
OPEN

ORIGINAL ARTICLE

Spatial variation in inversion-focused vs 24-h integrated
samples of PM2.5 and black carbon across Pittsburgh, PA
Brett J. Tunno, Drew R. Michanowicz, Jessie LC Shmool, Ellen Kinnee, Leah Cambal, Sheila Tripathy, Sara Gillooly, Courtney Roper,
Lauren Chubb and Jane E. Clougherty

A growing literature explores intra-urban variation in pollution concentrations. Few studies, however, have examined spatial
variation during “peak” hours of the day (e.g., rush hours, inversion conditions), which may have strong bearing for source
identification and epidemiological analyses. We aimed to capture “peak” spatial variation across a region of complex terrain, legacy
industry, and frequent atmospheric inversions. We hypothesized stronger spatial contrast in concentrations during hours prone to
atmospheric inversions and heavy traffic, and designed a 2-year monitoring campaign to capture spatial variation in fine particles
(PM2.5) and black carbon (BC). Inversion-focused integrated monitoring (0600–1100 hours) was performed during year 1 (2011–
2012) and compared with 1-week 24-h integrated results from year 2 (2012–2013). To allocate sampling sites, we explored spatial
distributions in key sources (i.e., traffic, industry) and potential modifiers (i.e., elevation) in geographic information systems (GIS),
and allocated 37 sites for spatial and source variability across the metropolitan domain (~388 km2). Land use regression (LUR)
models were developed and compared by pollutant, season, and sampling method. As expected, we found stronger spatial
contrasts in PM2.5 and BC using inversion-focused sampling, suggesting greater differences in peak exposures across urban areas
than is captured by most integrated saturation campaigns. Temporal variability, commercial and industrial land use, PM2.5

emissions, and elevation were significant predictors, but did not more strongly predict concentrations during peak hours.
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INTRODUCTION
In recent years, there have been a number of studies on intra-urban
variation in pollution.1–7 Relatively few of these studies, however,
have examined multiple pollutants, and none, to our knowledge,
have captured spatial variation during selected hours of the
day — such as during rush hours or under temperature inversion
conditions. This spatial variation in “peak” exposures may have
strong bearing for both refined source identification and epide-
miology, as daily maximum exposures may differ substantially
across an urban area, and may be particularly important for
epidemiological studies of acute cardiovascular and respiratory
events.
This gap in the research has been due, in large part, to

limitations in sampling technology, as few land use regression
(LUR) campaigns have been able to employ a fleet of monitors
with the ability for temporally-controlled sampling. Because these
LUR models of fine-scale variability are commonly used to derive
exposure estimates for epidemiology, this sampling methodology
should be well developed, including clear attention to the
selection of sampling intervals (e.g., morning vs afternoon; 24-h
integrated; rush hour vs full day).
Intra-urban air pollution concentrations can vary due to proximity

to industrial sources, traffic density, and other site characteristics,
such as population and land use, and may be modified by elevation
and meteorological factors.3 During temperature inversions,

atmospheric convection and pollutant dispersion may be limited,
intensifying concentrations near sources. Thus, peak (or maximum)
spatial contrasts within urban areas may be expected during
hours of limited atmospheric mixing and significant source activity.
Better understanding these peak exposure contrasts can lead to
better characterization of intra-urban air pollution gradients, source
identification, and assessment of meteorological impacts on urban
concentrations. More recent LURs have used active sampling and
multi-pollutant approaches, often reducing the number of samples
which can be taken concurrently.
Pittsburgh, PA is characterized by complex terrain, periods of

heavy traffic, large industrial sources, and frequent inversion
events.8 This combination of topography, meteorology, and
emission sources results in significant spatial variability in many
pollutant concentrations, including fine particulate matter (PM2.5)
and black carbon (BC). Although regional industrial air pollution
has decreased over recent decades, local emissions inventories
remain dominated by a few large legacy steel mills and coke
works southeast of Pittsburgh (Edgar Thomson Steel Works and
Clairton Coke Works).9–11 Accordingly, Pittsburgh and Allegheny
County remain in federal PM2.5 non-attainment,12,13 as local
regulatory monitors exceed both the average annual (412 μg/m3)
and daily (435 μg/m3) National Ambient Air Quality Standards for
PM2.5.

12 The combination of hills and river valleys, episodes of
traffic congestion, and large legacy industrial sources means that
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temperature inversion events can trap pollutants along the river
valleys, where local industry is concentrated and traffic emissions
can accumulate,8,14 intensifying spatial contrasts in pollutant
concentrations.15,16

An improved understanding of pollution variability across
Pittsburgh, with attention to this complex interplay among
topography, industrial and vehicular sources, and frequent
morning inversions could provide insights and reproducible
models useful in other urban areas.17 In a previous study, we
identified frequent morning temperature inversion events in the
Pittsburgh industrial suburb of Braddock from 0700 to 1000
hours.8 US Environmental Protection Agency (EPA) regulatory data
from multiple stations in Allegheny County suggested increased
PM2.5 concentrations between 0600 and 0700 hours, coinciding
with the start of morning rush-hour traffic.
Here, we employed a series of saturation monitoring campaigns

to characterize intra-urban variability under two different temporal
regimes (inversion-focused and 24-h integrated), using a suite of
programmable monitors to capture spatial variation during
hypothesized peak concentration hours.14 A citywide sampling
design allowed for exploration of mean variation in PM2.5 and BC
concentrations based on spatial, seasonal, and temporal differ-
ences. Seasonal pollutant-specific LUR modeling was applied to
characterize intra-urban variability in air pollution concentrations,
and smooth surface pollutant-specific concentration maps were

created.2,3,18 We hypothesized that inversion-focused sampling
(0600–1100 hours, Monday through Friday) would reveal stronger
spatial contrasts, and stronger impacts of local emissions sources,
than would the 24-h week-long sampling scheme. We anticipated
that PM2.5 and BC concentrations would vary by sampling hours,
elevation, proximity to industry, traffic density, and frequency of
inversion events.

