Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Prenatal cadmium exposure and preterm low birth weight in China

Abstract

Early studies have investigated the effect of prenatal cadmium (Cd) exposure on birth outcomes, such as preterm birth and low birth weight, although the results of these studies are inconsistent. The aim of the present study was to investigate the association between prenatal exposure to Cd and the risk of preterm low birth weight (PLBW). A total of 408 mother–infant pairs (102 PLBW cases and 306 pair matched controls) were selected from the participants enrolled in the Healthy Baby Cohort (HBC) study between 2012 and 2014 in Hubei province, China. Concentrations of Cd in maternal urine collected before delivery were measured by inductively coupled plasma mass spectrometry and adjusted by creatinine. A significant association was observed between higher maternal urinary Cd levels and risk of PLBW (adjusted odds ratio (OR)=1.75 for the medium tertile, 95% confidence interval (CI): 0.88, 3.47; adjusted OR=2.51 for the highest tertile, 95% CI: 1.24, 5.07; P trend=0.03). The association was more pronounced among female infants than male infants. Our study suggested that prenatal exposure to Cd at the current level encountered in China may potentially increase the risk of delivering PLBW infants, particularly for female infants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Menai M, Heude B, Slama R, Forhan A, Sahuquillo J, Charles MA et al. Association between maternal blood cadmium during pregnancy and birth weight and the risk of fetal growth restriction: the EDEN mother-child cohort study. Reprod Toxicol 2012; 34: 622–627.

    Article  CAS  Google Scholar 

  2. Jarup L, Akesson A . Current status of cadmium as an environmental health problem. Toxicol Appl Pharm 2009; 238: 201–208.

    Article  Google Scholar 

  3. Suwazono Y, Sand S, Vahter M, Filipsson AF, Skerfving S, Lidfeldt J et al. Benchmark dose for cadmium-induced renal effects in humans. Environ Health Perspect 2006; 114: 1072–1076.

    Article  CAS  Google Scholar 

  4. Peters JL, Perlstein TS, Perry MJ, McNeely E, Weuve J . Cadmium exposure in association with history of stroke and heart failure. Environ Res 2010; 110: 199–206.

    Article  CAS  Google Scholar 

  5. Satarug S, Moore MR . Adverse health effects of chronic exposure to low-level cadmium in foodstuffs and cigarette smoke. Environ Health Perspect 2004; 112: 1099–1103.

    Article  CAS  Google Scholar 

  6. Adams SV, Passarelli MN, Newcomb PA . Cadmium exposure and cancer mortality in the Third National Health and Nutrition Examination Survey cohort. Occup Environ Med 2012; 69: 153–156.

    Article  CAS  Google Scholar 

  7. Korpela H, Loueniva R, Yrjanheikki E, Kauppila A . Lead and cadmium concentrations in maternal and umbilical cord blood, amniotic fluid, placenta, and amniotic membranes. Am J Obstet Gynecol 1986; 155: 1086–1089.

    Article  CAS  Google Scholar 

  8. Osman K, Akesson A, Berglund M, Bremme K, Schutz A, Ask K et al. Toxic and essential elements in placentas of Swedish women. Clin Biochem 2000; 33: 131–138.

    Article  CAS  Google Scholar 

  9. Christensen MM, Keith I, Rhodes PR, Graziano FM, Madsen PO, Bruskewitz RC et al. A guinea pig model for study of bladder mast cell function: histamine release and smooth muscle contraction. J Urol 1990; 144: 1293–1300.

    Article  CAS  Google Scholar 

  10. Sorell TL, Graziano JH . Effect of oral cadmium exposure during pregnancy on maternal and fetal zinc metabolism in the rat. Toxicol Appl Pharmacol 1990; 102: 537–545.

    Article  CAS  Google Scholar 

  11. Nagymajtenyi L, Schulz H, Desi I . Behavioural and functional neurotoxicological changes caused by cadmium in a three-generational study in rats. Hum Exp Toxicol 1997; 16: 691–699.

