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Summary With the aim of understanding the mechanism of maintenance 
of the Rh polymorphism in man, the probability and the first arrival time 
of an incompatibility mutant allele (recessive allele r) to reach a high fre- 
quency by genetic drift in a finite population and the allele frequency 
distribution under mutation pressure are studied. The deterministic 
changes in allele frequency in subdivided populations are also studied. 
The results obtained are as follows: (1) If the effective population size is 
500-1,000, the probability of a single mutant allele to reach a frequency 
of 0.3 or 0.5 is quite small, and without recurrent mutation it is unlikely 
that the mutant allele becomes polymorphic. However, if the mutant 
allele happens to increase in frequency by genetic drift, the increase occurs 
quite rapidly. (2) In an infinitely large population the backward (u) and 
forward mutations (v) produce two stable equilibria, one of which has a 
frequency of 0.065 for h=0.05 and a frequency of 0.16 for h=0.01 when 
u = v =  10 -4, where h is the fitness reduction for the offspring from mating 
rr x RR.  These frequencies are substantially higher than 0 but still lower 
than the frequencies in the European populations (0.3-0.6). In relatively 
small populations, however, the probability of the allele frequency being 
0.3-0.6 becomes quite high if h=0.01. (3) If a population is subdivided 
into subpopulations among which small migration occurs, stable equilibria 
may be developed. However, the equilibrium gene frequencies do not 
conform to the frequencies observed in the European populations. When 
the migration rate becomes higher, the stable equilibria disappear, but the 
gene frequency change in subdivided populations is generally much slower 
than that in a single random mating population, so that the Rh polymor- 
phism may be maintained for a long time even if there are no stable equi- 
libria. (4) If we consider aI1 these factors together, it is possible to ex- 
plain the Rh polymorphism in terms of the mutation-drift hypothesis 
without recourse to reproductive compensation. It seems that the Rh 
polymorphism is transient rather than stable. 
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The mechanism of maintenance of the Rh blood group polymorphism in man 
has been studied by many authors, but the mechanism still remains unknown (see 
Cavalli-Sforza and Bodmer, 1971 for a review). This Mood group system causes 
mother-fetus incompatibility for certain types of matings and reduces the fitness of 
heterozygotes. In 1942 Haldane showed that in the absence of any selective forces 
other than incompatibility selection this polymorphism is unstable and cannot persist 
for a long time. He therefore proposed that the present polymorphism is caused by 
relatively recent admixture of populations that differed greatly in gene frequency. 
His argument was that mutation and random genetic drift can occasionally swing a 
small population over from one type of homozygosis to the other. Two years later, 
R.A. Fisher (see Race, 1944) suggested that reproductive compensation by R h ( - )  
mothers for children lost due to incompatibility might be enough to maintain the Rh 
polymorphism. This latter hypothesis has subsequently been investigated by many 
investigators (e.g., Li, 1953; Vogel and Strobel, 1960; Levin, 1967; Feldman et al., 
1969). In particular, Feldman et aL made a detailed mathematical analysis and 
concluded that no reasonable degree of compensation or overcompensation can lead 
to stable equilibria in the observed range of R h ( - )  gone frequency. Furthermore, 
according to Reed (1971) there is no clear evidence of reproductive compensation for 
R h ( - )  mothers. Despite these studies, Haldane's alternative hypothesis has not 
been well accepted (Feldman et aL, 1969). The reason for this seems to be that 
there are no human populations in which the R h ( - )  allele is fixed or nearly fixed, 
though the Basque population has a frequency of over 0.5. However, it is possible 
that the high frequencies (0.3-0.6) of the R h ( - )  allele in western European popu- 
lations are caused by random genetic drift, and thus a modified form of Haldane's 
hypothesis may be valid. 

The purpose of this paper is to examine the plausibility of this genetic drift 
hypothesis with some additional factors. We shall first study the probability and 
the mean time for the R h ( - )  allele to reach a given frequency or become fixed in a 
population starting from a low frequency, and then examine the gene frequency 
distribution under mutation pressure. The frequency changes of the R h ( - )  allele 
in subdivided populations will also be examined. The results obtained will be dis- 
cussed in relation to the polymorphism and evolution of this locus. 