METHODS
Study Design
Sampling site allocation and classification is detailed in Shmool et al.14

Briefly, GIS-based methods were used to quantify spatial distributions of
local pollution sources (i.e., proximity to industry, traffic density) and
potential modifiers (i.e., elevation). These three factors hypothesized to
impact upon local concentrations were dichotomized and cross-stratified
to represent eight different combinations (Figure 1). Regular 100m2 lattice
cells were characterized according to these cross-strata, and sampling
locations (n=37 / year) were systematically allocated by stratified random
sample to capture spatial and source variability across the Pittsburgh
metropolitan area (~388 km2). The reference site, used throughout the
sampling season to assess regional background pollution, was located at
Settlers Cabin Park in Carnegie, PA, approximately 9 miles upwind of the
study area. For comparison, an urban reference site in the community of
Braddock, PA was also sampled every session.

Figure 1. Domain within Allegheny County stratified according to classification system, with monitoring sites. Sites were classified by traffic
density (high vs low), elevation (valley vs non-valley), and proximity to industry (near vs far).
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For each year 1 (inversion-focused monitoring), 5-day (Monday
through Friday) sampling session, samplers operated during 0600–
1100 hours at six randomly-selected sites (25 h of sampling) to capture
hours of frequent atmospheric inversions and heavy traffic, limit of
detection for multiple pollutants. Six sampling sessions were performed
during summer 2011 (July 25 to September 9) with 1 week skipped
for logistical reasons. Sessions were repeated for winter 2012 (January 16
to February 24).
Year 2 (24-h integrated monitoring) sampling methods were similar to

year 1, although samplers operated for an integrated 24-h 7-day sample of
15min per hour (42 h of sampling). One-third of the sites (n= 13) from
inversion-focused sampling were repeated during 24-h sampling, for direct
comparison.14 Year 2 sampling was performed in summer 2012 (June 5 to
July 26) and repeated in winter 2013 (January 8 to March 10), with a total
of eight sites sampled per session. Due to limited equipment availability,
each sampling scheme was performed during a separate year.

Monitoring Instrumentation and Quality Control
Using a temperature (20°C) and relative humidity (35%) controlled glove
box (PlasLabs Model 890 THC), 37 mm Teflon filters (Pall Life Sciences)
were equilibrated for 48 h and then pre-weighed and post-weighed using
an ultramicrobalance (Mettler Toledo Model XP2U). Sampling units were
custom-designed to capture integrated street-level samples of PM2.5;
Harvard Impactors (Air Diagnostics and Engineering) with 37-mm Teflon
filters and a HOBO data logger (Onset Computer Corporation) were
contained in waterproof Pelican cases.19,20 Instruments were programmed
for specific hours of sampling using a chrontroller (ChronTrol Corporation).
A tetraCal volumetric air flow calibrator (BGI Instruments) was used to
calibrate the flow to 4.0 liters/min. A HOBO data logger recorded
temperature and relative humidity at 15-min intervals. All samplers were
deployed on utility poles at a height of 3 m. PM2.5 concentrations were
calculated using presampling and postsampling Teflon net filter weights
and sampling volume. BC was measured (in absorbance units) using an

EEL43M Smokestain Reflectometer (Diffusion Systems) and standard
protocols.21

GIS-based Source Density Indicators
GIS-based covariates were calculated across a range of source indicator
categories (Table 1). All analyses were conducted using ESRI ArcInfo
Version 10 (Redlands, CA, USA), and all covariates summarized within
concentric radial buffers surrounding each monitoring location (50–
1000m). Roadway shapefiles for Allegheny County were obtained from
Pennsylvania Department of Transportation’s (PennDOT) publicly available
annualized average daily vehicle-count data for primary roadways. Traffic
covariates included: mean kernel vehicle density, sum of traffic signaled
intersections, mean density of bus and truck traffic, summed length of
roadway (in feet), and total traffic kernel density (vehicle count). Point
elevation at each monitoring location, and the average elevation within
multiple radial buffers, was assessed using the National Oceanographic
and Atmospheric Digital Elevation Model.22,23 For industrial emissions,
PM2.5 (filterable plus condensable), nitrogen oxides (NOx), sulfur dioxide
(SO2), and volatile organic chemicals (VOCs) were aggregated from the
USEPA’s 2011 National Emissions Inventory (NEI) over a six-county region,
and estimated emissions (tons) were weighted using inverse distance
weighting.24 Total areas of industrial and commercial parcels within
varying buffers were calculated using 2012 assessment data from the
Allegheny County Office of Property Assessments. The locations and areas
of commercial and industrial areas were validated using land use/land
cover data derived from 2000 to 2001 orthophotography. The distance
from, and summed line length of, active railroad was assessed. Census data
from 2011 were obtained at the block group level, to calculate population
density.25

Meteorology
Atmospheric sounding data (i.e., Skew-T diagrams) were used to identify
the presence of temperature inversions during the 0600–1100 sampling

Table 1. GIS-based source density indicators used for LUR modeling.

Source category Covariates examined (50–1000 m concentric radial buffers) Data source

Traffic density indicators Mean density traffic (primary roads)
Mean density traffic (primary and secondary roads)
Number of signaled intersections

Pennsylvania Department of Transportation (PADOT)

Road-specific measures Average daily traffic on nearest primary road
Distance to nearest major road
Summed length of primary roadways
Summed length of primary and secondary roadways

PADOT

Truck, bus, and diesel Mean density of bus traffic
Distance to nearest bus route
Outbound and inbound trip frequency per week summed by route
Mean density of heavy truck traffic on nearest primary roadway

Google Transit (11/11 − 3/12)

PADOT

Population Census population density (blockgroup) US Census Bureau (2010)

Land use/built
environment

Total area of industrial parcels
Total area of commercial parcels
Total area of industrial and commercial parcels
Percent developed imperviousness
Land use/land cover (LULC) urban built-up total area from
orthophotography

Allegheny County Assessment Data, by parcel (2011)

National Land Cover Dataset (NLCD, 2006)
Southwestern Pennsylvania Commission (SPC, 2011)

Industrial emissions Mean density of total PM2.5 emitted per meter
Mean density of total SO2 emitted per meter
Mean density of total NOx emitted per meter
Mean density of total VOCs emitted per meter

National Emissions Inventory (NEI, 2011)

Transportation facilities Distance to nearest active railroad
Summed line length of active railroads
Distance to nearest bus depot

SPC, 2011

Potential modifying factors
Topography Average elevation National Elevation Dataset (NED, 2011)
Meteorology Temperature/relative humidity

