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Summary ~ An autosomal doubly recessive mode of inheritance was
implemented in segregation analysis, taken into account for segregation
frequency, proportion of sporadic cases and ascertainment probability.
Maximum likelihood scores are tabulated for some sizes of sibship. Seg-
regation analysis thus becomes much easier with a desk calculator. The
procedure has been illustrated for Graves disease.

INTRODUCTION

A search for gene(s) that would express major effect in multifactorial diseases
has become widely recognized recently. There is evidence that coeliac disease is
the result of two recessive loci (Greenberg and Lange, 1982; Kagnoff, 1982). Hy-
perlipoproteinemia is the result of two loci (Utermann et al., 1980), Graves disease
(Uno et al., 1981) and insulin-dependent diabetes mellitus (Thomson, 1980; Nakao
et al., 1981) have both suggested as candidates for a two-locus mode of inheritance.
It has also been suggested that other HLA-related diseases, especially autoimmune
diseases, may be the result of a locus within the HLA system and a second, non-
HLA linked locus (Greenberg and Anderson, 1983).

Segregation analysis has been used to delineate major gene(s) in such diseases
(Morton, 1959; 1969) and computer programs have been developed to do necessary
calculations which are however so complicated that an access to the procedure was
mostly desperate. Therefore, it seems to be desirable to develop simple computa-
tional methods with desk calculator.

This statistical method handles data such several families in which each member
of a sibship is examined for either healthy or affected status. When the method
took into account different segregation frequencies within a given phenotype mating
type, it has been called complex segregation analysis (Morton, 1959; 1969; Barrai
et al., 1965; Elandt-Johnson, 1970; Lalouel and Morton, 1981).
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The present paper is concerned with the two-locus models of segregation anal-
ysis. The problem however seems not to be so simple. If we consider just two
alleles at each of two autosomal loci, nine distinct genotypes be possible, ignoring
phase of linkage. The nine genotypes can be deduced to two distinct phenotypes:
healthy and affected, by possibly. fifty different ways (Hartl and Maruyama, 1968).
Defries-Gussenhoven (1962) have studied that five of them deserve special attention,
and Elston and Namboodiri (1977) added a sixth to her list.

In this paper we shall study on one of six, doubly autosomal recessive mode of
inheritance since the model would encounter very often in practice. Hogben (1932)
first studied for statistical test of segregation frequency (p), Li (1953) examined
mathematical properties of p, and Elandt-Johnson (1970) has introduced ascertain-
ment probability (x) to models of complex segregation analysis. She however did
not consider one more parameter, proportion of sporadic cases (x). Here, we shall
implement all three parameters in complex segregation analysis for the double reces-
sive model. And table will be provided for computation made simple.

MODELS

Denote two alleles in each locus, 4 and a, and B and . A trait might be an
autosomal recessive aabb, and persons who consist of one of the remaining geno-
types shall be healthy. Complete penetrance is assumed. When the frequencies
of disease gene a and b, respectively a and b, were both infrequent or the trait in
question is rare, the genotype of healthy couples (abbreviated as H x H) was likely
to be AaBbx AaBb, and those of pairs in which one of parents was affected were
likely to be 4aBbx aabb. However if the trait in question is common, more than
one segregation frequency can occur within a given parental phenotype mating type.
Table 1 shows all genotype mating types, grouped into appropriate segregation fre-
quencies when the ascertainment of families was made through offsprings. The
analytic models for segregation distribution could be developed in accordance with
the method of ascertainment and parental mating types (Tables 2-4).

Segregation frequency. For phenotype mating type H x H, three possible seg-
regations of affected children would be expressed as 1/4, 1/8 and 1/16 (Table 1)
which were implemented in the model as p,=p, p,=p/2 and p;=p/4, where p was
a parameter. On the other hand, only the first two p;’s were relevant in Hx A
matings. The proportion of mating type for a given segregation frequency could
be expressed in terms of the harmonic mean of two normal genes or k=2AB/(A+
B), where A=1—a and B=1-Db (Elandt-Johnson, 1970). Namely, (1—-k)? : 2k(1 —
k) : k? for Hx H matings, and 1—k : k for Hx A matings (Table 1). Then mean
segregation frequency will be (1—k/2)?/4 and (1—k/2)/2 for HxH and HxA,
respectively. Thus, when k=0, either A or B (not both) was absent, the model
reduces to the classic segregation model for single recessives (Morton, 1959). There-
fore, the parameter k could be used for testing the null hypothesis of single locus.
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Table 1. Segregation models for doubly autosomal recessive model.

. Expected Segregation Mean of
Mating types proportions frequency (p:) pi
(HxH) Both parents unaffected
Aabb x Aabb v
aaBb X Aabb ‘(1—k)? 1/4
aaBb X aaBb
AaBb X Aabb . (A~k/2y/4
AaBb X aaBb } k(1D : 1/8
AaBb x AaBb k2 1/16
(HxA) Onejparent unaffected
Aabb b

aBb X aab } 1k 12
aaBb X aabb A—k/2)2
AaBb X aabb k ’ 174~
(AXA) Both parents affected
aabb X aabb 1 1 1

Note: 4 and B are normal alleles at two loci, respectively, and a and b are recessive genes. For
example, the expected proportion of AaBb X aabb mating type among H X A phenotype matings (k)
can be derived as 8Aa®Bb3/(4Aa%bt+4aBb?+ 8AaBb®)=2AB/(A+B), in which A and B are allelic
frequencies of normal genes at two loci, respectively, and a=1—A and b=1—B.