FIRST ARRIYAL PROBABILITY AND ARRIVAL TIME 

In this section we study two problems by using the diffusion method. One is 
the first arrival probability, u(p,y), i.e., the probability that the gene frequency 
reaches a certain frequency y for the first time starting from the initial frequency p, 
and the other is the mean first arrival time, l(p,y), i.e., the mean time required for 
the gone frequency to reach y starting from p, given that this event will occur. We 
consider only the D antigen of the Rhesus system since the other alleles are not so 
important for incompatibility (see e.g., Cavalli-Sforza and Bodmer, 1971). All 
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Table 1. Mating types and incompatibility seIection in the Rh blood groups. 
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Mating Offspring 
Frequency 

Mother • Father RR Rr rr 

RR • RR (1 --x) 4 1 0 O 

RR • Rr 2x(1 --x) a I/2 1/2 0 

Rr • RR 2x(1 --x) a 1/2 1/2 0 
RR • rr x2(l --x) 2 0 1 0 

rr • RR x2(1 --x) 2 0 1 --h 0 

Rr x Rr 4x2(1 --x) ~ 1/4 1/2 1/4 

Rr • rr 2xa(1 --x) 0 1/2 1/2 

rr • Rr 2xa(1 --x) 0 (1 --k)/2 1/2 

rr • rr x 4 0 0 1 

alleles carrying the genetic determinant for D will be pooled and denoted by R, 
whereas the other by r. This reduces the Rh system to a simple dominant inheri- 
tance. We consider a finite population of  effective size N, and assume that the 
Hardy-Weinberg law applies. Feldman et aL (1969) have shown that this assumption 
holds approximately. 

Table 1 shows the mating types and selection scheme for our model. Our selec- 
tion scheme is somewhat different f rom that of  Feldman et al. (1969), since we do 
not consider reproductive compensation. The two matings involving incompati- 
bility selection are rr mother x R R  father and rr mother • R r  father. The propor- 
tions of  offspring surviving the incompatibility selection are 1 -  h and 1 -  k for the 
two types of  matings, respectively. From this table we can show that the mean 
fitness of  the population is 

v / =  1 - x2(1  - x ) [ h -  ( h - / c ) x ] ,  ( 1 )  

and the mean change in gene frequency per generation in diffusion approximations 

is 

1 2 
Max = - -~- x ( 1 - x) (1 - 2x)[h-- (h--  k ) x ] ,  ( 2 ) 

whereas the variance is x ( 1 -  x ) / (2N) .  

The general formulae for the first arrival probability and the mean first arrival 
time have been given by Kimura  and Ohta (1969, 1973), and Li (1975). They are 

u(p,y)  = g(O,p)/g(O, y)  

t ( p , y ) =  j ;  ~b(x)[1--u(x, y)]dx-~ 1 - u(p, y) fb u(p, y) o ~'(x)u(x' y)dx ' 

(3) 

(4) 
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where 

g(a, b)= fbG(x)dx 

G(x)=exp { -4N f~ M~,z-l(1- z)-ldz } 

(,(x) = 4Nu(x, y)g(O, y)/[x(1 - x)G(x)] . 

We have used these formulas  to carry out  some numerical  computat ions .  In  

these computat ions ,  we have assumed k =  h/2 according to the suggestion by Cavalli-  

Sforza and Bodmer  (1971). Examining  data  on mother-fetus  incompatibi l i ty,  

Ha ldane  (1942) and Caval l i -Sforza and Bodmer  (1971) have est imated that  h is 

about  0.05. However ,  the estimate o f  h varies greatly among  reports,  some estimates 

being the order  of  0.01 (Walker and Murray ,  1956; Caval l i -S%rza and Bodmer ,  

Table 2. First arrival probabilities for allele r to reach frequency y starting from 
frequency p. k is assumed to be h/2. 

p h N 
0.10 0.30 0.50 0.70 1.00 

O. 10 

l/2:V 

0.05 50 1 0.320 0.183 0.129 

100 I 0.306 0.167 0.115 

500 1 0.204 0.070 0.043 

1,000 1 0.108 0.018 0,010 

0.0! 50 1 0.331 0o197 0. i40 

500 1 0.306 0.167 0.115 

1,000 1 0.279 0.137 0.091 

0 any size 1 0.333 0.200 0.143 

0.05 50 0.099 0.032 0.018 0.013 

t00 0.049 0.015 0.008 0,006 

500 0.009 0.002 6.5><10 -4 4.0X 10 -4 

1,000 0.004 4.6• 10 -4 7.8x 10 -S 4.4• 10 -a 

0.01 50 0.100 0.033 0.020 0.014 

100 0.050 0.016 0.010 0.007 

500 0,010 0.003 0,002 0.001 

1,000 0.005 0.001 6.7• 10 -4 4.4• 10 -4 

0 50 0. I00 0.033 0.020 0.014 

100 0.050 0.017 0.010 0.007 

500 0.010 0.003 0.002 0.001 

1,000 0. 005 0. 002 0. 001 7.0• 10 -~ 

O. 096 

O. 090 

O. 040 

0.010 

O. 099 

O. 090 

O. 077 

O. 100 

0.010 

0. 004 

3.7 • 10 -4 

4.3 • 10 -5 

0.010 

O. 005 

8. 8X 10 -4 

3.7X 10 -4 

0. 010 

O. 005 

O. 001 

5 . 0 •  10 -4 
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1971). Particularly we note that blood transfusions for R h ( - )  mothers before their 