Frequency of inversions

Wind direction and wind speed

Obtained from sampler
University of Wyoming, Department of Atmospheric
Science (2011–2012)
National Oceanic and Atmospheric Association (NOAA,
2011–2012)
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hours (year 1) and the 24-h integrated hours (year 2).26 A binary inversion
metric was created in which inversion presence on each sampling day was
determined. Hourly meteorological data (e.g., wind speed, wind direction,
temperature, precipitation, ceiling height) were downloaded from the
National Climate Data Center in TD-3505 (ISHD — full archival) format.
Radiosonde upper air data was collected at the Pittsburgh National
Weather Service station located in Moon Township, PA, approximately
15miles west (upwind by predominant wind direction) of Pittsburgh and
was obtained from the National Oceanic and Atmospheric
Administration.27

Temporal Adjustment
PM2.5 and BC concentrations at distributed monitoring sites were
temporally adjusted using the background reference concentration,
which ran concurrently with all sampling sessions. Because all monitoring
sites could not be sampled in the same week, temporal adjustment
was performed using a reference site, to allow for comparisons between
sites. This adjustment also allows us to assess the temporal contribution in
the LUR models. Temporal adjustment methods and sensitivity tests are
detailed elsewhere14 PM2.5 concentration at a particular monitoring
location was divided by the specific weekly PM2.5 concentration from
the background site then multiplied by the seasonal average PM2.5

concentration from the background site.

Quality Assurance/Quality Control
A seventh monitoring session was performed each season to co-locate
monitors at four randomly-selected sites. Field blanks were deployed
during each session, and all concentrations were blank-corrected.
Hourly PM2.5 concentrations were obtained from Allegheny County Health
Department (ACHD) for the Liberty, Lawrenceville and Avalon
EPA Air Quality System (AQS) monitoring locations. ACHD data were
aggregated to match sampling hours each session, and used as additional
validation sites, to corroborate temporal trends observed at our
background and urban reference sites. BC data was not available from
ACHD monitors.

Statistical Analysis
Descriptive statistics, scatterplots, and histograms were used to chara-
cterize distributions of PM2.5 concentrations and BC absorbance, as
well as spatial covariates (e.g., traffic density, elevation, industrial
emissions) and temporal covariates (temperature, relative humidity,
wind speed, wind direction, frequency of inversions) (Table 2). Before
modeling, bivariate source–pollutant correlation analyses were performed.
Data analysis and model building were performed separately for PM2.5 and
BC and for summer and winter seasons. Statistical analyses were
conducted using the Proc GLM command in SAS version 9.3 (SAS Institute,
Cary, NC, USA).
LUR models were implemented using manual forward step-wise linear

regression to assess raw PM2.5 and BC concentrations for the summer and
winter seasons, using an adapted version of the modeling approach
described in Clougherty et al.19 The full set of source indicator covariates
(Table 1) were tested individually for each pollutant by year and by season.

First, bivariate correlation coefficients (Spearman rho) were examined, and
the two covariates with the highest correlations from each source category
were individually incorporated, ordered by strength of the bivariate
correlation. Temporal trends in PM2.5 and BC were first incorporated
into LUR models using the sampling session-specific background
concentration. Source terms with the strongest univariate correlation with
the temporally-adjusted pollutant were then incorporated individually, in
descending order by strength of the bivariate correlation. Regression
models were sequentially fit to assess overall model improvement at
each stage, using the coefficient of determination (R2) and removing
non-significant covariates in the order of descending P-value, until all
terms were significant (Po0.05). Covariates were removed, at any stage, if
variance inflation factor became 42.0. Finally, we tested modification of
each significant source term effect by inversion frequency, elevation, and
wind speed (median dichotomized).
LUR model residuals were mapped to identify systematic spatial

variation and locations poorly predicted by LUR, suggesting incorporation
of additional covariates (i.e., inverse distance to NEI sites, elevation).
Semivariograms of residuals were created in GIS, and residuals were
mapped against latitude and longitude coordinates (decimal degrees) of
monitoring locations to explore residual patterns. Spatial autocorrelation in
residuals was tested using Moran’s I statistic. For each final model, a spatial
R2 (roughly, the proportion of spatial variance explained by LUR terms) was
derived, using final LUR covariates to predict temporally-adjusted
concentrations.
Predicted PM2.5 concentrations and BC absorbance were mapped across

a regular 100× 100m2 grid, smoothed using inverse distance weighting
(IDW), allowing spatial influence from nearest 100 grid cell centroids.
Isolines were calculated to connect points of equal concentration across
the IDW surfaces, for visualization. Contour intervals of 2 μg/m3 for PM2.5

and 0.5 abs units for BC were selected for display.

Sensitivity Analyses
Covariate selection was sensitivity-tested using scatterplots to assess fit
between each significant predictor and raw pollutant concentrations, to
ensure that candidate covariates selected captured variability across the
range of the data, not reliant on outliers or influential points. Tree
structures and Random Forest automated methods were performed to
corroborate covariate selection. A scatterplot of each retained term was
tested against the residual of the prior model in the sequential model-
building process to check for outliers. Model residuals were examined to
ensure normality. Spatial autocorrelation across the residuals of the
distributed sites was determined using Moran’s I, and spatial correlations
were determined using generalized additive models (GAM) to determine
whether residual smoothing was required.
Sensitivity of the model-building procedure to temporal adjustment was

assessed by comparing two methods (background only vs background and
urban reference site adjustment) and by modeling covariates against
temporally-adjusted pollutant concentrations to determine the percentage
of spatial variation across the eight LUR models. Backwards elimination
from multivariate linear models including all covariates with significant
bivariate correlations with pollutant concentrations further corroborated
model structure and covariate selection. For validation of LUR predictions,
a random 20% of sites (n=7) were removed from the analysis, and the LUR

Table 2. Descriptive statistics for citywide air sampling temporally-adjusted pollutant concentrations and meteorology.

