HAPTOGLOBIN POLYMORPHISM IN THE MIDDLE EAST

Dariush D. FARHUD

Unit of Human Genetics and Anthropology, Department of Human Ecology, School of Public Health, University of Tehran, P.O. Box 1310, Tehran, Iran

Summary The distribution of haptoglobin types in Iranians (n=627) is reported. Hp^{1} gene frequencies, collected from published material, among Middle East populations are given. The interpretations of noted observations are discussed.

INTRODUCTION

Most human populations have been shown to be polymorphic for a number of blood groups, serum proteins and red cell enzymes. Smithies (1955) demonstrated that when human serum is subjected to electrophoresis, haptoglobin differentiates into three patterns which are found in most populations. Later, family studies carried out by Smithies and Walker (1956) suggested that these groups are controlled by two autosomal alleles, Hp^{1} and Hp^{2} , without dominance.

Data on geographic distribution of haptoglobin phenotypes in different populations of the world have been accumulated (Giblett, 1969; Kirk, 1968; Sutton *et al.*, 1959). Such studies have shown marked differences in the frequencies of Hp^{I} and Hp^{2} genes among European, African and Asian populations.

Knowledge on the distribution of polymorphic systems in the Middle East is rather limited and extensive data are only available regarding the ABO system. The present survey was carried out to enlarge our knowledge of the distribution of haptoglobin types in Iran and to contribute to the better understanding of genetic polymorphism in the Middle East.

MATERIALS AND METHODS

Blood samples, obtained from Iranians, were collected in 5 ml tubes. Serum was separated immediately and stored at -20° C until used. The persons sampled were healthy and unrelated. Horizontal starch gel electrophoresis was carried out

D.D. FARHUD

Hp phenotype	Obs. No.	Exp. No.	Obs. Freq.	Exp. Freq.
1-1	49	49.40	0.0781	0.0788
2-1	254	253.19	0. 4051	0.4038
2-2	324	324.40	0. 5167	0.5174
0-0				
Total	627	626.99	0. 9999	1.0000

Table 1. The distribution of haptoglobin types in Iranians.

Gene frequencies: Hp^1 , 0.2807; Hp^2 , 0.7193.

Table 2. Distribution of Hp^1 gene frequencies in the Middle East.

Origin	No. tested	Hp1 frequency	Authors
Turkish	274	0. 25	Hummel et al. (1970)
Kuwaitis	158	0.345	Sawhney (1975)
Iraquis	118	0.288	Ramot et al. (1961)
Iraq (Jews)	118	0.29	Ramot et al. (1962)
Iraq (Jews)	197	0.270	Fried et al. (1963)
Arabs (S. Arabia)	92	0.445	Marengo-Rowe et al. (1974)
Israeli (Arabs)	75	0.36	Ramot et al. (1962)
Israelis (Orientals)	345	0.26	Goldschmidt et al. (1962)
Israeli (Kurds)	113	0.36	Ramot et al. (1962)
Kurdish Jews	96	0.300	Fried et al. (1963)
Israeli (Ashkenazim)	17 0	0.34	Ramot et al. (1962)
Israeli (Ashkenazim)	499	0.27	Goldschmidt et al. (1962)
Ashkenazi Jews	699	0.300	Fried et al. (1963)
Israel (Iran Jews)	158	0.310	Simhai (1976)
Yemen Jews	41	0.250	Fried et al. (1963)
Haban Jews	589	0.210	Bonné et al. (1970)
Towara Bedouin	198	0. 429	Bonné et al. (1971)
Jebelliya Bedouin	95	0.789	Bonné et al. (1971)
Iranians	627	0.281	Present study
Iranians	360	0. 270	Farhud & Walter (1972)
Iranians	34	0.25	Harris <i>et al</i> . (1959)
Iranians	97	0.354	Walter & Djahanschahi (1963)
Iranians	1,016	0.28	Miyashita & Ohkura (1975)
Iranians (Caspian Littoral)	448	0.214	Kirk et al. (1977)
Iranians	1,566	0.288	Bajatzadeh & Walter (1969)
Iranians	1,020	0.305	Bajatzadeh & Walter (1968)
Iranians	275	0.296	Sawhney (1975)
Iranian Moslems	429	0.28	Bowman (1964)
Iranian Zorastrians	145	0.19	Bowman (1964)
Iranian Ghashquai	117	0.33	Bowman (1964)
Iranian Jews	91	0.30	Ramot et al. (1962)
Iranian Jews	101	0.290	Fried et al. (1963)
Iranian Jews	459	0. 320	Tabatabai (1976)
Iranian Armenians	228	0.344	Tabatabai (1976)