pregnancy often give an overestimate of h. We have, therefore, used h=0.05 and 

0.01. The case of complete neutrality (h = k = 0 )  is also included for comparison. 

First arrival probability. The results for first arrival probabilities are given in 
Table 2. In the case of neutral genes u(p,y) is given by p/y, and thus it is independent 
of population size and decreases as y increases. When h > 0, u(p,y) is smaller than 
that for neutral genes, as expected. This can be seen from the case o f p = 0 . l .  I f  
h=0.01 and the population size (N) is 1,000 or smaller, u(p,y) is only slightly smaller 
than that for neutral genes. Namely, in this case the incompatibility genes behave 
as though they are neutral. This is true even for h=0.05 as long as N is 100 or 
smaller. However, as N increases, u@,y) rapidly decreases in this case. Thus, in 
the case of h=0.05 and N =  1,000, u(0.1, 0.5) is about 1/11 of  that for neutral genes. 

All mutant genes initially exist as a single copy in the population. Therefore, 
the case of p =  1/2N is of special interest. In this case u(p,y) is 1/(2Ny) for neutral 
genes and obviously decreases as N increases. As expected, incompatibility selection 
reduces u(p,y), but if h = 0.01, the effect of  selection is negligibly small when N<500.  
Only when N is as large as 1,000, u(p,y) is reduced appreciably, compared with that 
for neutral genes. When h=0.05 and N=500,  u(1/2N, 0.5) is about 1/3 of that for 
h=0 ,  but  the values of u(p,y) for y = 0 . 7  and y =  1.0 are nearly the same as that for 
y=0 .5 .  In the case of  N =  1,000, u(p,y) is further reduced, but the values of  u(1/2N, 
0.7) and u(1/2N, 1.0) are again nearly the same as that of  u(1/2N, 0.5). The reason 
for this is that in the presence of sufficiently strong incompatibility selection allele r 
will almost always become fixed in the population once the gone frequency passes 0.5. 

The first arrival probability for a single mutation to reach a frequency of 0.3 or 
0.5 is very small in a large population. In practice, however, the mutation from 
allele R to r may occur recurrently. I f  this is the case, the frequency of  alMe r can 
be substantial even in large populations. However, this problem can be studied 
more appropriately by examining the gene frequency distribution. 

In the above study we assumed that allele r was introduced later than allele R. 
In practice we do not know which allele was the first. It is, therefore, interesting to 
know the probability that allele R rather than r reaches a polymorphic status from 
a low frequenq/. This probability was computed for the case of N =  500 and p = 
1/2N. If  we assume h=0.05 and k=0.025, this probability becomes 7.6x 10 -5, 
1.3 x 10 -5, 7.2 x 10 -6, and 5.8 x 10 -6 for y = 0.3, 0.5, 0.7, and 1.0, respectively. If  we 
compare these values with those in Table 2, it is clear that the probability of  allele 
R becoming polymorphic is much smaller than that of allele r. For  example, in the 
case of y =  1.0 the former is about 1/10,000 of the latter. Therefore, in this case it 
is not easy to "swing a population over from the homozygosis for allele r to the 
other homozygosis." I f  the h value is as small as 0.01, the probability of the fre- 
quency of  R reaching a high frequency increases, but yet it is very small. For  ex- 
ample, in the case of N =  500, p = 1/2N, and y = 1.0, it is 3.7 x 10 -~, which is about 
1/200 of the probability of fixation of allele r. This makes Haldane's hypothesis 
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Table 3. 
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Mean first arrival time in units of 4N generations for allele r to reach frequency y 
starting from frequency p. k is assumed to be hi2. 

p h N 
0.10 0.30 0.50 0.70 1.00 

0. 10 

1/2N 

0.05 50 0 0.117 0.255 0.423 0.868 

100 0 0.117 0.255 0.413 0.800 

500 0 0.120 0.238 0.340 0.513 

1,000 0 0.115 0.200 0.266 0.367 

0.01 50 0 0.116 0.255 0.430 0.993 

500 0 0.117 0.255 0.413 0.800 

1,000 0 0.119 0.253 0.395 0.696 

0 any size 0 0.116 0.255 0.432 0.948 

0.05 50 0.047 0.164 0.302 0.470 0.914 

100 0.049 0.167 0.304 0.463 0.850 

500 0.052 0.171 0.290 0.392 0.565 

1,000 0.053 0.168 0.253 0.319 0.419 

0.01 50 0.047 0.163 0.302 0.477 0.977 

100 0.049 0.166 0.304 0.478 0.963 

500 0.051 0.169 0.306 0.465 0.852 

1,000 0.052 0.170 0.304 0.446 0.747 

0 50 0.047 0.163 0.302 0.479 0.995 

100 0.049 0.165 0.304 0.482 0.997 

500 0.051 0.167 0.306 0.484 1.000 

1,000 0.052 0.168 0.307 0.484 1.000 

o f  racial  mixture  less tenable,  bu t  we canno t  rule ou t  the poss ibi l i ty  tha t  racial  

admix tu re  occurred as a rare  event r ight  after  allele r was fixed in a popula t ion .  