Summer 2011 Winter 2012 Summer 2012 Winter 2013

PM2.5 (mean, SD, min–max μg/m3) 14.35 (SD 3.97)
(1.33–22.71)

12.76 (SD 2.97)
(8.02–20.10)

13.94 (SD 2.01)
(11.26–22.59)

11.26 (SD 2.01)
(8.01–18.92)

BC (mean, SD, min–max abs) 1.64 (SD 0.91)
(0.02–4.64)

1.34 (SD 0.53)
(0.70–2.72)

1.06 (SD 0.36)
(0.61–2.47)

0.93 (SD 0.35)
(0.50–2.15)

Temperature (mean, min–max °F) 69.26 (61.9–78.1) 34.07 (19.8–40.7) 76.99 (70.0–82.0) 34.07 (25.1–44.5)
Relative humidity (mean, min–max %) 85.85 (75.5–98.7) 78.55 (69.5–87.7) 61.59 (46.2–79.2) 72.19 (55.3–85.2)
Wind speed (mean, min–max m/s) 1.79 (1.3–2.2) 3.20 (2.3–3.9) 2.66 (2.2–3.5) 4.21 (3.2–5.0)
Wind direction (percenatge of sessions) 33% W 50% SW 33% NW 33% NW

33% SW 33% W 33% SW 33% W
17% SE 17% N 17% W 33% SW
17% NE 17% S

Inversion presence (percentage of sessions) 50% 2 inversions 50% 3 inversions
33% 3 inversions 33% 4 inversions
17% 1 inversion 17% 2 inversions
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model was re-fit and used to predict pollutant concentrations at withheld
sites. Analyses were performed in SAS, v 9.3, GIS ArcInfo, v 10.1 (ESRI,
Redlands, CA, USA), R statistical software v 2.12.1, and Microsoft Excel 2010.

RESULTS
Inversion-Focused Monitoring (Year 1, Summer 2011/Winter 2012)
Temporally-adjusted PM2.5 concentrations and BC absorbance
were, on average, higher in the summer compared with winter,
using inversion-focused sampling. Regional inversions were
observed on one to three days during each summer session and
on two to four days during each 5-day winter session (Table 2).

24-h Integrated Monitoring (Year 2, Summer 2012/Winter 2013)
Temporally-adjusted PM2.5 concentrations and BC absorbance were,
on average, higher in the summer compared with winter in 24-h
sampling. PM2.5 concentrations and BC absorbance were lower, on
average, using 24-h sampling, compared with inversion-focused
measures, for both summer and winter (Table 2). Differences

between PM2.5 concentrations by sampling scheme were statisti-
cally significant for winter (P=0.04), but not for summer (P=0.70)
(Supplementary Figure S1) We found statistically significant
elevated BC levels for inversion-focused sampling in both the
summer (P=0.002) and winter (P=0.0002) (Supplementary Figure
S2) Greater variability in pollutant concentrations was detected in
the inversion-focused campaigns compared with 24-h integrated
(Figure 2).

Comparison of Repeated Sites
A subset (n= 13) of monitoring sites were sampled using both
sampling regimes, for direct comparability. Temporally-adjusted
PM2.5 concentrations in both seasons were higher under inversion-
focused sampling (summer mean=14.88 (SD=5.04) μg/m3; winter
mean=13.74 (SD=3.37) μg/m3) than for 24-h sampling (summer
mean=14.42 (SD=2.96) μg/m3; winter mean= 11.49 (SD= 2.66)
μg/m3). Greater range of measured concentrations was found
under inversion-focused sampling (Table 2, Figure 2).

Figure 2. Heightened spatial contrasts in temporally adjusted PM2.5 concentrations and BC absorbance were found under inversion-focused
monitoring compared with 24-h integrated. The same pattern was found across repeated sites that were monitored under both sampling
regimes.
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Concentrations were similar using each sampling method at
the background reference site during both seasons (summer
24-h = 11.92 (SD= 3.99) μg/m3 vs summer inversion-focused =
11.91 (SD= 2.22) μg/m3); (winter 24-h = 8.43 (SD= 1.76) μg/m3 vs
winter inversion-focused = 8.64 (SD= 1.73) μg/m3). BC results were
similar to those found for PM2.5 concentrations.

PM2.5 Variability at Reference Sites
Season-specific PM2.5 temporal trends at the background reference
site (Settlers), used for LUR modeling, were corroborated by trends
observed at an urban reference site (Braddock) and by EPA sites
(n=2 for inversion-sampling, n=4 for 24-h sampling) (Figure 3).
Temporal trends from our reference sites and EPA monitoring sites
were similar in both years.

Meteorology
For the specific sampling hours, under both sampling methods,
wind direction was predominantly from the west, and wind speeds
were generally higher during winter than summer (Figure 4). For
summer inversion-focused sampling, session 6 winds were from
the south. Higher variability in wind direction occurred during 24-h
integrated summer sampling, where three sessions had non-
westerly winds. The frequency of inversions within a given
sampling session was not a significant predictor for either pollutant
in any season (P40.05), and likewise an interaction term between
inversion frequency and source terms was not significant.

PM2.5 LUR Modeling
In all season-specific PM2.5 LUR models, a substantial portion of
variability in concentrations was explained by the background
reference site (Table 3). For inversion-focused summer sampling, the

spatial pattern in PM2.5 was predicted by commercial and industrial
land use within a 200-m buffer (Table 3). For 24-h summer sampling,
spatial variance in PM2.5 was predicted by the IDW of PM2.5

emissions and wind direction (interquartile range (IQR) PM2.5

increase of 1.62 μg/m3 with west/northwesterly winds; Table 3,
Figure 5). For inversion-focused winter sampling, the LUR included
land use and average wind speeds (m/s) (−1.89 μg/m3 PM2.5 per unit
(m/s) increase in wind speeds; Table 3). For 24-h winter sampling,
the number of signaled intersections within a 750-m buffer,
industrial PM2.5 emissions, and industrial land use contributed
toward explaining spatial variation in PM2.5 (Table 3; Figure 5).
Although heightened spatial contrasts were seen during

inversion-focused sampling, a greater proportion of variability in
PM2.5 was explained by source terms and meteorology for 24-h
sampling in both seasons (Figure 5). For the summer, the spatial R2

was 0.34 for inversion-focused sampling, notably lower than the R2

of 0.60 for 24-h sampling. During winter, the spatial R2 was also
lower for inversion-focused sampling (0.40), compared with the R2

of 0.56 for 24-h sampling. Specifically, industrial emissions and
wind direction were significant predictors under 24-h sampling
but not under inversion-focused monitoring.