    Article  CAS  Google Scholar 

  12. Shen HM, Dong SY, Ong CN . Critical role of calcium overloading in cadmium-induced apoptosis in mouse thymocytes. Toxicol Appl Pharm 2001; 171: 12–19.

    Article  CAS  Google Scholar 

  13. Nishijo M, Nakagawa H, Honda R, Tanebe K, Saito S, Teranishi H et al. Effects of maternal exposure to cadmium on pregnancy outcome and breast milk. Occup Environ Med 2002; 59: 394–396.

    Article  CAS  Google Scholar 

  14. Salpietro CD, Gangemi S, Minciuollo PL, Briuglia S, Merlino MV, Stelitano A et al. Cadmium concentration in maternal and cord blood and infant birth weight: a study on healthy non-smoking women. J Perinat Med 2002; 30: 395–399.

    Article  CAS  Google Scholar 

  15. Kippler M, Tofail F, Gardner R, Rahman A, Hamadani JD, Bottai M et al. Maternal cadmium exposure during pregnancy and size at birth: a prospective cohort study. Environ Health Perspect 2012; 120: 284–289.

    Article  CAS  Google Scholar 

  16. Sun H, Chen W, Wang D, Jin Y, Chen X, Xu Y . The effects of prenatal exposure to low-level cadmium, lead and selenium on birth outcomes. Chemosphere 2014; 108: 33–39.

    Article  CAS  Google Scholar 

  17. Odland JO, Nieboer E, Romanova N, Thomassen Y, Lund E . Blood lead and cadmium and birth weight among sub-arctic and arctic populations of Norway and Russia. Acta Obstet Gyn Scan 1999; 78: 852–860.

    Article  CAS  Google Scholar 

  18. Nishijo M, Tawara K, Honda R, Nakagawa H, Tanebe K, Saito S . Relationship between newborn size and mother’s blood cadmium levels, Toyama, Japan. Arch Environ Health 2004; 59: 22–25.

    Article  CAS  Google Scholar 

  19. Zhang YL, Zhao YC, Wang JX, Zhu HD, Liu QF, Fan YG et al. Effect of environmental exposure to cadmium on pregnancy outcome and fetal growth: A study on healthy pregnant women in China. J Environ Sci Heal A 2004; 39: 2507–2515.

    Article  Google Scholar 

  20. Lin CM, Doyle P, Wang D, Hwang YH, Chen PC . Does prenatal cadmium exposure affect fetal and child growth? Occup Environ Med 2011; 68: 641–646.

    Article  CAS  Google Scholar 

  21. Jin TY, Wu XW, Tang YQ, Nordberg M, Bernard A, Ye TT et al. Environmental epidemiological study and estimation of benchmark dose for renal dysfunction in a cadmium-polluted area in China. Biometals 2004; 17: 525–530.

    Article  CAS  Google Scholar 

  22. Yu H, Wang J, Fang W, Yuan J, Yang Z . Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice. Sci Total Environ 2006; 370: 302–309.

    Article  CAS  Google Scholar 

  23. Du Y, Hu XF, Wu XH, Shu Y, Jiang Y, Yan XJ . Affects of mining activities on Cd pollution to the paddy soils and rice grain in Hunan province, Central South China. Environ Monit Assess 2013; 185: 9843–9856.

    Article  CAS  Google Scholar 

  24. Xia W, Du X, Zhang B, Li Y, Bassig BA, Zhou A et al. A case-control study of prenatal thallium exposure and low birth weight in China. Environ Health Perspect 2015; 124: 164–169.

    Article  Google Scholar 

  25. Janevic T, Petrovic O, Bjelic I, Kubera A . Risk factors for childhood malnutrition in Roma settlements in Serbia. BMC Public Health 2010; 10: 509.