Moreover ,  recurrent  m u t a t i o n  m a y  occur  between the two alleles, and  in this case, 

the plausibi l i ty  o f  Ha ldane ' s  hypothesis  increases, as will be discussed later .  

First arrival time. The mean  first arr ival  t imes [~(p,y)] for  the same sets o f  

genetic pa ramete r s  as those for  Table  2 are  given in Table  3. F o r  neut ra l  genes 

we have 

t(p,y)=4N[1-Y ln(1-Y)--~P----In 

( K i m u r a  and  Ohta ,  1973). Therefore,  it  is p ropo r t i ona l  to 4N. In  Table  3 the  mean  
first arr ival  t ime is given in units o f  4 N  generat ions,  so tha t  the values for  neut ra l  

genes for  given values o f p  and  y are appl icable  to any popu la t ion  size. F o r  example ,  

in the case of  p = 0 . 1  and  y = 0 . 3 ,  ~(p,y)=O.116x4N generat ions.  Thus,  it  is 23.2 
genera t ions  for  N =  50 bu t  232 generat ions  for  N =  500. In  the  presence o f  in- 
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compatibility selection ~(p,y) is a complicated function of  p, y, and N. In the case 
of p=0 .1  the effect of selection is small for y = 0 . 5  as long as N is 500 or less. As N 
increases further, however, the ratio of  7(p,y) to that for neutral genes tends to 
decrease. (Strictly speaking, as N increases, this ratio first increases slightly and 
then declines.) The reason for this is that as N increases, the arrival probability 
decreases, so that for the gene frequency to reach y it has to do so quickly. 

The effect of  incompatibility selection on the mean first arrival time f o r  the 
case of p =  1/2N is essentially the same as that for p = 0 . 1 ;  the effect is small unless 

population size is large. In the case of h = 0.05 and y = 0.1, the ratio of-i(p,y) to that 
for neutral genes increases as N increases from 50 to 1,000, but as N further increases 
it starts to decrease though it is not shown here. The same is true for the case of 
h=0.01 and y=0.3 .  At any rate, it is clear from this study that the polymorphism 
of incompatibility genes is established quite rapidly in small populations, though the 
probability of the establishment is rather small. For  example, if N =5 0 0  with 

h=0.01, we have t(1/2N, 0.3)=0.169. This corresponds to 338 generations or 
7,000-10,000 years since one generation in the past was probably between 20 to 30 
years. I f  N--  1,000, the mean first arrival time becomes 14,000-20,000 years. This 
is still a relatively short time in human evolution. 

Although the mean first arrival time gives a rough idea about how quickly the 
frequency of a mutant allele increases in a population, a more complete picture is 
obtained by examining the distribution of first arrival time. We examined this 
distribution by using the usual Markov chain method and iterating the gene 
frequency transition matrix (e.g., Nei, 1975, p. 82). The results obtained for the 
case of  h = 0.05, p = I/2N, and N =  50 are given in Fig. 1. It is clear that the distribu- 
tion is quite similar to the gamma distribution and highly leptokurtic, Furthermore, 

Fig. 1. 

0.03- 

0.02 ~ = 0 , 3  

0.02 / ) ---'--'~--,,~ y = o. 7 

0.00 / ~ ~  0 50 100 150 200 
TIME IN GENERATIONS 

Distributions of first arrival times for the frequency of allele r to reach y from 1/2N in a 
population of effective size (N) equal to 50. These distributions are conditional, since 
only the events in which the allele frequency reaches y are considered, h=0.05; k=0.025. 

Vol. 26, No. 4, 1981 



270 M. NEI, W. LI, F. TAJIMA, and P. NARAIN 

when y is large, the variance of first arrival time is very large. Therefore, there 
is a substantially high probability that the arrival to a given frequency occurs earlier 
than the mean arrival time. 