BC LUR Modeling
The weekly temporal term from the background reference site
explained lesser variability in each BC model, relative to PM2.5

models (Table 4). For inversion-focused summer sampling, the
spatial pattern in BC was predicted by industrial land use and
elevation within a 1000-m buffer (an IQR decrease of − 0.58 abs
per unit increase in elevation) (Table 4). For 24-h summer
sampling, BC was predicted by the IDW of PM2.5 emissions,
commercial and industrial land use within a 200-m buffer, and

Figure 3. Temporal trends across reference sites for all sampling seasons.
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wind direction (0.25 abs increase with west/northwesterly winds)
(Table 4; Figure 6).
For inversion-focused winter sampling, industrial land use,

signaled intersections within a 500-m buffer, average wind speed
(m/s) (0.33 abs decrease per unit increase in wind speeds), and
elevation explained spatial variation (Table 4). For 24-h winter
sampling, the final model included the IDW of PM2.5 emissions and
industrial land use (Table 4) (Figure 6). Additional LUR output for
PM2.5 and BC models can be found in Supplementary Tables S1
and S2.
During summer months, a greater percentage of variability was

explained for 24-h sampling. For winter sampling, more variability
was explained under inversion sampling. A greater range of
variability in BC absorbance was observed under the inversion-
focused, vs the 24-h integrated sampling scheme, during both
summer and winter (Figure 6). For summer, the inversion-focused
spatial R2 was 0.51, notably lower than the R2 of 0.70 for 24-h
sampling. During winter, the inversion-focused spatial R2 was
higher (0.75) than for 24-h sampling (0.54).

Sensitivity Analyses
Scatterplots ensured final models were not driven by outliers or
influential points; one influential site was removed from summer
inversion-focused modeling. Tree structures and Random Forest
automated methods were used to confirm covariates that were
incorporated and retained in final models. Moran’s I and GAM
indicated no spatial autocorrelation in the residuals across
distributed monitoring sites. LUR models with temporal adjustment
using the average concentration at both the urban and background
reference sites provided comparable results to models using only
the regional background site concentration. Removal of a random
subset (20%) of monitoring sites did not significantly change any of
the eight models, and predicted concentrations of the withheld
sites were within 10–15% of the measured concentrations.

DISCUSSION
We found significant spatial variability in PM2.5 and BC ambient
concentrations across 37 metropolitan sites under both inversion-

Summer
2011

Winter
2012

Summer
2012

Winter
2013

Year 1: Inversion-focused Year 2: 24-hr Integrated

Figure 4. Wind rose diagrams for summer (top) and winter (bottom) across all hours of sampling.
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focused and 24-h integrated sampling schemes for two summer
and two winter seasons (June 2011 to March 2013). As
hypothesized, the inversion-focused sampling approach revealed
greater spatial contrasts in concentrations across a region of
complex terrain, in both PM2.5 and BC, compared with 24-h
sampling. These differences were greater by sampling scheme

than by season for both pollutants. However, GIS-based source
terms did not explain more concentration variability under the
inversion-focused approach compared with 24-h sampling.
The hours we hypothesized as “peak” exposure hours were

selected based on: (1) morning rush hour congestion, and (2) the
likelihood of inversion presence, based on our previous mobile

Table 3. Land use regression (LUR) covariates and model fits for inversion-focused and 24-h PM2.5.

LUR model

Covariates β (P-value) IQR conc. increase a Seq R2 b

Inversion-focused summer PM2.5 (μg/m
3)c

Intercept − 1.11 (0.48) — —
Weekly reference PM 1.17 (o0.0001) — 0.66
Land use (Com+Ind) at 200m 8.1 × 10− 5 (0.0004) 2.86 0.77

Inversion-focused winter PM2.5 (μg/m
3)

Intercept 9.68 (0.01) — —
Weekly reference PM 0.91 (0.0006) — 0.47
Land use (Com+Ind) at 200m 5.3 × 10− 5 (0.0002) 1.90 0.59
Wind speed (m/s) − 1.89 (0.007) − 0.79 0.68

24-H summer PM2.5 (μg/m
3)

Intercept − 2.44 (0.05) — —
Weekly reference PM 1.20 (o0.0001) — 0.65
IDW of PM2.5 emissions 2.27 (o0.0001) 0.95 0.80
Wind direction
Blowing from NW/W 1.62 (0.0005) 1.62 —
Blowing from SW/S — — 0.86

24-H winter PM2.5 (μg/m
3)

Intercept − 1.61 (0.21) — —
Weekly reference PM 1.26 (o0.0001) — 0.52
Signaled intersections within 750m 0.14 (o0.0001) 0.84 0.63
Land use (industry) at 750 m 5.9 × 10− 6 (0.01) 0.82 0.79
IDW of PM2.5 emissions 1.70 (0.003) 0.71 0.84

aIQR concentration increase= β× IQR of source indicator. bSeq R2 is the sequential model fit for each additional term incorporated into the model. cOne
influential point removed for LUR modeling. Bold values are the percentages of explained pollutant variability according to final LUR models.

Table 4. Land use regression (LUR) covariates and model fits for inversion-focused and 24-h black carbon (BC).

LUR Model

Covariates β (P-value) IQR conc. increasea Seq R2 b

Inversion focused summer BC (abs) c

Intercept 2.18 (0.11) — —
Weekly reference BC 2.53 (0.0007) — 0.26
Land use (industry) at 750m 3.0 × 10− 6 (0.01) 0.41 0.57
Elevation at 1000m − 0.009 (0.01) − 0.58 0.64

Inversion focused winter BC (abs)
Intercept 3.10 (0.12) — —
Weekly reference BC 0.60 (0.82) — 0.04
Land use (industry) at 750m 1.9 × 10−6 (0.0006) 0.26 0.42
Signaled intersections within 500 m 0.05 (0.01) 0.14 0.60
Elevation at 1000m − 0.005 (0.02) − 0.32 0.67
Wind speed (m/s) − 0.30 (0.001) − 0.33 0.76

24-H summer BC (abs)
Intercept − 0.31 (0.36) — —
Weekly reference BC 1.55 (0.01) — 0.12
IDW of PM2.5 emissions 0.36 (o0.0001) 0.15 0.52
Land use (Com+Ind) at 200m 4.5 × 10− 6 (o0.0001) 0.13 0.64
Wind direction
Blowing from NW/W 0.25 (0.001) 0.25 —
Blowing from SW/S — — 0.74

