the density of SPs and the degree of dementia. How-
ever, NFTs are correlated with dementia. Additionally, the
existence of neuronal cell death prior to A� deposition
brings into question the primary role of A� in AD patho-
genesis (LaFerla et al. 1997). Thus, the amyloid hypothesis
cannot explain all of the molecular and cellular events in
AD. It remains to be seen whether clumps of A� are toxic
and give rise to dementia and what happens to these depos-
its in the later stage of the disease. Another interesting
approach is to investigate whether nondemented but aged
families contain any additional protective factors similar to
APOE (Silverman et al. 1999). The future for AD research
is more promising than ever before.
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