Jpn, J. Human Genet.

using the discontinuous system of Poulik (1957) at pH 8.6. The haptoglobin patterns were typed by benzidine staining.

RESULTS

The distribution of Hp groups and respective gene frequencies were calculated by the gene counting method (Table 1). Close agreement was observed between the expected and phenotypic values, thus confirming the Hardy-Weinberg equilibrium. No Hp 2-1 (modified) or rarer phenotype was detected.

DISCUSSION

Data on the distribution of Hp^{1} gene frequencies in various Middle East populations are set out in Table 2. Studies conducted on European populations show that Hp^{I} gene frequency is remarkably similar throughout the continent, ranging from 0.36 to 0.43 (Kirk, 1968). In the Middle East, with few exceptions, the Hp^{1} frequency is generally lower than that in Europe and usually lie between 0.25 to 0.36. The three major ethnic groups *i.e.* Iranians, Jews and Arabs in the Middle East, the differences found with regard to Hp¹ values, are insignificant (Ritter et al., 1975). However, the highest Hp^1 values found in the Middle East are among the Jebelliya Bedouin (0.789), the Arabs of Southern Arabia (0.445) and the Towara Bedouin (0.429) (Bonné et al., 1971; Marengo-Rowe et al., 1974). By contrast the lowest values are observed among the Iranian Zoroastrians (0.19) and the Jews living in Haban (0.21) (Bonné et al., 1970; Marengo-Rowe et al., 1974). All other values exhibited by the populations shown in Table 2, are within the specified Middle East range. However, the Middle East populations on the whole exhibit lower Hp^1 values than those found in Europe and higher than those found in India where values range from 0.037 to 0.370 (Sunderland et al., 1976). There appears to be a cline of increasing Hp^1 gene frequencies from Europe to India via the Middle East, the precise significance of which, in terms of environmental and genetic causation, cannot at present be gauged.

Acknowledgments I am indebted to Dr. K.S. Sawhney, Unit of Human Genetics and Anthropology, School of Public Health, University of Tehran, for helpful discussions.

The present survey was supported by the School of Public Health and the Institute of Public Health Research, Tehran University, partly by the funds of Ministry of Health and plan organization for project No. 670101.

REFERENCES

Bajatzadeh, M., and Walter. H. 1968. Serum protein polymorphism in Iran. Hum. Genet. 6: 40.
Bajatzadeh, M., and Walter. H. 1969. Investigations on the distribution of blood and serum groups in Iran. Hum. Biol. 41: 401.