The means (variances) of first arrival times obtained by the present method for 
y=0.3 ,  0.5, 0.7 and 1.0 are 35.6 (429), 64.1 (1,364), 96.1 (2,960), and 180.7 (8,528) 
generations, respectively. The corresponding values from Table 3 are 32.8, 60.4, 
94.0 and 182.8 generations, respectively. In the case of y =  1 the diffusion method 
gives a somewhat larger value than the Markov chain method, as is generally the case 
(Ewens, 1963; Narain, 1970). When y < 1, however, the reverse is true, The reason 
for this is that in the Markov chain method the change in gene frequency is discrete, 
so that in the case of y < 1 the gene frequency has often reached a value higher than 
y when the arrival time is recorded. 

EFFECT OF MUTATION 

Let us now consider the effect of mutation on the Rh polymorphism. At this 
locus many alleles have been discovered in man and his related species chimpanzees, 
and it is possible that the forward and backward mutations are occurring between 
recessive and dominant alleles, though all the recessive or all the dominant alleles 
may not be the same at the nucleotide level. If  this is the case and the population 
size stays constant, the frequency of allele r is expected to follow a certain frequency 
distribution. If  we denote the mutation rate per generation from R to r by u and the 
backward mutation rate by v, this distribution is given by the following formula. 

r = C e Z A ' W x 4 m - l ( 1 - - x ) ~ N ~ - t  , (5) 

where C is the normalizing factor and W is the mean fitness of the population given 
by (1) (Wright, 1969). 

Before studying the property of this distribution, let us examine the deterministic 
effects of mutation and selection. Haldane (1944) and Vogel (1954) studied the 
equilibrium gene frequencies when there is no backward mutation, but in the presence 
of backward mutation the property of equilibrium gene frequencies changes sub- 
stantially. In this case the expected frequency change per generation is given by 

, 1 2 Ax = (I - - x ju - -xv -  -~x  (1 -x)(1 - 2x)[h- (h -k)x] (6 )  

approximately. We consider the special case ot" u = v and k =h/2 in this paper. In 
this case (6) reduces to 

Ax = (1 --2x) I u -  -~-xh (1 - x ) ( 2 -  x) j  . (6a) 

The usual mutation rate used in population genetics is 10 -5 , but in the case of 
Rh blood groups it could be higher than this, because this polymorphism is appar- 
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0.0010- ~ ~  

0.0005- .,~ 

-0.0005- 
GENE FREQUENCY 

Relationships between the amount of change in allele frequency (ordinate) and the alIele 
frequency (abscissa) under mutation pressure. These relationships were obtained by 
formula (6a). 

ently controlled by complex loci. Figure 2 shows the value of Ax for the case of  
u=  10 -4. It is clear that in both cases of h=0.05 and h=0.01 there are an unstable 
equilibrium (at x = 1/2) and two stable equilibria. (When h is sufficiently large, the 

two stable equilibria are given by V'2u/h and 1 -4 u /h  approximately.) In the case 
of  h = 0.05, the lower and higher stable equilibrium points are x = 0.065 and x = 0.992, 
respectively. These values are quite different from the gene frequency for the 
European populations. If  h=0.01, the equilibrium frequencies become 0.16 and 
0.96, but they are still far from the European frequency. Therefore, in order to 
explain the present polymorphism in terms of mutation-selection balance we must 
assume an unrealistically high mutation rate (Cavalli-Sforza and Bodmer, 1971). 
The story, however, changes if we consider the effect of random genetic drift as will 
be seen below. 

Let us now examine the gene frequency distribution determined by (5). Since 
it is difficult to find an explicit expression of C in (5), we have used a numerical 
method to study the distribution. Figure 3 shows the distributions for the cases 
of h = 0.05 and 0.01 with u = v = 10 -4 and N =  103. It is clear that the distributions 
are all U-shaped, and the probability of intermediate frequency near 0.5 decreases as 
h increases. With h=0.05 and 0.01 the distribution is U-shaped as long as 4Nu is 
smaller than 1. I f  4Nu becomes larger than 1, the distribution for neutral genes 
tends to be bell-shaped, whereas that for allele r tends to be bimodal, the two peaks 
being near the two stable equilibrium frequencies under the deterministic treatment. 
In this paper we are particularly interested in explaining the Rh polymorphism in 
the European populations, so that we examined the probabilities of the gene fre- 
quency being in various frequency intervals. Table 4 shows these probabilities for 
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Fig. 3. 

[i 4 - i i  

i l  - -  h=0 .05  
. . . . . .  h=0 .01  
............. NEUTRAL 

t'l J 2" i~. j 
N =  1000 ; u=O.O001 

"-.. \ t 
% %, .." / 

..... :.,,,,~ ......... i 

0 -  V ~  | | ! 

0 0.5 1.0 
GENE FREQUENCY 

Dist r ibut ions  of  the f requency of  allele r in a popula t ion  of  N = I , 0 0 0 .  

and  backward  (v) mu ta t ion  rates are  a s sumed  to be 10 -~. 
The  forward  (u) 

Table 4. Probabilities of  the  f requency of  allele r being wi tNn  certain intervals. 
k is a s sumed  to be h/2. 