Table 2. Expected segregation distribution for doubly autosomal recessive

model. Single ascertainment through affected children (z—0).
Matings Expected probability
HxH |
P(l) — (1 _k)2X1 +k(1 “k)Xz +(k/2)ZX3
(1—k/2)*
P()= (1 —x)[A —k)*P; k(1 — k)P, - (k/2)*P;]
' (1—k/2)
HxA
_ (1-=0X,+(1-k/2)Xs
P= 1-k/2
_ (—x[(1—K)P,+(k/2)P,]
PO= 1—x/2

s, sibship size; r, number of affected sibs. p is the parameter for segregation

frequency.

X is proportion of sporadic cases. k is the harmonic mean of two

normal genes which determine a conditional mating type frequency (see note of
Table 1). py=p, p,=p/2 and p;=p/4. Xi=x+(1—x)(1 —p1)s~2; Pi=pi* X

(1—py)sr for i=1,2,3.

P(r) is the expected segregation distribution for r=1,2,

...,8. In table formulae of P(r) are for r>1.
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Table 3. Expected segregation distribution for doubly autosomal recessive
model., Multiple and (truncated) complete ascertainments
through children (0<z<1).

Mating types Expected probability
HxH
Py = (1—k*X; +2k(1 — k)X, +k2X,
(1—K)*Y, +2k(1 —K)Y,+ kY,
P(r)= (1—k)?P, +2k(1 —k)P, +k*P,
T (1 —k)2Y;+2k(1—-K)Y,+k%Y,
HxA
(=KX kX,
PO=—"T0v, 7kv,
)= (1—k)P; +kP,

(1-K)Y;+kY,

s, sibship size; r, number of affected sibs. p is the parameter for segregation
frequency. X is proportion of sporadic cases. X is the harmonic mean of two
normal genes which determine a conditional mating type frequency (see note of
Table 1). pi=p, p.=p/2and py=p/4. Xi=spia[x-+(1—x)(1—p)s—]; Pi=C) X
pit(1 —pi)sT.  Yi=xspir+( —x)1—(1—piz)s} for all family, and Yi=1—
(1 —pim)s—spia(1—pos~? for multiplex family alone. P(r) is the expected segre-
gation distribution for r=1,2,...,s. In table formulae of P(r) are for r>1.

Table 4. Expected segregation distribution for doubly autosomal recessive
model. (Random) complete ascertainment through parent (z=1)#

Matings Expected probability

HxH
P(O)=h {1 —h){(1 —k)*Q, +2k(1 —k)Q,+k*Qs]
P(r)=(1—-W)[(1~k)*P, +-2k(1 —K)P,+k*P;]
HxA
P@)=h-+(1—h)[(1—k)Q: +kQ:]
P(r)=(1~h)[(1—k)P,+kP,]

s, sibship size; r, number of affected sibs. p is the parameter for segregation
frequency. h is proportion of nonsegregating family. k is the harmonic mean
of two normal genes which determine a conditional mating type frequency (see
note of Table 1). Q:=(1-—pi)s; P1=(f,)p1r(1—pi)5‘r. P(r) is the expected segre-
gation distribution for r=0,1,2,...,s. In table formulae of P(r) are for r>0.
% Tabulation of P(r) and scores and not shown in appendix because of excessive
pages and of seldom encountering the case in practice.

Proportion of sporadic cases. When a null hypothesis of k=0 was rejected, it
meant simply that data did not fit to a simple single autosomal recessive mode of
inheritance. One way to adjust the model to data is to introduce proportion of
sporadic cases (x). The concept of sporadics has first introduced in hereditary
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anomalies by Haldane (1949) who distinguished isolated cases from sporadics in
simplex families. Occurrences of sporadics in fact suggest nonhomogeneous entities
of disease. There are a many mechanisms of sporadics such as mutations, pheno-
copies, technical errors, extramarital conceptions, rare instances of heterozygous
expression of a recessive gene, chromosomal nondisjunction, multifactorial, and
possibly environmental. The present model takes into account a portion of spo-
radics due to double recessives.

Ascertainment probability. This is actually the probability of detecting gene in
question in population which happened to multiply in families, and is a nuisance
parameter in segregation analysis. Statistically speaking, segregation frequency is
rather robust to it while proportion of sporadic cases is somewhat sensitive to it,
compared to segregation frequency. Both parameters are almost linearly related
with the ascertainment probability =, but p is positively one hand and x is negatively
the other hand (Yasuda, 1982). Thus, two extremes of single (z — 0) and complete
(z==1) ascertainment were assumed in the analysis in order to assess affects of sam-
pling, provided that no estimate of = was available as most usual situations.

