Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Experimental estimation of migration and transfer of organic substances from consumer articles to cotton wipes: Evaluation of underlying mechanisms


The aim of this work was to identify the key mechanisms governing transport of organic chemical substances from consumer articles to cotton wipes. The results were used to establish a mechanistic model to improve assessment of dermal contact exposure. Four types of PVC flooring, 10 types of textiles and one type of inkjet printed paper were used to establish the mechanisms and model. Kinetic extraction studies in methanol demonstrated existence of matrix diffusion and indicated the presence of a substance surface layer on some articles. Consequently, the proposed substance transfer model considers mechanical transport from a surface film and matrix diffusion in an article with a known initial total substance concentration. The estimated chemical substance transfer values to cotton wipes were comparable to the literature data (relative transfer 2%), whereas relative transfer efficiencies from spiked substrates were high (50%). For consumer articles, high correlation (r2=0.92) was observed between predicted and measured transfer efficiencies, but concentrations were overpredicted by a factor of 10. Adjusting the relative transfer from about 50% used in the model to about 2.5% removed overprediction. Further studies are required to confirm the model for generic use.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4


  1. Biedermann S, Tschudin P, Grob K . Transfer of bisphenol A from thermal printer paper to the skin. Anal Bioanal Chem 2010; 398 (1): 571–576.

    Article  CAS  Google Scholar 

  2. Klasmeier J, Mühlebach A, McLachlan MS . PCDD/Fs in textiles — Part II: Transfer from clothing to human skin. Chemosphere 1999; 38 (1): 97–108.

    Article  CAS  Google Scholar 

  3. Api AM, Bredbenner A, McGowen M, Niemiera D, Parker L, Renskers K et al. Skin contact transfer of three fragrance residues from candles to human hands. Regul Toxicol Pharmacol 2007; 48 (3): 279–283.

    Article  CAS  Google Scholar 

  4. Meinke M, Abdollahnia M, Gähr F, Platzek T, Sterry W, Lademann J . Migration and penetration of a fluorescent textile dye into the skin — in vivo versus in vitro methods. Exp Dermatol 2009; 18 (9): 789–792.

    Article  CAS  Google Scholar 

  5. Krätke R, Platzek T . Migrationsverfahren und Modelle zur Abschützung einer möglichen Exposition mit Textilhilfsmitteln und -farbmitteln aus Bekleidungstextilien unter Anwendungsbedingungen. Bundesgesundheitsbl — Gesundheitsforsch — Gesundheitsschutz 2004; 47 (8): 810–813.

    Article  Google Scholar 

  6. Tønning K, Malmgren-Hansen B, Jacobsen E, Pedersen E, Nilsson NH . Phthalates in Plastic Sandals. Danish Enviromental Protection Agency. 2010. Report No. 107.

    Google Scholar 

  7. European Union European Union Risk Assessment Report DEHP, 2nd Priority List Volume: 80. Joint Research Centre: Ispra, Italy. 2008. Report No.: EUR 23384 EN.

  8. Kim HH, Yang JY, Kim SD, Yang SH, Lee CS, Shin DC et al. Health risks assessment in children for phthalate exposure associated with childcare facilities and indoor playgrounds. Environ Health Toxicol 2011; 26: e2011008.

    Article  Google Scholar 

  9. Delmaar JE, Bokkers BGH, ter Burg W, van Engelen JGM . First tier modeling of consumer dermal exposure to substances in consumer articles under REACH: A quantitative evaluation of the ECETOC TRA for consumers tool. Regul Toxicol Pharmacol 2013; 65 (1): 79–86.

    Article  CAS  Google Scholar 

  10. Gorman NgM, de Poot S, Schmid K, Cowie H, Semple S, Van Tongeren M . Properties of liquids and dusts: How do they influence dermal loading during immersion, deposition, and surface contact exposure pathways? Ann Occup Hyg 2013; 57 (5): 627–639.

    Google Scholar 

  11. Clausen PA, Liu Z, Kofoed-Sørensen V, Little JC, Wolkoff P . The influence of temperature on the emission of di (2-ethylhexyl)phthalate (DEHP) from PVC flooring in the emission cell FLEC. Environ Sci Technol 2012; 46 (2): 909–915.

    Article  CAS  Google Scholar 

  12. Beelen MSC, Natulessy JH, Bierman EPB, Brouwer DH . Assessment of Surface Contamination as an Estimate for Dermal Exposure: Development of a Standard Wipe Method (in Dutch). TNO: Zeist, The Netherlands. 1996 Report No.: TNO rapport V96-084.

    Google Scholar 

  13. Kofoed-Sørensen V, Nørgaard AW, Wolkoff P, Clausen PA . Thermal solid phase extraction for GC-MS analysis of complex samples. In: 19th International Mass Spectrometry Conference (IMSC 2012). Kyoto International Conference Center: Japan. 2012 pPTh-157.