Frequency class 
v h N 

0. 00-0.05 0.05-0.  30 0.30-0.  60 0. 60-0.95 0. 95-1 .00  

10 -5 10 -3 0.05 500 0. 500 0.010 3 X 10 -4 0. 002 0. 487 

103 0. 500 0. 013 2 •  10 .5 7 •  10 -4 0. 487 

104 0. 720 0. 007 7 • i0 -2~ 9 • 10 -13 0. 273 

0.01 500 0. 477 0. 017 0.005 0. 013 0. 488 

103 0. 466 0. 029 0. 005 0. 015 0. 485 

I04 0.581 0.098 9 •  -7 5 •  .4 0.321 

10 -4 10 .4 0.05 500 0. 435 0. 100 0. 003 0. 019 0. 442 

103 0. 480 0. 153 3 X 10 -4 8 • 10 .3 0. 359 

104 0o 668 0. 332 4 •  10 .22 3 • 10 -1I 2 • 10 -4 

0.01 500 0.331 0, 135 0.050 0. 107 0.378 

103 0. 293 O. 233 0. 055 0. 123 0. 296 

104 0. 074. O. 920 4 • 10 -4 O. 002 O. 003 

10 .4 10 -s 0.05 500 0. 055 0. 013 4 • 10 -~ 0. 004 0. 927 

103 O. 033 O. 011 3 • I0 -5 O. 001 O. 955 

104 2 x 1 0  -6 1 •  .6 4 •  -26 3 •  -t2 0.999 

0.01 500 0 .05 t  0. 021 0. 009 0. 024 0. 895 

103 0. 030 0. 025 0. 007 0.027 0.911 

104 3 •  -G 5 •  -a 5 x 1 0  -s 0.001 0.999 
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different values of u, v, h, and N. When u = v = 10 -5 and h = 0.05, the gene frequency 
is either 0 or 1 in most of the time if N<t03.  As N increases, the gene frequency 
reaches one of the two deterministic equilibria. However, since these equilibrium 
frequencies are far from the European frequencies, we can conclude that the prob- 
ability of polymorphism, particularly, the probability of gene frequency being in the 
range of 0.3-0.6 [P(0.3-0.6)], is very small. When h=0.01 and u=v= 10 -~, the prob- 
ability of polymorphism [P(0.05-0.95)] increases but P(0.3-0.6) is still less than 1 
percent. However, if the mutation rate increases, the latter probability increases 
substantially. For example, in the case of u = v =  10 -4 and h=0.01, P(0.3-0.6) is 
0.055 for N =  10 ~. Furthermore, if we consider the gene frequency range of 0.3- 
0.95, the probability becomes 0.178. 

The above results indicate that in order to explain the Rh polymorphism by 
mutation and genetic drift a small value of h, a relatively high mutation rate, and 
a relatively small population size are required. We have already indicated the possi- 
bility that h is as small as 0.01. The mutation rate could also be as high as 10 -4 for 
the Rh blood group systems. We also note that before agriculture was introduced 
the effective size of human populations was probably so small that N =  10 a may not 
be unrealistic at all. (The effective size of a human population is probably about 
1/3 of the census population size.) The current effective size of many European 
populations is certainly much larger than 103, but once the gene frequency reaches 
around 0.5, it takes a long time for the frequency to decrease or increase in large 
populations. For example, if the initial frequency is 0.48, the gene frequency de- 
clines to 0.127 in 1,000 generations if h=0.05 and to 0.451 if h=0.01. This suggests 
that a modified form of Haldane's hypothesis is still tenable. 

POLYMORPHISM ~N SUBDIVIDED POPULATIONS 

So far we have considered a single random mating population. In practice, 
however, human populations are often divided into subpopulations among which 
some migration occurs. In these subdivided populations it is possible to maintain 
the Rh polymorphism if allele r is higher than 0.5 in some subpopulations and less 
than 0.5 in others, since in the two groups of subpopulations different alleles are 
advantageous. This idea is interesting, since the Basque population has a frequency 
of about 0.6, whereas in the neighboring populations the frequency is lower than 
0.5. Karlin and McGregor's (1972) small-parameter theory indicates that there are 
always stable equilibria if the migration rate is small. However, when the migration 
rate is high, their theory cannot be used. We have therefore studied this problem in 
some detail by using a deterministric theory. 