STATISTICAL METHODS

For a given parental phenotype mating type, let ng be the number of families
with sibship size s, let ng, be the observed number of families of size s with r affected
sibs, and P(r) be the expected value of ns or E(ng)=n.P(r). Then u-scores for
respective parameter are defined as the first derivative to the logarithm of likelihood
of the observation, while k-scores are obtained from the expectation of product of
u-scores; for example,

kpp=1s- Zup?P(r), kpx=ng 2 uP(r), -« ..
T r

The total scores of sample could be calculated additively in terms of sibship size
such as Uy=Xu; and K= kpp.
s s

A test of null hypothesis for a specific parameter may be performed by a statis-
tics ¥?*=U?%/K, which asymptotically follows the chi-square distribution with one
degree of freedom. Here the subscripts to the scores were omitted for brevity (see,
for example Yasuda, 1982).

When a value of = was unknown, further modifications of scores could be pos-
sible. Having some guess estimates for z from experiences in data gathering, the
following conventional formulae proved to be practical:

U=(1-7)Uy+7U; and K=(1 —n)K,+ K,

where the subscript 0 and 1 denote for the value obtained under the assumption
of single and complete ascertainment, respectively. By all means, the scores could
compute directly for a given value of =z when a high speed computer was in use.
Experience indicates the conventional method be satisfactory.
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In order to make computation simple, numerical values of the probability P(r)
and u-scores for p, x and k are listed in appendix table A1-A4 for some size of sib-
ship.

NUMERICAL EXAMPLE AND DISCUSSION

Graves disease has been suggested as a candidate for the two-locus mode of
inheritance (Uno ef al., 1981). In Table 5, segregation distribution were shown for
eight nuclear families whose both parents were healthy and for seven families whose
one of parents was affected. An attention has been paid for multiplex families in
sampling, gathered the nuclear families with at least two affected individuals regard-
less parent and/or children. In segregation analysis, multiplex family denotes that
multiple cases were observed in sibling. Thus, only seven families whose both
parents were healthy could be subjected to further analysis. Because of a smallness
of sample, the following calculations would rather be for illustration of the method.

Table 6 summarizes the results of computation. Since no distinction of pro-
band and secondary case were informed, computations should be made for two
extreme values of z: 7=0 and 1. In the following illustration, the values of ng
were taken from Table 5 (data), P(r) and u-scores were from Table A3. For ex-
ample, the total scores for U and K under the null hypothesis of single recessives
that Hy: p=1/4, k=0, =0, were calculated as follows:

U, = (2) (—1.5855)+(1) (3.7477) + (1) (—2.4685) -+ (1) (2.8647)
+(1) (1.9257)=2.8986,

Uy = (2) (0.1096) +(1) (—0.2792) + (1) (0.1886) + (1) (—0.2650)
+(1) (—0.2416)=—0.3780,

Table 5. Observed segregation distribution for Graves® disease
(Sasazuki, unpublished material).

Parental mating: HxH ‘HxA

s r=1 2 3 Total r=1

1 0 - — 0 0

2 0 1 — 1 1

3 0 0 0 0 0

4 1 2 1 4 4

5 0 1 1 2 2

6 0 0 1 1 0
Total 1 4 3 8 7

s, sibship size; r, number of affected sib; H, healthy parent; A, affected
parent.
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Table 6. Complex segregation analysis of Graves disease with multiplex families alone.

Null hypothesis tested H, : p=1/4, k=0 and =—0
s r TNgr (ns) exp  P@) up ux kpp kpx kkx
2 2 1 ) 1.00 1.0000 — — — — —
4 2 2 3) 2,19 0.7297 -—1.59 0.11 550 —0.38 0.03
4 3 1 3) 0.73 0,2432 3.75 —0.28 10.25 —0.76 0. 06
4 4 3) 0,08 0.0271 ® * * * *
5 2 1 ) 1.23  0.6171 —2.47 0.19 7.52 —0.57 0, 04
5 3 1 (2 0.62 0,3085 2.8 —0.27 50 —0.47 0.04
5 4< 0 @ 0.15 0.0744 * * % * *
6 2 0 ¢)) 0.52 0.5185 * * * * %
6 3 1 ) 0.35 0.3457 1.93 —0.24 1.28 —0.16 0.02
6 4< 0 ¢)) 0.14 0.1358 * * * E3 *
Total 7 2,90 —0.38 29.62 —235 0.19
U2/K (df=1) 0,28 0.75
2 (df=5) 2.52
Null hypothesis tested H, :p=1/4,k=0and =1
s r  nge (0o exp P(r) up ux Kpp kpx kix
2 2 1 (n 1.00  1.0000 — — — — —
4 2 2 3) 2.42 0.8059 —1.11 0.08 3.00 -—0.21 0.01
4 3 1 3) 0.54 0.1791 421 -0.31 9.56 —0.70 0,05
4 4 3) 0.04 0.0149 * * # * *
5 2 1 (@) 1.44 0.7180 —1.74 0.14 4.37 -—0.34 0.03
5 3 1 ©)) 0.48 0,2393 3.59° —0.32 6.16 —0.54 0.05
5 4< ) 0.08 0.0427 * * * * *
6 2 0 1) 0.64 0.6364 * ® * * *
6 3 1 ) 0.28 0.2828 2,91 —0.32 2.39 —026 0.03
6 4< 0 ¢)) 0.08 0.0808 * * * * *
Total 7 6.74 —0.65 25.49 —2.06 0.17
UK (df=1) 1.78 2.51
¥ (df=3) 3.84

s, sibship size; 1, number of affected sib; nsr, number of family with s and r; ns, number of family

with sibship size s. * Score was not shown here since it was unnecessary in computation when ng~
0.
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Ko =(3) (0.7297) (—1.5855)2+ (3) (0.2432) (3.7477)?
+(2) (0.6171) (—2.4685)+(2) (0.3085) (2.8647)2
+(1) (0.3457) (1.9257)2=29.6164,