    Article  Google Scholar 

  26. Williams CE, Davenport ES, Sterne JA, Sivapathasundaram V, Fearne JM, Curtis MA . Mechanisms of risk in preterm low-birthweight infants. Periodontol 2000 2000; 23: 142–150.

    Article  CAS  Google Scholar 

  27. Offenbacher S, Lieff S, Boggess KA, Murtha AP, Madianos PN, Champagne CM et al. Maternal periodontitis and prematurity. Part I: Obstetric outcome of prematurity and growth restriction. Ann Periodontol 2001; 6: 164–174.

    Article  CAS  Google Scholar 

  28. Gunier RB, Horn-Ross PL, Canchola AJ, Duffy CN, Reynolds P, Hertz A et al. Determinants and within-person variability of urinary cadmium concentrations among women in northern California. Environ Health Perspect 2013; 121: 643–649.

    Article  Google Scholar 

  29. Castano A, Sanchez-Rodriguez JE, Canas A, Esteban M, Navarro C, Rodriguez-Garcia AC et al. Mercury, lead and cadmium levels in the urine of 170 Spanish adults: a pilot human biomonitoring study. Int J Hyg Environ Health 2012; 215: 191–195.

    Article  CAS  Google Scholar 

  30. Becker K, Schulz C, Kaus S, Seiwert M, Seifert B . German Environmental Survey 1998 (GerES III): environmental pollutants in the urine of the German population. Int J Hyg Environ Health 2003; 206: 15–24.

    Article  CAS  Google Scholar 

  31. Hinwood AL, Callan AC, Ramalingam M, Boyce M, Heyworth J, McCafferty P et al. Cadmium, lead and mercury exposure in non smoking pregnant women. Environ Res 2013; 126: 118–124.

    Article  CAS  Google Scholar 

  32. Shirai S, Suzuki Y, Yoshinaga J, Mizumoto Y . Maternal exposure to low-level heavy metals during pregnancy and birth size. J Environ Sci Health A Tox Hazard Subst Environ Eng 2010; 45: 1468–1474.

    Article  CAS  Google Scholar 

  33. Zhang X, Zhong T, Liu L, Ouyang X . Impact of soil heavy metal pollution on food safety in China. PloS One 2015; 10: e0135182.

    Article  Google Scholar 

  34. Johnston JE, Valentiner E, Maxson P, Miranda ML, Fry RC . Maternal cadmium levels during pregnancy associated with lower birth weight in infants in a North Carolina cohort. PloS One 2014; 9: e109661.

    Article  Google Scholar 

  35. Johnson MD, Kenney N, Stoica A, Hilakivi-Clarke L, Singh B, Chepko G et al. Cadmium mimics the in vivo effects of estrogen in the uterus and mammary gland. Nat Med 2003; 9: 1081–1084.

    Article  CAS  Google Scholar 

  36. Henson MC, Chedrese PJ . Endocrine disruption by cadmium, a common environmental toxicant with paradoxical effects on reproduction. Exp Biol Med 2004; 229: 383–392.

    Article  CAS  Google Scholar 

  37. Orikasa C, Kondo Y, Hayashi S, McEwen BS, Sakuma Y . Sexually dimorphic expression of estrogen receptor beta in the anteroventral periventricular nucleus of the rat preoptic area: implication in luteinizing hormone surge. Proc Natl Acad Sci USA 2002; 99: 3306–3311.

    Article  CAS  Google Scholar 

  38. Davis LK, Pierce AL, Hiramatsu N, Sullivan CV, Hirano T, Grau EG . Gender-specific expression of multiple estrogen receptors, growth hormone receptors, insulin-like growth factors and vitellogenins, and effects of 17 beta-estradiol in the male tilapia (Oreochromis mossambicus). Gen Comp Endocrinol 2008; 156: 544–551.