    Google Scholar 

  14. Piringer OG . Evaluation of plastics for food packaging. Food Addit Contam 1994; 11 (2): 221–230.

    Article  CAS  Google Scholar 

  15. Ekelund M, Azhdar B, Gedde UW . Evaporative loss kinetics of di(2-ethylhexyl)phthalate (DEHP) from pristine DEHP and plasticized PVC. Polym Degrad Stab 2010; 95 (9): 1789–1793.

    Article  CAS  Google Scholar 

  16. Daniels PH . A brief overview of theories of PVC plasticization and methods used to evaluate PVC-plasticizer interaction. J Vinyl Addit Technol 2009; 15 (4): 219–223.

    Article  CAS  Google Scholar 

  17. Schneider T, Vermeulen R, Brouwer DH, Cherrie JW, Kromhout H, Fogh CL . Conceptual model for assessment of dermal exposure. Occup Environ Med 1999; 56 (11): 765–773.

    Article  CAS  Google Scholar 

  18. Piringer OG . Prediction of diffusion coefficients in plastic materials. Rev Chim 2008; 59 (11): 1186–1189.

    CAS  Google Scholar 

  19. Lundsgaard R, Kontogeorgis GM, Kristiansen JrK, Jensen TF . Modeling of the migration of glycerol monoester plasticizers in highly plasticized poly(vinyl chloride). J Vinyl Addit Technol 2009; 15 (3): 147–158.

    Article  CAS  Google Scholar 

  20. Xu Y, Little JC . Predicting emissions of SVOCs from polymeric materials and their interaction with airborne particles. Environ Sci Technol 2006; 40 (2): 456–461.

    Article  CAS  Google Scholar 

  21. Helmroth IE, Dekker M, Hankemeier T . Influence of solvent absorption on the migration of Irganox 1076 from LDPE. Food Addit Contam 2002; 19 (2): 176–183.

    Article  CAS  Google Scholar 

  22. Cohen Hubal EA, Nishioka MG, Ivancic WA, Morara M, Egeghy PP . Comparing surface residue transfer efficiencies to hands using polar and nonpolar fluorescent tracers. Environ Sci Technol 2008; 42 (3): 934–939.

    Article  CAS  Google Scholar 

  23. Cohen Hubal EA, Suggs JC, Nishioka MG, Ivancic WA . Characterizing residue transfer efficiencies using a fluorescent imaging technique. J Expo Anal Environ Epidemiol 2005; 15 (3): 261–270.

    Article  CAS  Google Scholar 

  24. Rodes CE, Newsome JR, Vanderpool RW, Antley JT, Lewis RG . Experimental methodologies and preliminary transfer factor data for estimation of dermal exposures to particles. J Expo Anal Environ Epidemiol 2001; 11 (2): 123–139.

    Article  CAS  Google Scholar 

  25. Gorman NgM, Semple S, Cherrie W, Christopher Y, Northage C, Tielemans E et al. The relationship between inadvertent ingestion and dermal exposure pathways: A new integrated conceptual model and a database of dermal and oral transfer efficiencies. Ann Occup Hyg 2012; 56 (9): 1000–1012.

    Google Scholar 

  26. Wakelyn PJ, Bertoniere NR, French AD, Thibodeaux DP, Triplett BA, Rousselle MA et al Cotton Fiber Chemistry and Technology. CRC Press: New York, NY, USA. 2007.

    Google Scholar 

  27. Liu Z, Ye W, Little JC . Predicting emissions of volatile and semivolatile organic compounds from building materials: A review. Build Environ 2013; 64 (0): 7–25.

    Article  CAS  Google Scholar 

  28. Clausen PA, Liu Z, Xu Y, Kofoed-Sørensen V, Little JC . Influence of air flow rate on emission of DEHP from vinyl flooring in the emission cell FLEC: Measurements and CFD simulation. Atmos Environ 2010; 44 (23): 2760–2766.

    Article  CAS  Google Scholar 

  29. Meininghaus R, Gunnarsen L, Knudsen HN . Diffusion and sorption of volatile organic compounds in building materialsgêæimpact on indoor air quality. Environ Sci Technol 2000; 34 (15): 3101–3108.

    Article  CAS  Google Scholar 

  30. Weschler CJ, Nazaroff WW . SVOC exposure indoors: Fresh look at dermal pathways. Indoor Air 2012; 22 (5): 356–377.

    Article  CAS  Google Scholar 

Download references


We thank CEFIC LRI for financial support of this study (grant: LRI B9-Characterizing the nature of dermal exposure from consumer products and articles), Harald Klimpke (Follmann & Co. GmbH & Co. KG, Germany) for producing DINCH plasticized PVC, Centexbel for manufacturing tailor made textiles and Rasmus Lundsgaard for fruitful discussion.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Per Axel Clausen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Journal of Exposure Science and Environmental Epidemiology website

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clausen, P., Spaan, S., Brouwer, D. et al. Experimental estimation of migration and transfer of organic substances from consumer articles to cotton wipes: Evaluation of underlying mechanisms. J Expo Sci Environ Epidemiol 26, 104–112 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • dermal exposure
  • exposure modeling
  • volatile organic compounds
  • phthalates

This article is cited by


Quick links