K =(3) (0.7297) (—1.5855) (0.1096) + (3) (0.2432) (3.7477)
(—0.2792) +(2) (0.6171) (—2.4685) (0.1886) +(2) (0.3085)
(2.8647) (—0.2650) +(1) (0.3457) (1.9257) (—0.2416)
—=—2.3476, and

Ky =(3) (0.7297) (0.1096)% + (3) (0.2432) (—0.2792)2
+(2) (0.6171) (0.1886)%+(2) (0.3085) (—0.2650)?
+(1) (0.3457) (—0.2416)*=0.1906.

The corresponding scores under the other null hypothesis that Hy: p=1/4, k=0
and r=1 were

U, =6.7424 and Ux=-0.6536, and
Kpp =25.4920, Kpi=—2.0625 and Ky, =0.1700,

respectively. Here P(r) and u-scores were from Table A3. No statistical signifi-
cances at five percent level were observed under both null hypotheses. Namely, the
values of chisquare for segregation frequency were (2.8986)%/29.6164=0.28 and
(6.7424)2/25.4920==1.78 under the assumption of single and complete ascertainment,
respectively. Since the chisquare values for single locus hypothesis (k=0) were
(—0.3780)2/0.1906=0.75 and (—0.6536)%/0.1700=2.51 for single and complete as-
certainment, respectively, a single autosomal recessive mode of inheritance could
not be rejected in the present material.

However, evidences have been shown for HLA-linked and Gm-linked genes in
Graves disease (Uno ef al., 1981; Sasazuki ef al., 1982). Two genetic models have
been proposed in Graves disease by the affected sibpair method (Yasuda and Sasa-
zuki, 1982): (i) an HLA-linked recessive gene with frequency 0.30 and a Gm-linked
recessive gene with frequency 0.10; and (ii) an HLA-linked dominant gene with
frequency 0.08 and a Gm-linked recessive gene with frequency 0.10. It is therefore
of most interest to examine whether doubly recessive hypothesis that Hy: p=1/16,
k=2x0.7x0.9/(0.7+0.9)=0.7875 and ==0 or 1 fit to the data. The results of
segregation analysis by a high speed computer were summarized in Table 7. Fits
were very good. It can also be shown that the data fitted well with the other two
locus model.

Although no statistical distinction between one and/or two locus mode of in-
heritance could be made in this particular example of Graves disease by segregation
analysis, probably because of a smallness of sample size, a joint approach of affected
sibpair method and segregation analysis should be promising. For instance, affected
sibpair method would provide frequency of disease gene for complex segregation
analysis.

Greenberg (1984) has examined the power of segregation analysis to distinguish
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between one- and two-locus models for recessive mode of inheritance. Among
other things, he did extensive computer simulations and found that the method has
a sufficient power to distinignish betweeii the fully penetrant single and ‘doubly reces-
sive models. He has also found that the method could also distinguish fairly well
between the dominant-recessive and single recessive -hypotheses. We have been
developing a computer program implemented six genetic hypotheses mentioned pre-
viously, and will communicate it elsewhere.

Table 7. Tests of fit for doubly autosomal recessives to multiplex families of Graves disease.

Single ascertainment (z—0) ) Complete ascertainment (z=1)
Parameter ' U K U¥K 22 Parameter U K UK x2
tested (@f=1) (@) tested df=1) (df)
p~=1/16 17.65 740.45 0,42 3.26(5 p=1/16 29.80 533.10 1.67 5.14(5)
k=0.7875 —0.94 1.0t 0.87 k=0.7875 —1.40 0.78 2.50
p=0.0839 —0.00 653.95 0.00 2.53(4) p=0.1067 0.00 470.65 0.00 2.90(4)
+0, 0391 +0. 0461 )
k=0, 7875 —0.42 1.72 0.10 v k=0.7875 -0.61. 247 0.15

U and K are scores for the corresponding parameter. UK is a value of chisquare for testing a
given value of the paramter. %2 for a goodness of fit of segregation distribution to the expectation.
p is the estimated segregation frequency under a constraint k=0.7875.

-Table 8. A goodness of fit to doubly autosomal recessive model with
two recessive gene frequencies 0.30 and 0.10 in Graves disease.

Expectation under H,: p=1/16,

s r obs k= 0.7875¢ and
z—0 =1
2 2 1 .00 1.00
4 2 2 2.31 2.51
4 3 1 0.62 0.45
4 4 0 0.06 0.03
5 2 1 1.35 1.53
5 3 1 0.53 0.40
M 4,5 0 0.12 0.06
6 2 0 0.59 0.70
6 3 1 0.30 0.24
6 4,5,6 0 0.10 0.06
Total -7 7.00 7.00
x? (df=5) 3.26 5.14

% k=2x0.7x0.9/(0.7+0.9)=0.7875.
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Table Al. Probability and u scores for the hypothesis that He: p=1/4, x=0, k=0 and z in the

doubly recessive model.