For simplicity we consider two populations and denote by ml and m2 the pro- 
portions of individuals exchanged in populations 1 and 2, respectively. Namely, 
if the sizes of populations t and 2 are N1 and N2, respectively, and the number of 
individuals exchanged per generation is M, m~=M/N~ and m~=M/N2. Therefore, 
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ml=m~ if N I = N  2 but nh:~m~ otherwise. Let x and y be the frequencies of r in 
populations 1 and 2, respectively, and assume that selection occurs before migration. 
The gene frequencies in the following generations (x',y') are then given by 

x' = (1 - m~)# + m~r (7a) 

y' = (1 --m2)~ + m2~ (7b) 

approximately, where 

I 1 z ~ ' 
= x - ~-  x (1 - -x )  {h - (h - -k )x )  i / [1  --x2(1 - x) {h - (h - - k )x ) ] ,  

~= [ y -  ~---yZ(1--x){h-(h--k)Y}I/[1-yZ(1--y){h-(h-k)y}].  

The above formulae are approximate, because we have assumed the Hardy-Weinberg 
equilibrium in each population. In subdivided populations the deviation of geno- 
type frequencies from Hardy-Weinberg proportions is greater than that in a single 
population. However, our numerical computations have shown that the actual 
gene frequency changes when the assumption of Hardy-Weinberg equilibrium is 
removed are close to those given by (7a) and (Tb). Therefore, we shall use these 
formulae. 

The equilibrium frequencies can be determined by equating x' to x in (7), but the 
analytical solution is not simple. Therefore, we examined the amounts of changes 
in x and y per generation (Ax, Ay) for various values of x and y. In practice, we 
divided the gene frequency range (0-1) into I00 equal intervals and computed Ax 
and Ay for all combinations of 100 x values and 100 y values. This enabled us to 
determine the trajectories of gene frequency changes, equilibria, and the stability of 
the equilibria for various values of ml, ms, and h. ( k = h / 2  was assumed.) The re- 
sults of this study can be summarized as follows: 

(1) The point (0.5, 0.5) is always an unstable equilibrium, as expected. When 
ml = ms, the gene frequency changes are symmetrical around the line between (0, 0) 
and (1, 1). This symmetry disappears when rnl~-rn ~. 

(2) If  h<0.05, stable equilibria occur only when rn 1 and m~ are very small. 
When rnl=m2=0.0005 and h =0.05, there are two (nontrivial) stable equilibria, i.e. 
(x,y)=(0.2, 0.9) and (0.9, 0.2), and five unstable equilibria (Fig. 4@ The stable 
equilibrium gene frequencies observed in this case, however, do not agree with the 
frequencies in the Basque and its surrounding populations. The results for smaller 
values of h are qualitatively the same as those for h=0.05, but the stability of the 
equilibria is generally weaker. In the following we therefore consider only the case 
of h = 0.05. 

(3) When m~=m2=0.002, there are no stable equilibria but there exist three 
unstable equilibria (Fig. 4b). These three unstable equilibria are relatively closely 
located, and in the region of these equilibria the gene frequency changes are very 
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Fig. 4. Allele frequency trajectories and equilibria in a population, which is subdivided into two, 
populations 1 and 2. The proportion of individuals exchanged per generation is ml in 
population 1 and m2 in population 2. [] and �9 represent stable and unstable equilibria, 
respectively. The arrow signs show the direction of allele frequency changes. (a) ml = m~ = 
0.0005. (b) ml=m~=0.002. (c) mz=m2=0.004. (d) mi=0.0005; m~=0.001. (e) ml= 
0.0008; m~=0,0015. (f) m1=0.001; m2=0.002. 

slow. Therefore, even if these equilibria are unstable, they have an effect to maintain 
the polymorphism for a long time if proper initial gene frequencies are given. For  
example, if the initial gene frequencies are (0.48, 0.515), the gene frequencies after 
1,000 generations are still (0.329, 0.364). In the case of a single random mating 
population the gene frequency changes from 0.48 to 0.127 in 1,000 generations. We 
note that 1,000 generations corresponds to 20,000-30,000 years in man. 

(4) I f  m I ( =  m~) further increases, the unstable equilibria except the one at (0.5, 
0.5) gradually disappear (Fig. 4c). After disappearance of these equilibria, (0.5, 0.5) 
becomes a saddle point. 

(5) When m14:rn2, the number of stable equilibria may not necessarily be two 
even if ml and m2 are small, tn the case o fm 1 = 0.0005 and rnz = 0.001 only one stable 
equilibrium (0.18, 0.92) and four unstable equilibria exist (Fig. 4d). The stable equi- 
librium gene frequency in the smaller population (with a larger migration rate) is 
larger than that in the larger population. This is interesting, because the gene 
frequency in the Basque population whose size is small is higher than that in the 
neighboring population. However, the equilibrium frequencies do not coincide 
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with those of the Basque and its neighboring populations. The equilibrium gene 
frequencies (0.24, 0.82) for the case of ml = 0.0008 and rn.~ = 0.0015 (Fig. 4e) are closer 
to the observed frequencies (0.4, 0.6), but the discrepancy is still substantial. 

