Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Urinary polycyclic aromatic hydrocarbon metabolites as biomarkers to woodsmoke exposure — results from a controlled exposure study

Abstract

Woodsmoke contains harmful components — such as fine particulate matter (PM2.5) and polycyclic aromatic hydrocarbons (PAHs) — and impacts more than half of the global population. We investigated urinary hydroxylated PAH metabolites (OH-PAHs) as woodsmoke exposure biomarkers in nine non-smoking volunteers experimentally exposed to a wood fire. Individual urine samples were collected from 24-h before to 48-h after the exposure and personal PM2.5 samples were collected during the 2-h woodsmoke exposure. Concentrations of nine OH-PAHs increased by 1.8–7.2 times within 2.3–19.3 h, and returned to baseline approximately 24 h after the exposure. 2-Naphthol (2-NAP) had the largest post-exposure increase and exhibited a clear excretion pattern in all participants. The level of urinary OH-PAHs, except 1-hydroxypyrene (1-PYR), correlated with those of PM2.5, levoglucosan and PAHs in personal PM2.5 samples. This finding suggests that several urinary OH-PAHs, especially 2-NAP, are potential exposure biomarkers to woodsmoke; by contrast, 1-PYR may not be a suitable biomarker. Compared with levoglucosan and methoxyphenols — two other urinary woodsmoke biomarkers that were measured in the same study and reported previously — OH-PAHs might be better biomarkers based on sensitivity, robustness and stability, particularly under suboptimal sampling and storage conditions, like in epidemiological studies carried out in less developed areas.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Rehfuess E, Mehta S, Pruss-Ustun A . Assessing household solid fuel use: multiple implications for the Millennium Development Goals. Environ Health Perspect 2006; 114: 373–378.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Shah AS, V, Langrish JP, Nair H, McAllister DA, Hunter AL, Donaldson K et al. Global association of air pollution and heart failure: a systematic review and meta-analysis. Lancet 2013; 382: 1039–1048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bell ML, Zanobetti A, Dominici F . Evidence on vulnerability and susceptibility to health risks associated with short-term exposure to particulate matter: a systematic review and meta-analysis. Am J Epidemiol 2013; 178: 865–876.

    Article  PubMed  PubMed Central  Google Scholar 

  4. ATSDR. Toxicological Profile for Polycyclic Aromatic Hydrocarbons. 1995. Available from http://www.atsdr.cdc.gov/toxprofiles/tp69.pdf. Accessed 22 January 2014.

  5. IARC. A review of human carcinogens: chemical agents and related occupations.in IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Volume 100F.Lyon, France. Available from http://monographs.iarc.fr/ENG/Monographs/vol100F/. Accessed 14 June 2014.

  6. Naeher LP, Brauer M, Lipsett M, Zelikoff JT, Simpson CD, Koenig JQ et al. Woodsmoke health effects: A review. Inhal Toxicol 2007; 19: 67–106.

    Article  CAS  PubMed  Google Scholar 

  7. Kurmi OP, Devereux GS, Smith WC, Semple S, Steiner MF, Simkhada P et al. Reduced lung function due to biomass smoke exposure in young adults in rural Nepal. Eur Respir J 2013; 41: 25–30.

    Article  PubMed  Google Scholar 

  8. Kurmi OP, Semple S, Simkhada P, Smith WC, Ayres JG . COPD and chronic bronchitis risk of indoor air pollution from solid fuel: a systematic review and meta-analysis. Thorax 2010; 65: 221–228.

    Article  PubMed  Google Scholar 

  9. Pope DP, Mishra V, Thompson L, Siddiqui AR, Rehfuess EA, Weber M et al. Risk of low birth weight and stillbirth associated with indoor air pollution from solid fuel use in developing countries. Epidemiol Rev 2010; 32: 70–81.

    Article  PubMed  Google Scholar 

  10. Boy E, Bruce N, Delgado H . Birth weight and exposure to kitchen wood smoke during pregnancy in rural Guatemala. Environ Health Perspect 2002; 110: 109–114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ezzati M, Lopez AD, Rodgers A, Vander HS, Murray CJ . Selected major risk factors and global and regional burden of disease. Lancet 2002; 360: 1347–1360.

    Article  PubMed  Google Scholar 

  12. Clark ML, Peel JL, Burch JB, Nelson TL, Robinson MM, Conway S et al. Impact of improved cookstoves on indoor air pollution and adverse health effects among Honduran women. Int J Environ Health Res 2009; 19: 357–368.

    Article  CAS  PubMed  Google Scholar 

  13. Cynthia AA, Edwards RD, Johnson M, Zuk M, Rojas L, Jimenez RD et al. Reduction in personal exposures to particulate matter and carbon monoxide as a result of the installation of a Patsari improved cook stove in Michoacan Mexico. Indoor Air 2008; 18: 93–105.