1. Simplex and multiplex families.

Single ascertainment (z—0)

Truncated ascertainment (z=1)

$ r P() Up Ux ux P) | Up Ux ux s r
2 1 07500 -1.3333 0,3333 0.1666 0.8571 —0,7619 0. 1904 0.0952 2 1
2 2 0.2500 4,0000 -1, —~0,5000 01428 4,5714 —1,1428 —0,5714 2 2
3 1 00,5625 —2.6666 0.7777 0.3611 0.7297 —1.5855 0, 4804 0.2192 3 1
3 2 0.3750 2.6666 —1, —0.4166 0,2432 3.7477 —1,2973 —0.5585 3 2
3 3 00625 8.0000 —1. -0,7500 0.0270 9.0810 —1.2973 --0.8918§ 3 3
4 1 '0.4218 —4.0000 1.3703 0.5879 7 0.6171  —2.4685 " 0.9075 0,3772 4 1
4 2 0.4218 1.3333 -1, -0,3194 0.3085 2.8647 —1.4628 —0,5301 4 2
4 3 0.1406 6.6666 —1, —0, 7083 " 0,0685 8.1981 " —1.4628 —0.,9190 4 3
4 4 0,015 12,0000 —1, —0.8750 0.0057 13.5314 —1.4628 —1,0857 4 4
5 1 03164 —5,3333 2. 1604 0,8526 0.5185 -—3.4076 1.5215 0.5753 5 1
5 2 0.4218 0.0000 -1, -—(.2060 0. 3457 1.9257 —1.6389. —0.4833 5 2
5 3 02109 5.3333 —1. —0.6597 0.1152 7.2590 —1.6389 —0.9370 5 3
5 4 0,0468 10,6666 ~—1. —0.8541 0,0192 12,5924 —1,6380 —1.1314 5 4
5 5 00039 16,0000 —1. -0,9375 0.0012 17.9257 —1,6389 —1,2147 5 5
6 1 0.2373 —6,6666 3.2139 1.1613 0.4330 —4.3987 2.3892 0.8203 6 1
6 2 03955 -—1.3333 -—1. —0,0736 0,3608 0.9345 —1.8247 —0.4147 6 2
6 3 0.2636 4,0000 —1. - - ~0.6030 0.1603 6.2678  —1.8247 —0.9441 6 3
6 4 00,0878 9,3333 —1. —0,8298 0.0401 11.6012 —1.8247 —1.1709 6 4
6 5 0.0146 14,6666 —1. ~0,9270 0,0053 - 16.9345 —1.8247 —1.2681 6 5
6 6 0,0009 200000 -—1. —0,9687 0.0003 22,2678 —1.8247 —1.3098 6 6
7 1 0.1779 —8.0000 4,6186 1.9216 0.3594 —5.4377 3. 5990 1,1199 7 1
7 2 0.3559 —2.6666 —1. 0.0807 0.3594 —0,1044 —2,0195 —0,3210 7 2
7 3 0.2966 2.6666 —1. —{. 5368 0.1996 5.2289 -—2,0195 —0,9385 7 3
7 4 0.1318 8.0000 —1. —{0.8015 0.0665 10.5622 —2,0195 —1,2032 7 4
7 5 0.0329 13,3333 1. —~0.9149 0,0133 15.8955 ~2.0195 —1.3166 7 5
7 6 0.0043 18.6666 —1. -—0.9635 0.0014 21.2280 —2.0195 —1,3652 7 6
7 7 0.0002 24,0000 -—1. —0,9843 0.0000 26.5622 —2,0195 —1.3860 7 7
8 1 00,1334 —9,3333 6. 4915 1.9419 0,2966 —6.5200 5.2690 1.4830 8 1
8 2 03114 —4,0000 -1, 0.2608 0.3461 —1.1866 —2.2225 —-0.1980 8 2
8 3 0.3114 1,.3333 —1. -0,4596 0,2307- 4,1466 —2.,2225 -—-0.9184 8 3
8 4 0.1730 6,6666 —1. —0.7684 0, 0961 9,.4799 —2,2225 —1.2272 8 4
8 5 0.0576 12,0000 -1, —0,9007 0.0256 14.8133 —2,2225 —1.3595 8 5
8 6 00,0115 17.3333 —1. —0,9574 0.0042 20.1466 —2.2225 —1.4163 8 6
8 7 0.0012 22,6666 —1. —0,9817 0.0004 25.4799 —2.2225 —1.4406 8 7
8§ 8 0.0000 280000 -1, -0,9921 0.0000 30.8133 —2.2225 —1.,4510 8 8
9 1 0.1001 —10.6666 8.9887 2.4322 0.2435 —17.6408 7.5560 1.9199 9 1
9 2 0,2669 —5,3333 —1. 0.4709 0,3247 —2.3074 —2.4326 —0.0412 9 2
9 3 0.3114 0.0000 —1. —0,3695 0,2525 3.0258 —2.4326 —0.8818 9 3
9 4 0,2076 5,3333 —1. —0.7298 0,1262 8.3591 —2.4326 —1.2420 9 4
9 5 0,085 10,6666 —1. —~0,8842 0.0420 13.6925 —2.4326 —1,3964 9 5
9 6 0.0230 16,0000 —1. —0.9503 0.0093 19.0258 —2,4326 —1.4626 9 6
9 7 0,0038 21,3333 -—1. —0,9787 0.0013 24.3591 —2.4326 —1.4909 9 7
9 8 0,0003 26.6666 —1, —0.9908 0.0001 29.6925 —2.4326 ~1,5031 9 8
9 9 0,0000 32,0000 —1, —0.9960 0.0000 35.0258 —2.4326 ~-1.5083 9 9

Note: Omitted the figure below the fifth place of decimals.