(6) If we increase ml and m~, the stable equilibrium again disappears, and the 
unstable equilibria tend to be located closely (Fig. 4f). The trajectories of gene 
frequency changes are also complicated, and despite the absence of stable equilibrium, 
the gene frequencies may stay polymorphic for a long time. Thus, if m~=0.001, 
m2=0.002, and the initial frequencies are (0.48, 0.53), the frequencies after 1,000 
generations are still (0.326, 0.534) and those after 1,500 generations are (0.166, 0.236). 

The above results indicate that subdivision of populations alone cannot explain 
the current Rh polymorphism in European populations but certainly helps in prolong- 
ing the polymorphism. 

DISCUSSION 

The present study suggests that in the presence of recurrent mutation the Rh 
polymorphism in man can be explained by random genetic drift. We have seen that 
if the effective population size is as small as 1,000 and h=0.01 and u = v =  10 -~, the 
probability of gene frequency lying between 0.3 and 0.6 [P(0.3-0.6)] is about 6 per- 
cent. Therefore, if we consider that the effective sizes of human populations have 
increased only recently, it is possible to explain the Rh potymorphism in man in terms 
of mutation and genetic drift. However, if h is as high as 0.05 and the mutation rate 
is lower than 10 -4, P(0.3-0.6) is quite small. Thus, if the latter parameter values 
are correct, we must conclude that the Rh polymorpkism has occurred as a relatively 
rare event. It is therefore important to know more about h, u, and v. 

In the long history of human evolution, however, even a relatively rare event 
cannot be neglected, since similar events might have occurred many times. We have 
noted that although the allele frequency of 0.5 is unstable, the Rh polymorphism 
may be maintained for a long time particularly in subdivided populations. If we 
consider this possibility, it is not difficult to explain the polymorphism in terms of 
mutation and genetic drift even if h is as large as 0.05. One possible scheme of the 
evolution of the Rh polymorphism in man is as follows: At the time of the last 
glaciation (Wurm-Wisconsin Period; about 10,000 to 60,000 years ago) there were 
probably many isolated small human populations. In these populations the fre- 
quency of r was generally kept in low frequency by the balance of mutation, incom- 
patibility selection, and genetic drift. In a few populations, however, the allele 
frequency increased substantially by genetic drift, reaching a frequency higher than 
0.5. In Table 2 we note that if the initial frequency is 0.1, the probability of the 
allele frequency to increase to more than 0.5 is substantial if N= 50-500. Probably 
this event occurred in the ancestral population of the present western Europeans. 
When the glaciation ended, some populations started to increase in size. Probably 
the ancestral population of Europeans was one of those populations. Admixture 
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with other populations is likely to have reduced the allele frequency of r in this 
population to the level close to 0.5, but since the allele frequency change per genera- 
tion is very small when the frequency is near 0.5, the polymorphism has persisted for 
a long time. We have seen that the Rh polymorphism can persist for more than 
1,000 generations in subdivided populations, and the period of 1,000 generations in 
man is longer than the post-glaciation period of 10,000 years. We believe that this 
scheme of evolution is quite likely to have happened. One supporting evidence is 
that the frequency of r is the highest in the western European populations and declines 
as the distance from Europe increases (Mourant et  al., 1976). In Asian, Amerindian 
or Oceanian populations the frequency is quite low. 

In the past whenever a new genetic polymorphism was discovered, population 
geneticists looked for the mechanism of  maintenance for the polymorphism, assum- 
ing that it is stable. Recent molecular data, however, indicate that nucleotide or 
codon substitution in genes has occurred continuously in the evolutionary process 
and thus there must be many transient polymorphisms. As shown in this paper, it 
is quite possible that the Rh polymorphism is one such example. In our study we 
considered the forward and backward mutations between the group of dominant 
alMels and the group of recessive alleles. At the nucleotide level, however, every 
allele could be unique, though the alMes are classified into two ~oups  in terms of 
the phenotypic effect. Therefore, our model does not contradict the notion that 
gene substitution is continuously occurring at the Rh locus. The idea of transient 
polymorphism of the Rh locus is supported by the fact that the number of "alleles" 
shared by man, chimpanzee, gorilla, and orangutan are very few (Socha and Moor- 
Jankowski, 1979). 

In this paper we did not consider such a stabilizing selection as overdominance. 
I f  there is heterozygote advantage in viability, a stable polymorphism is of course 
maintained, as shown by Feldman et al. (1969). However, there is no evidence for 
this in the Rh blood group system. 
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