24-H winter BC (abs)
Intercept − 0.09 (0.56) — —
Weekly reference BC 1.31 (o0.0001) — 0.28
IDW of PM2.5 emissions 0.38 (0.001) 0.16 0.61
Land use (industry) at 750m 1.0 × 10−6 (0.02) 0.14 0.67

aIQR concentration increase= β× IQR of source indicator. bSeq R2 is the sequential model fit for each additional term incorporated into the model. cOne
influential point removed for LUR modeling. Bold values are the percentages of explained pollutant variability according to final LUR models.
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monitoring campaign.8 Our results indicate that there is greater
spatial variation in exposures during these hours, which can be
captured using this systematic saturation approach.
PM2.5 temporal trends at our background reference monitor

were consistent with regulatory monitors for both seasons and
years regardless of sampling scheme. Under both sampling
schemes, higher PM2.5 concentrations and BC absorbance were
generally found at sites nearer to industry or at lower elevation
(i.e., in valleys).
PM2.5 models were comparable across seasons, and in the LUR

models, 47 – 66% of the spatial variability in concentrations was
explained by the background reference site, regardless of
sampling method, although GIS-based source terms generally
explained a greater percentage of variability in the 24-h integrated

models. The combination of commercial and industrial parcels
were stronger than commercial or industrial parcels alone,
suggesting higher activity in an area with more traffic and trucks
may lead to heightened pollutant levels. One explanation for
identifying weaker source effects in the “peak” hour models is that
the spatial covariates generally available for LUR represent long-
term source averaging (e.g., annual average emissions or average
daily traffic), and thus may not accurately capture peak
concentrations such as during morning rush hours. Because static
GIS-based covariates may not be sufficient, more sophisticated
covariates such as rush hour traffic information, vehicle fleet
breakdown, or site-specific source dispersion information may
better complement our temporally purposeful sampling scheme.
Relatedly, 7-day samples may be better predicted by annual

Figure 5. Seasonally-averaged predicted PM2.5 exposure surface maps for inversion-focused summer and winter (left) and 24-h integrated
summer and winter (right) sampling. For the 24-h integrated summer PM2.5 map, wind directions were assumed to be W/NW (predominant
wind direction), as a covariate in the LUR model. For the inversion-focused winter PM2.5, wind speeds were averaged across the season for
these specific sampling hours and applied to all sampling locations, as a covariate in the LUR model.
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average covariates (e.g., traffic density) than are 5-day samples–an
effect which is not accounted for by using period-specific
reference site data.
BC models were also generally comparable across seasons, with

less variability explained by the background reference site
(R2 = 0.04 – 0.28) and greater observed local influence of land use,
industrial emissions, and elevation. Number of signaled intersec-
tions was the only traffic indicator found significant in any model
— for winter BC under inversion-focused sampling and for winter
PM2.5 under 24-h sampling. Other studies have found significant
traffic contributions, as total and truck traffic densities were found
for wintertime PM2.5 and BC in the New York City Community Air
Survey (NYCCAS) and traffic density within a 300-m buffer was
found in Los Angeles.14,19

Inversions and Meteorology
Although we found greater differences in concentrations across
sites under inversion-focused sampling, frequency of inversions
was not a significant predictor or source modifier. We previously
found that inversion frequency modified the effect of elevation
but did not remain in final inversion-focused LUR models here.
This may be due to the low inversion variation between sampling
sessions, and high frequency of inversions in our data set —
producing minimal variation across sessions, and making it
difficult to observe effects. In addition, variation in intensity of
inversion events was not captured in our meteorological data —
which may be more important than inversion presence. Finally,
our inversion characterization (based on upwind, regional data

Figure 6. Seasonally-averaged predicted BC exposure surface maps for inversion-focused summer and winter (left) and 24-h integrated
summer and winter (right) sampling. For the 24-h integrated summer BC, wind directions were assumed to be W/NW (predominant wind
direction), as a covariate in the LUR model. For the inversion-focused winter BC, wind speeds were averaged across the season for these
specific sampling hours and applied to all sampling locations, as a covariate in the LUR model.
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from Pittsburgh International Airport) may be incompatible with
fine-scale spatial effects within our domain.
Meteorological factors such as higher temperature and relative

humidity have been found to have a role in higher PM2.5

concentrations in the eastern United States, and although
temperature and relative humidity were collected at each
sampling unit, contemporaneous with sampling events, these
factors were not significant predictors in LUR modeling. Changes
in temperature and relative humidity may be accounted for in the
background temporal term used in the models.28 Given less
spatial variance in PM2.5 across our sites, relative to the temporal
contribution from the upwind reference monitor, this may indicate
a greater relative influence of regional contribution and secondary
formation.

Elevation and Complex Terrain
In our domain, elevation is spatially confounded with pollution
sources, as many industries and highways in our region are
located within the river valleys. Our stratified random sampling
approach was designed to help distinguish these two potentially
important drivers of local concentrations and examine the role
of elevation in trapping pollutants during inversion events
(0600–1100 hours). However, source effects were not significantly
modified by elevation in LUR models. The most significant
elevation covariate was at the largest buffer (1000 m) — possibly
a proxy for low source intensity in locations of complex terrain
(e.g., sharp elevation gradients), rather than hypothesized
topography–meteorology interactions. For BC, the significance of
the elevation term may reflect the influence of local sources
relative to long-range transport, given the lesser amount of
variability explained by the background concentration.