Jpn. J. Human Genet.



SEGREGATION ANALYSIS FOR DOUBLE RECESSIVES

431

Table A2. Probability and u scores for the hypothesis that H,: p=1/2, x=0, k=0 and r in the
doubly recessive model.v 1. S_irpplex and rp}lltiplex families.

~ Single ascertainment (z—0)

Truncated ascertainment (z=1)

s r P(r) up Uz ux ~P@ Up Ux Uk s I
21 0. 5000 -2, 1L 0.2500 0.6666 —1.3333 0. 6666 0.1616 2 1
2 2 0. 5000 2, —=1. -—0,2500 0.3333 2.6666 —1,3333 —0.3333 2 2
31 0.2500 —4, 3. 0.6250 0.4285 —2.8571 2,2857 0. 4642 31
3 2 0. 5000 0. —1. —0.1250 0. 4285 1.1428 —1.7142 —0.2857 3 2
33 0.2500 4, —1. —0.3750 0.1428 5.1428 —1,7142 —0.5357 33
4 1 0.1250 —6. 7. 1, 1875 0.2666 —4.5333 5. 8666 0.9583 4 1
4 2 0.3750 ~2. -1 0. 0625 0.4000 —0.5333 —2.1333 —0.1666 4 2
4 3 0. 3750 2, —1. —0.3125 0. 2666 3.4666 —2.1333 —0.5416 4 3
4 4 0.1250 6. —1. —0.4375 0. 0666 7.4666 —2.1333 —0.6666 4 4
51 0. 0625 ~8. 15, 2,0312 0.1612 —6,3225 13.4193 1.7439 51
52 0.2500° —4., -1, 0.3437 0.3225 —2,3225 ~2.5806 0. 0564 5 2
53 0.3750 0. —1. -0.2187 0.3225 1.6774 —2.5806 —0.5060 53
54 0. 2500 4, —1. —0.4062 0.1612 5.6774 —2,5806 —0.6935 5 4
55 0. 0625 8. —1. —0.4687 0.0322  9.6774 —2,5806 —0.7560 5 5
6 1 0.0312° -—10, 31. 3.2968 0.0952 —8.1904 28,9523 2.9618 6.1
6 2 0.1562 —6, —1, 0. 7656 0.2381 —4.1904 —3,0476 0.4305 6 2
6 3 0.3125 -2. —1. —0.0781 0.3174 —0.1904 —3.0476 —0.4131 6.3
6 4 0.3125 2, —1. -—0.3593 0.2381 3.8095 -—3.0476 —0.6944 6. 4
6 5 0.1562" 6. —1, —0.4531 0. 0952 7.8095 —3,0476 —0.7881 6 5
6 6 00312 10, —1. —0.4843 0.0158 '11.8095 —3.0476 —0.8194 6 6
71 0.0156 —12.° 63. 5.1953 0.0551 —10.1102 60,4724 4, 8219 71
7 2 0. 0937 ~8. —1 1.3984 0.1653 —6,1102 " —3,5275 1.0251 7 2
7 3 0.2343 —~4, =1, 0.1328 0.2755 —2.1102 —3.5275 ~—0,2405 7 3
7 4 0,3125 0. —1. —0.2890 0.2755 1.8897 —3.5275 —0.6624 7. 4
75 0.2343 4, —1, —0.429 0.1653 5.8897 —3.5275 =0.8030 75
7 6 0.0937 8. —1. —0.4765 0. 0551 9.8897 —3.5275 —0,8499 7 6
77 0.0156 12.- —1. —0,4921 0.0078 13,8897 —3.5275 —0.8655 77
8 1 0.0078 —14. 127. 8.0429 0.0313 —12.0627 123,9843 7.6395 8 1
8 2 0.0546° —10. -1, 2. 3476 0.1098 -—8,0627 —4,0156 1. 9442 8 2
8 3 0. 1640 -6, —1. 0. 4492 0.2196 —4.0627 —4,0156 0. 0458 8 3
8 4 0.2734 -2, —1. —0,1835 0.2745 —0.0627 —4.0156 —0.5870 8 4
8 5 0.2734 2, —1. -—0.3945 0.2196 3.9372 —4.0156 —0,7979 8 5
8 6 0.1640 6, —1, —0.4648 0.1098 7.9372 —4,0156 —0,8682 8 6
8 7 0.0546 10, —1, —0.4882 0.0313 11.9372 —4.0156 —0.8917 8 7
8 8 0.0078 14, —1. —0.4960 0.0039 15,9372 —4,0156 —0.8995 8 8
9 1 0.0039 —16. 255. 12.3144 0.0176 —14,0352 251.4911 11,8877 9 1
9 2 0.0312 -—12, -1, 3.7714 0.0704 —10.0532 —4.5088 3.3447 9 2
.9 3 0.1093 —8. -1 0, 9238 0.1643 —6.0352 —4.5088 0.4971 9 3
9 4 0.2187 —4, —1. —0.0253 0.2465 —2.0352 —4.5088 —0.4521 9 4
9 5 0.2734 0. —1. —0.3418 0. 2465 1.9647 —4,5088 —0.7685 9 5
9 6 0.2187 4, —1, —0.4472 0.1643 5.9647 —4.5088 —0.8739 9 6
9 7 0. 1093 8. —1. —0.4824 0.0704 9.9647 —4,.5088 —0.9091 9 7
9 8 0.0312 12, —1. —0.4941 0.0176 13.9647 —4.5088 —0,9208 9 8
9 9 00039 16 —1. —0.4980 00019 17.9647 —4.5088 —0.9247 9 9