Vol. 25, No. 3, 1980

D.D. FARHUD

- Bonné, B., Ashbel, S., Modai, M., Godber, M.J., Mourant, A.E., Tills, D., and Woodhead, B.G. 1970. The Habbahite isolate. I. Genetic markers in the blood. *Hum. Hered.* 20: 609.
- Bonné, B., Godber, M.J., Ashbel, S., and Tills, D. 1971. South Sinai Bedouin. A preliminary report on their inherited blood factors. *Am. J. Phys. Anthrop.* 34: 397.
- Bowman, J.E. 1964. Haptoglobin and transferrin differences in some Iranian populations. *Nature*. 201: 88.
- Farhud, D.D., and Walter, H 1972. Haptoglobin subtypes in Iran. Hum. Hered. 22: 184.
- Fried, K., Bloch, N., Sutton, E., Neel, J.V., Bayani-Sioson, P., Ranot, B., and Duvdevani, P. 1963. Haptoglobin and transferrin in genetics of migrant and isolate populations. Pub. by. E. Goldschmidt. Williams and Wilkins, New York.
- Giblett, E.R. 1969. Genetic markers in human blood. Blackwell and Scientific Public. Oxford.
- Goldschmidt, E., Bayani-Sioson, P., Sutton, H.E., Fried, K., Sandar, A., and Bloch, N. 1962. Haptoglobin frequencies in Jewish community. *Ann. Hum. Genet.* **26**: 39.
- Harris, H., Robson, B., and Siniscalco, M. 1959. Genetics of the plasma protein variants in biochemistry of human genetics. Ciba Foundation Symposium. Churchill, London
- Hummel, K., Pulvarer, K.P., Schall, P., and Weidman, V., 1970. Haufigkeit der sichtypen. inden. Erbsystemem Haptoglobin, Gc, saure Erythrocytenphosphatase, Phosphoglucomutase and Adenylatkinase, sowiedem Erbeigenschaften Gm (1), Gm (2) und Inv (1) bei Deutschen (Aus dem Freiberg. B. und bei Turken). *Hum. Genet.* 8: 330.
- Kirk, R.L. 1968. Monographs in human genetics. S. Karger, Basel (Switzerland).
- Kirk, R.L., Bronya, K., Blake, N.M., McDermid, E.M., Ala, F., Karimi, M., Nickbin, B., Shabazi, H., and Kmet, J. 1977. Genes and people in the Caspian Littoral: A population genetic study in nothern Iran. Am. J. Phys. Anthrop. 46: 377.
- Marengo-Rowe, A.G., Godber, M.G., Kopec, A.C., Mourant, A.E., Tills, D., and Woodhead, B.G. 1974. The inherited blood factors of the inhabitants of Southern Arabia. Ann. Hum. Biol. 1: 311.
- Miyashita, T., and Ohkura, K. 1975. Distribution of polymorphic traits in Iran. Jpn. J. Hum. Genet. 20: 55.
- Poulik, M.D. 1957. Starch gel electrophoresis in a discontinuous system of buffers. *Nature* 180: 267.
- Ramot, B., Duvdevani-Zikert, P.G., and Kende, G. 1962. Haptoglobin and transferrin types in Israel. Ann. Hum. Genet. 25: 267.
- Ramot, B., Duvdevani-Zikert, P.G., and Tauman, G. 1961. Distribution of haptoglobin types in Israel. *Nature* 192: 765.
- Ritter, H., Jorgensen, G., and Vogel, F. 1975. Handbook of Humangenetik. George Theme Verlag Stuttgart.
- Sawhney, K.S. 1975. Genetic polymorphism in South and South East Asia. Ph. D. Thesis. University of Durham, U.K.
- Simhai, B.G. 1976. Haptoglobin polymorphism among the Iranian Jews. 7th Pahlavi Medical Conference. Shiraz.
- Smithies, O. 1955. Zone electrophoresis in starch gels: group variation in the serum of normal human adults. *Biochem. J.* 61: 629.
- Smithies, O., and Walker, N.F. 1956. Notation for serum protein groups and the genes controlling their inheritance. *Nature* 178: 694.
- Sunderland, E., Sawhney, K.S., Cartwright, R.A., and Jolly, J.G. 1976. Studies of haptoglobin and transferrin types in four castes of the Panjab. *Hum. Hered.* 26: 16.
- Sutton, H.E., Neel, J.V., Livingstone, F.B., Binson, G., Kundstadler, P., and Trombley, L.E. 1959. The frequencies of haptoglobin types in five populations. Ann. Hum. Genet. 23: 175.
- Tabatabai, H. 1976. Genetic studies of Armenians and Jews of Iran. M.S.P.H. dissertation, School of Public Health, University of Tehran.
- Walter, H., and Djahanschahi, D. 1963. Zur Haufigkeit der Serumgruppen in Persiens. Homo 14: 70.