Sampling Density
Our study in Pittsburgh included 37 sampling locations across
388 km2 (a sampling density of 0.10 sites/km2). Although our
domain was large — and included urban, suburban, and semi-
rural sites — our sampling density is within the range of other
LURs. Though some (e.g., NYCCAS) captured 150 sites in a 777 km2

domain (0.19 sites/km2),20 many LURs have been developed from
much sparser data (e.g., in Los Angeles, 23 sampling sites across
98,500 km2 (0.0002 sites/km2), and in Vancouver, 80 sampling sites
across 2199 km2 (0.04 sites/km2)).6,7

Limitations
One key limitation of our study was the logistical inability, due to
equipment availability, to capture inversion-focused and 24-h
integrated samples simultaneously at each site. Nevertheless,
concentrations from the 13 repeated sites were correlated across
years and seasons, reference site data using each method was
consistent with regulatory monitors, and temporal adjustments
explained comparable variability in both years. Data were obtained
from the meteorological station at Pittsburgh International Airport
— rather than within our domain — to assess inversion frequency,
wind speeds, and wind direction across sampling sites. Inversion
presence was assessed as the percentage of days on which an
inversion was detected, although we may have missed some
events, as environmental soundings are collected only twice
per day. The overall high frequency of inversion events resulted in
low variation across sessions and sites. Finally, both “low” and
“high” elevation sites were assigned the same inversion frequency
metric, likely misclassifying inversion presence at sites of very
different elevation. We examined inversion effects separately for
low and high elevation sites, although this analysis may have had
insufficient variation.14

Strengths and Implications
This inversion-focused study allowed us to determine spatial
variation during selected hours of the day (hypothesized frequent
inversion/high source-intensity hours of 0600–1100 hours) —
hours during which we previously detected elevated PM2.5 in a
mobile monitoring campaign in a nearby industrial community.8

Using a unique programmable sampling system and a structured
modeling approach, our results show that local industrial sources
of PM2.5 and elevation were key pollutant predictors during these
inversion-focused hours. The range of meteorological data
examined is a strength of our approach, although hourly
meteorological data, and better measures of inversion intensity
and local mixing height (especially, across complex terrain), would
have improved specificity.
Across the metropolitan sampling domain, summer PM2.5

concentrations and BC absorbance were significantly higher than
winter concentrations under both sampling methods. Inversion-
focused sampling produced greater spatial contrast across sites,
although the source terms in these LUR models did not explain
more variability compared with the 24-h sampling method. These
LUR models will be used to derive exposure estimates for future
local epidemiological studies, to compare the predictive power of
24-h vs “peak” exposure contrasts in explaining chronic disease
outcomes. Our sampling approach could be replicated in other
cities, with an emphasis on attempting to observe greater
pollutant spatial contrast during hypothesized peak hours, which
may be more predictive of some health outcomes.

CONFLICT OF INTEREST
The authors declare no conflict of interest

ACKNOWLEDGEMENTS
This work was supported in part by internal University of Pittsburgh Department of
Environmental and Occupational Health funds and the Heinz Foundation. We thank
Jeff Howell and Rebecca Dalton for field work assistance, Kyra Naumoff Shields for
assistance with sampling permits and other logistics, and John Gorczynski and Holger
Eisl for training on sampling equipment. We also thank the Pittsburgh Department of
Public Works (Alan Asbury and Mike Salem), Parks Department of Allegheny County,
and Duquesne Light Company for monitoring permissions and the Allegheny County
Health Department for regulatory monitoring data and support.

REFERENCES
1 Ryan P.H, LeMasters G.K. A review of land-use regression models for character-

izing intraurban air pollution exposure. Inhal Toxicol 2007; 19(Suppl 1): 127–133.
2 Jerrett M, Burnett RT, Ma R, Pope CA 3rd, Krewski D, Newbold KB et al. Spatial

analysis of air pollution and mortality in Los Angeles. Epidemiology 2005; 16:
727–736.

3 Clougherty JE, Wright RJ, Baxter LK, Levy JI. Land use regression modeling of intra-
urban residential variability in multiple traffic-related air pollutants. Environ Health
2008; 7: 17.

4 Ross Z, English PB, Scalf R, Gunier R, Smorodinsky S, Wall S, Jerrett M. Nitrogen
dioxide prediction in Southern California using land use regression modeling:
potential for environmental health analyses. J Expo Sci Environ Epidemiol 2006; 16:
106–114.

5 Jerrett M, Arain MA, Kanaroglou P, Beckerman B, Crouse D, Gilbert NL. Modeling
the intraurban variability of ambient traffic pollution in Toronto, Canada. J Toxicol
Environ Health A 2007; 70: 200–212.

6 Abernethy RC, Allen RW, McKendry IG, Brauer M. A land use regression model for
ultrafine particles in Vancouver, Canada. Environ Sci Technol 2013; 47: 5217–5225.

7 Moore DK, Jerrett M, Mack WJ, Künzli N. A land use regression model for pre-
dicting ambient fine particulate matter across Los Angeles, CA. J Environ Monit
2007; 9: 246–252.

8 Tunno BJ, Shields KN, Lioy P, Chu N, Kadane JB, Parmanto B et al. Understanding
intra-neighborhood patterns in PM2.5 and PM10 using mobile monitoring in
Braddock, PA. Environ Health 2012; 11: 76.

9 Allegheny County Health Department (ACHD). Air Quality Annual Report for 2011
with 1991-2011 ACHD, Pittsburgh, PA. Trends, 2011.

Spatial variation using inversion-focused and integrated sampling
Tunno et al

375

© 2016 Nature America, Inc. Journal of Exposure Science and Environmental Epidemiology (2016), 365 – 376



10 Lioy P.J, Georgopoulos P.G. New jersey: a case study of the reduction in urban and
suburban air pollution from the 1950s to 2010. Environ Health Perspect 2011; 119:
1351–1355.

11 Dominici F, Peng RD, Zeger SL, White RH, Samet JM. Particulate air pollution and
mortality in the United States: did the risks change from 1987 to 2000? Am J
Epidemiol 2007; 166: 880–888.

12 Environmental Protection Agency (EPA). Area Designations for 2006
Fine Particle (PM2.5) Standards, 2009. 19 July 2012 [cited 6 October 2012];
Available from http://www.epa.gov/pmdesignations/2006standards/final/region3.
htm. EPA, Research Triangle Park, NC.

13 Kelly M, Besselman M Point Source Emission Inventory Report. Allegheny County
Health Department: Pittsburgh, PA, USA, 2007.

14 Shmool J.L et al. Saturation sampling for spatial variation in multiple air pollutants
across an inversion-prone metropolitan area of complex terrain. Environ Health
2014; 13: 28.

15 Wallace J, Kanaroglou P. The effect of temperature inversions on ground-level
nitrogen dioxide (NO2) and fine particulate matter (PM2.5) using temperature
profiles from the Atmospheric Infrared Sounder (AIRS). Sci Total Environ 2009; 407:
5085–5095.