Note: Omitted the figure below the fifth place of decimals.
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Table A3. Probability and u scores for hypothesis that Hy: p=1/4, k=0 and = in the doubly
recessive model. II. Multiplex family alone.

Single ascertainment (r—0) Truncated ascertainment (z=1)
s T P@® up Uk P(r) u Uk s T
0.8571 ~—0, 7619 0. 0476 0. 9000 —0. 5333 0.0333
0.1428 4,5714 —0.2857 0. 1000 4, 8000 —0.3000
0,7297 —1. 5855 0. 1096 0. 8059 —1.1144 0.0779
0.2432 3.7477 —0.2792 0.1791 4,2189 —0,3109
0.0270 9. 0810 —0. 4459 0. 0149 9.5522 —0.4776

0.6171 —2.4685 0. 1886 0.7180 —1.7446 0. 1364
0.3085 2, 8647 —0,2650 0.2393 3.5886 —0.3173
0. 0685 8,1981 —0.4595 0.0398 8.9219 —0.5117

0. 0057 13.5314 -0, 5428 0. 0026 14. 2553 —0. 5950
0,5185 -3, 4076 0. 2876 0. 6364 —~2. 4250 0.2117
0.3457 1.9257 —0.2416 0.2828 2.9083 —0.3176
0.1152 7.2590 —0, 4685 0.0707 8,2416 —0. 5444
0,0192 12,5924 —0. 5657 0. 0094 13.5750 —0. 6416
0.0012 17.9257 —0.6073 0. 0005 18,9083 —0.6833
0,4330 —4, 3987 0.4101 0. 5611 —3.1557 0.3074
0. 3608 0,9345 —0,2073 0.3117 2, 1775 -0, 3101
0. 1603 6.2678 ~0.4720 0.1039 7.5108 —0.5747
0. 0401 11,6012 —0.5854 0. 0207 12, 8442 —0.6882
0. 0053 16,9345 —0.6340 0. 0023 18.1775 ~—0.7368
0.0003 22.2678 —0,6549 0. 0001 23,5108 —0.7576

0.3594 ~5.4377 0. 5599 0. 4921 —3.9368 0.4275
0. 3594 —0.1044 -0. 1605 0.3280 1.3965 —0.2929
0.1996 5.2289 —0. 4692 0. 1367 6.7298 —0.6016
0. 0665 10, 5622 ~0.6016 0.0364 12. 0631 0, 7340
0.0133 15. 8955 —0.6583 0. 06060 17,3965 —0.7907
0, 0014 21, 2289 —0,6826 0. 0005 22,7298 —0.8150

0, 0000 26. 5622 -0, 6930 0, 0000 28, 0631 —0.8254
0, 2966 —6. 5200 0, 7415 0. 4292 —4.7674 0. 5768
0. 3461 —1, 1866 —0. 0990 0.3338 0.5659 —0, 2636

0.2307 4. 1466 —0.4592 0. 1669 5.8992 —0, 6239
0. 0961 9.4799 —0.6136 0. 0556 11,2325 —0,7783
0. 0256 14,8133 —0,6797 0.0123 16, 5659 —0, 8444

VOOV OOVOLVOWYW 0060000V I~~~ AN Ltnthta S bd WW
COOVOWOVWVOWY oMRMWEWWMPX AIIII1 AN Lrahtauns b hbh WW

HMYWHIAMBWN VOLAUNDBWN @IAUAWLRN AAUAEALN OOLVALND LGALN BRWLND LN
MO -IAUNDWN COIOAUNRARWN 01 UVAWN AU AWN AU BDWN LMDWND AW W

0.0042 20. 1466 —0.7081 0.0017 21,8992 -0, 8728

0, 0004 25.4799 —0,7203 0. 0001 27.2325 —0, 8849

0. 0000 30,8133 —0,7255 0. 0000 32,5659 —0, 8901
10 0.2435 —7. 6408 0, 9599 0.3724 —35.6463 0.7607 10
10 0.3247 —2.3074 —0.0206 0.3310 —0.3129 —0.2198 10
10 0.2525 3.0258 —0.4409 0.1931 5, 0203 —0. 6401 10
10 0.1262 8.3591 —0.6210 0.0772 10,3536 —0. 8202 10
10 0. 0420 13.6925 —0.6982 0.0214 15,6870 —0,8974 10
10 0. 0093 19. 0258 —0.7313 0. 0040 21.0203 —0.9305 10
10 0.0012 24.3591 —0.7454 0. 0005 26,3536 —0.9446 10
10 0, 0001 29.6925 -0.7515 0..0000 31.6870 -0, 9507 10
10 10  0.0000 35.0258 -0.7541 0. 0000 37.0203 —0,9533 10 10

Note: Omitted the figure below the fifth place of decimals.
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Table A4. Probability and u scores for the hypothesis that Hy: p~=1/2, k=0 and = in the doubly

recessive model.