    Article  CAS  Google Scholar 

  39. Turgut S, Kaptanoglu B, Turgut G, Emmungil G, Genc O . Effects of cadmium and zinc on plasma levels of growth hormone, insulin-like growth factor I, and insulin-like growth factor-binding protein 3. Biol Trace Elem Res 2005; 108: 197–204.

    Article  CAS  Google Scholar 

  40. Murphy VE, Smith R, Giles WB, Clifton VL . Endocrine regulation of human fetal growth: the role of the mother, placenta, and fetus. Endocr Rev 2006; 27: 141–169.

    Article  Google Scholar 

  41. Vatten LJ, Nilsen ST, Odegard RA, Romundstad PR, Austgulen R . Insulin-like growth factor I and leptin in umbilical cord plasma and infant birth size at term. Pediatrics 2002; 109: 1131–1135.

    Article  Google Scholar 

  42. Geary MP, Pringle PJ, Rodeck CH, Kingdom JC, Hindmarsh PC . Sexual dimorphism in the growth hormone and insulin-like growth factor axis at birth. J Clin Endocrinol Metab 2003; 88: 3708–3714.

    Article  CAS  Google Scholar 

  43. Vieira CL, Coeli CM, Pinheiro RS, Brandao ER, Camargo KR, Jr., Aguiar FP . Modifying effect of prenatal care on the association between young maternal age and adverse birth outcomes. J Pediatr Adolesc Gynecol 2012; 25: 185–189.

    Article  CAS  Google Scholar 

  44. Iyengar GV, Rapp A . Human placenta as a “dual” biomarker for monitoring fetal and maternal environment with special reference to potentially toxic trace elements. Part 3: toxic trace elements in placenta and placenta as a biomarker for these elements. Sci Total Environ 2001; 280: 221–238.

    Article  CAS  Google Scholar 

  45. McTernan CL, Draper N, Nicholson H, Chalder SM, Driver P, Hewison M et al. Reduced placental 11 beta-hydroxysteroid dehydrogenase type 2 mRNA levels in human pregnancies complicated by intrauterine growth restriction: an analysis of possible mechanisms. J Clin Endocr Metab 2001; 86: 4979–4983.

    CAS  PubMed  Google Scholar 

  46. Doi T, Puri P, McCann A, Bannigan J, Thompson J . Epigenetic effect of cadmium on global de novo DNA hypomethylation in the cadmium-induced ventral body wall defect (VBWD) in the chick model. Toxicol Sci 2011; 120: 475–480.

    Article  CAS  Google Scholar 

  47. Smith ZD, Chan MM, Mikkelsen TS, Gu HC, Gnirke A, Regev A et al. A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature 2012; 484: 339–U74.

    Article  CAS  Google Scholar 

  48. Ko TJ, Tsai LY, Chu LC, Yeh SJ, Leung C, Chen CY et al. Parental smoking during pregnancy and its association with low birth weight, small for gestational age, and preterm birth offspring: a birth cohort study. Pediatr Neonatol 2014; 55: 20–27.

    Article  Google Scholar 

  49. Hernandez M, Schuhmacher M, Fernandez JD, Domingo JL, Llobet JM . Urinary cadmium levels during pregnancy and postpartum. A longitudinal study. Biol Trace Elem Res 1996; 53: 205–212.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (973 Program) (2012CB722401), the National Natural Science Foundation of China (21437002, 81030051, 81372959, 81402649) and the R&D Special Fund for Public Welfare Industry (Environment) (201309048). Also, this work was partly supported by Fogarty training grants D43TW 008323 and D43TW 007864-01 from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Xia or Shunqing Xu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Journal of Exposure Science and Environmental Epidemiology website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, K., Li, H., Zhang, B. et al. Prenatal cadmium exposure and preterm low birth weight in China. J Expo Sci Environ Epidemiol 27, 491–496 (2017). https://doi.org/10.1038/jes.2016.41

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jes.2016.41

Keywords

This article is cited by

Search

Quick links