16 Wallace J, Corr D, Kanaroglou P. Topographic and spatial impacts of temperature
inversions on air quality using mobile air pollution surveys. Sci Total Environ 2010;
408: 5086–5096.

17 Basagana X, Aguilera I, Rivera M, Agis D, Foraster M, Marrugat J et al. Measure-
ment error in epidemiologic studies of air pollution based on land-use
regression models. Am J Epidemiol 2013; 178: 1342–1346.

18 Levy JI, Clougherty JE, Baxter LK, Houseman EA, Paciorek CJHEI Health Review
Committee. Evaluating heterogeneity in indoor and outdoor air pollution using
land-use regression and constrained factor analysis. Res Rep Health Eff Inst 2010;
152: 5–80 discussion 81–91.

19 Clougherty JE, Kheirbek I, Eisl HM, Ross Z, Pezeshki G, Gorczynski JE et al. Intra-
urban spatial variability in wintertime street-level concentrations of multiple
combustion-related air pollutants: the New York City Community Air Survey
(NYCCAS). J Expo Sci Environ Epidemiol 2013; 23: 232–240.

20 Matte TD, Ross Z, Kheirbek I, Eisl H, Johnson S, Gorczynski JE, Kass D et al.
Monitoring intraurban spatial patterns of multiple combustion air pollutants in

New York City: design and implementation. J Expo Sci Environ Epidemiol 2013; 23:
223–231.

21 ISO TC 146/SC3., ISO 9835:1993, Ambient air - Determination of a black
smoke index. International Organization for Standardization; Geneva,
Switzerland. 1993.

22 Gesch DB. The National Elevation Dataset. (ed). Maune D 2nd edn.
Digital Elevation Model Technologies and Applications: The DEM Users Manual.
American Society for Photogrammetry and Remote Sensing: Bethesda, Maryland,
USA, 2007.

23 Gesch D, Oimoen M, Greenlee S, Nelson C, Steuck M, Tyler D, The National Ele-
vation Dataset: Photogrammetric Engineering and Remote Sensing. Vol. 68.
American Society for Photogrammetry and Remote Sensing: Bethesda, Maryland,
USA, 2002.

24 EPA. 2011 National Emissions Inventory Data. 28 August 2013 [cited 10 August
2012]; Available from http://www.epa.gov/ttnchie1/net/2008inventory.html.

25 United States Census. 2010 Census Data. 2011; Available from http://www.census.
gov/geo/www/2010census/centerpop2010/blkgrp/CenPop2010_Mean_BG42.txt.

26 University of Wyoming. Environmental Soundings. 2011 [cited 20 March 2012];
Available from http://weather.uwyo.edu/upperair/naconf.html.

27 National Oceanic and Atmospheric Administration (NOAA)National Climatic Data
Center. 2012 [cited 20 March 2012]; Available from http://cdo.ncdc.noaa.gov/pls/
plclimprod/cdomain.selectdataelem?p_nDataSetId = 11&p_cSubQueryBy = STA
TION&p_cPoeOptions = ADVANCED&p_asubqueryitems = 72520094823.

28 Chu N, Kadane J, Davidson C. Using statistical regressions to identify factors
influencing PM2.5 Concentrations: The Pittsburgh supersite as a case study.
Aerosol Sci Technol 2010; 44: 766–774.

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. The images or

other third party material in this article are included in the article’s Creative Commons
license, unless indicatedotherwise in the credit line; if thematerial is not included under
the Creative Commons license, users will need to obtain permission from the license
holder to reproduce the material. To view a copy of this license, visit http://
creativecommons.org/licenses/by-nc-sa/4.0/

Supplementary Information accompanies the paper on the Journal of Exposure Science and Environmental Epidemiology website (http://
www.nature.com/jes)

Spatial variation using inversion-focused and integrated sampling
Tunno et al

376

Journal of Exposure Science and Environmental Epidemiology (2016), 365 – 376 © 2016 Nature America, Inc.

http://www.epa.gov/pmdesignations/2006standards/final/region3.htm
http://www.epa.gov/pmdesignations/2006standards/final/region3.htm
http://www.epa.gov/ttnchie1/net/2008inventory.html
http://www.census.gov/geo/www/2010census/centerpop2010/blkgrp/CenPop2010_Mean_BG42.txt
http://www.census.gov/geo/www/2010census/centerpop2010/blkgrp/CenPop2010_Mean_BG42.txt
http://weather.uwyo.edu/upperair/naconf.html
http://cdo.ncdc.noaa.gov/pls/plclimprod/cdomain.selectdataelem?p_nDataSetId�=�11&amp;p_cSubQueryBy�=�STATION&amp;p_cPoeOptions�=�ADVANCED&amp;p_asubqueryitems�=�72520094823
http://cdo.ncdc.noaa.gov/pls/plclimprod/cdomain.selectdataelem?p_nDataSetId�=�11&amp;p_cSubQueryBy�=�STATION&amp;p_cPoeOptions�=�ADVANCED&amp;p_asubqueryitems�=�72520094823
http://cdo.ncdc.noaa.gov/pls/plclimprod/cdomain.selectdataelem?p_nDataSetId�=�11&amp;p_cSubQueryBy�=�STATION&amp;p_cPoeOptions�=�ADVANCED&amp;p_asubqueryitems�=�72520094823
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

	Spatial variation in inversion-focused vs 24-h integrated samples of PM2.5 and black carbon across Pittsburgh, PA
	INTRODUCTION
	METHODS
	Study Design
	Monitoring Instrumentation and Quality Control
	GIS-based Source Density Indicators
	Meteorology
	Temporal Adjustment
	Quality Assurance/Quality Control
	Statistical Analysis
	Sensitivity Analyses

	RESULTS
	Inversion-Focused Monitoring (Year 1, Summer 2011/Winter 2012)
	24-h Integrated Monitoring (Year 2, Summer 2012/Winter 2013)
	Comparison of Repeated Sites
	PM2.5 Variability at Reference Sites
	Meteorology
	PM2.5 LUR Modeling
	BC LUR Modeling
	Sensitivity Analyses

	DISCUSSION
	Inversions and Meteorology
	Elevation and Complex Terrain
	Sampling Density
	Limitations
	Strengths and Implications

	Acknowledgements
	Note
	References