II. Multiplex family alone.

Single ascertainment (z—0)

Truncated ascertainment (z=1)

s T P() up Uk P(r) Up Uk s T
32 0. 6666 —1.3333 0.0833 0.7500 —1, 0000 0. 0625 3 2
3 3 0.3333 2. 6666 —0. 1666 0.2500 3, 0000 —0.1875 3 3
4 2 0. 4285 —2.8571 0.2321 0.5454 —2.1818 0.1818 4 2
4 3 0.4285 1.1428 —0.1428 0. 3636 1.8181 —0.1931 4 3
4 4 0.1428 5.1428 —0.2678 0. 0909 5.8181 —0.3181 4 4
5 2 0. 2666 —4,5333 0.4791 0. 3846 —3.5384 0.3918 52
53 0. 4000 —0.5333 —0.0833 0. 3846 0.4615 —0.1706 53
5 4 0. 2666 3. 4666 —0.2708 0. 1923 4.4615 —0.3581 5 4
55 0. 0666 7. 4666 —0.3333 0.0384 8. 4615 —0.4206 55
6 2 0.1612 —6,3225 0.8719 0.2631 —5.0526 0.7423 6 2
6 3 0.3225 —2.3225 0. 0282 0, 3508 —1.0526 —0.1014 6 3
6 4 0.3225 1.6774 —0,2530 0.2631 2,9473 ~0.3826 6 4
6 5 0.1616 5.6774 —0. 3467 0.1052 6.9473 —0.4764 6 5
6 6 0.0322 9.6774 —0.3780 0.0175 10,9473 —0.5076 6 6
7 2 0, 0952 —8.1904 1.4809 0.1250 —6.7000 1.3063 7 2
7 3 0. 2381 ~4,1904 0.2152 0.2916 —2.7000 0. 0407 73
7 4 0.3174 —0.1904 —0.2066 0.2916 1. 3000 —0.3811 7 4
75 0.2381 3.8095 —0.3472 0.1750 5.3000 —0,5217 75
7 6 0.0952 7.8095 —0.3941 0. 0583 9.3000 —0. 5686 7 6
717 0.0158 11, 8095 —0. 4097 0. 0083 13,3000 —0,5842 717
8 2 0.0551 —10.1102 2.4109 0.1133 —8.4534 2.1916 8 2
8 3 0,1653 —6.1102 0.5125 0.2267 —4,4534 0.2932 8 3
8 4 0,2755 —2.1102 . —0,1202 0.2834 —0.4534 —0.3395 8 4
8 5 0.2755 1.8897 —0.3312 0.2267 3. 5465 —0. 5505 8 5
8 6 0.1653 5.8897 —0.4015 0.1133 7.5465 —0.6208 8 6
8 7 0.0551 9. 8897 —0.4249 0.0323 11, 5465 —0. 6442 8 7
8 8 0. 0078 13.8897 —0.4327 0. 0040 15. 5465 —0.6520 8 8
9 2 0.0313  —12,0627 3.8197 0.0717 —10.2868 3.5578 9 2
9 3 0.1098 —8.0627 0.9721 0.1673 —6.2868 - 0.7102 9 3
9 4 0.2196 —4,0627 0,0229 0. 2510 —2,2868 —0.2386 9 4
9 5 0.2745 —0.0627 -0,2935 0.2510 1.7131 —0, 5554 9 5
9 6 0.2196 3.9372 —0.3989 0.1673 5.7131 —0. 6608 9 6
9 7 0.1098 7.9372 —0.4341 0.0717 9.7131 —0. 6960 9 7
9 8 0.0313 11,9372 —0. 4458 0.0179 13,7131 —0.7077 9 8
9 9 0. 0039 15.9372 —0. 4497 0. 0019 17.7131 —0,7116 9 9
10 2 0.0176 - —14,0352 5.9438 0.0444 —12,1776 5.6430 10 2
10 3 0.0704 -—10.0352 1.6723 0.1184 —-8.1776 1.3715 10 3
10 4 0.1643 —6,0352 0.2485 0.2073 —4,1776 - —0,0522 10 4
10 5 0. 2465 —2.0352 —0.2260 0.2487 —0.1776 —0.5268 10 5
10 6 0. 2465 1.9647 —0. 3842 0.2073 3.8223 -0, 6850 10 6
10 7 0. 1643 5.9647 —0.4370 0.1184 7.8223 —0.7378 10 7
10 8 0.0704 9. 9647 —0, 4545 0.0444 11, 8223 —0.7553 10 8
10 9 0.0176 13. 9647 —0. 4604 0. 0098 15.8223 —0,7612 10 9
10 10 0,0019 17.9647 —0.4623 0. 0009 19. 8223 —0.7632 10 10

Note: Omitted the figure below the fifth place of decimals.
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