    Article  CAS  PubMed  Google Scholar 

  14. Rylance J, Gordon SB, Naeher LP, Patel A, Balmes JR, Adetona O et al. Household air pollution: a call for studies into biomarkers of exposure and predictors of respiratory disease. Am J Physiol -Lung Cell Mol Physiol 2013; 304: L571–L578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McCracken JP, Smith KR, Diaz A, Mittleman MA, Schwartz J . Chimney stove intervention to reduce long-term wood smoke exposure lowers blood pressure among Guatemalan women. Environ Health Perspect 2007; 115: 996–1001.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pirkle JL, Needham LL, Sexton K . Improving exposure assessment by monitoring human tissues for toxic chemicals. J Expo Anal Environ Epidemiol 1995; 5: 405–424.

    CAS  PubMed  Google Scholar 

  17. Simpson CD, Naeher LP . Biological monitoring of wood-smoke exposure. Inhal Toxicol 2010; 22: 99–103.

    Article  CAS  PubMed  Google Scholar 

  18. Naeher LP, Barr DB, Adetona O, Simpson CD . Urinary levoglucosan as a biomarker for woodsmoke exposure in wildland firefighters. Int J Occup Environ Health 2013; 19: 304–310.

    Article  CAS  PubMed  Google Scholar 

  19. Bergauff MA, Ward TJ, Noonan CW, Migliaccio CT, Simpson CD, Evanoski AR et al. Urinary levoglucosan as a biomarker of wood smoke: results of human exposure studies. J Expo Sci Environ Epidemiol 2010; 20: 385–392.

    Article  CAS  PubMed  Google Scholar 

  20. Migliaccio CT, Bergauff MA, Palmer CP, Jessop F, Noonan CW, Ward TJ . Urinary levoglucosan as a biomarker of wood smoke exposure: observations in a mouse model and in children. Environ Health Perspect 2009; 117: 74–79.

    Article  CAS  PubMed  Google Scholar 

  21. Dills RL, Zhu X, Kalman DA . Measurement of urinary methoxyphenols and their use for biological monitoring of wood smoke exposure. Environ Res 2001; 85: 145–158.

    Article  CAS  PubMed  Google Scholar 

  22. Li Z, Sandau CD, Romanoff LC, Caudill SP, Sjodin A, Needham LL et al. Concentration and profile of 22 urinary polycyclic aromatic hydrocarbon metabolites in the US population. Environ Res 2008; 107: 320–331.

    Article  CAS  PubMed  Google Scholar 

  23. Health Canada. Second report on human biomonitoring of environmental chemicals in Canada. Results of the Canadian Health Measures Survey Cycle 2 (2009-2011). 2013. Available from www.healthcanada.gc.ca/biomonitoring. Accessed 16 June 2014.

  24. Strickland P, Kang D, Sithisarankul P . Polycyclic aromatic hydrocarbon metabolites in urine as biomarkers of exposure and effect. Environ Health Perspect 1996; 104 (Suppl 5): 927–932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Angerer J, Mannschreck C, Gundel J . Biological monitoring and biochemical effect monitoring of exposure to polycyclic aromatic hydrocarbons. Int Arch Occup Environ Health 1997; 70: 365–377.

    Article  CAS  PubMed  Google Scholar 

  26. Mucha AP, Hryhorczuk D, Serdyuk A, Nakonechny J, Zvinchuk A, Erdal S et al. Urinary 1-hydroxypyrene as a biomarker of PAH exposure in 3-year-old Ukrainian children. Environ Health Perspect 2006; 114: 603–609.

    Article  CAS  PubMed  Google Scholar 

  27. Hansen AM, Mathiesen L, Pedersen M, Knudsen LE . Urinary 1-hydroxypyrene (1-HP) in environmental and occupational studies-A review. Int J Hyg Environ Health 2008; 211: 471–503.

    Article  CAS  PubMed  Google Scholar 

  28. Torres-Dosal A, Perez-Maldonado IN, Jasso-Pineda Y, Salinas RIM, Alegria-Torres JA, Diaz-Barriga F . Indoor air pollution in a Mexican indigenous community: Evaluation of risk reduction program using biomarkers, of exposure and effect. Sci Total Environ 2008; 390: 362–368.

    Article  CAS  PubMed  Google Scholar 

  29. Siwinska E, Mielzynska D, Bubak A, Smolik E . The effect of coal stoves and environmental tobacco smoke on the level of urinary 1-hydroxypyrene. Mutat Res 1999; 445: 147–153.

    Article  CAS  PubMed  Google Scholar 

  30. Li Z, Sjodin A, Romanoff LC, Horton K, Fitzgerald CL, Eppler A et al. Evaluation of exposure reduction to indoor air pollution in stove intervention projects in Peru by urinary biomonitoring of polycyclic aromatic hydrocarbon metabolites. Environ Int 2011; 37: 1157–1163.

    Article  CAS  PubMed  Google Scholar 

  31. Riojas-Rodriguez H, Schilmann A, Marron-Mares AT, Masera O, Li Z, Romanoff L et al. Impact of the improved patsari biomass stove on urinary polycyclic aromatic hydrocarbon biomarkers and carbon monoxide exposures in rural Mexican women. Environ Health Perspect 2011; 119: 1301–1307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dills RL, Paulsen M, Ahmad J, Kalman DA, Elias FN, Simpson CD . Evaluation of urinary methoxyphenols as biomarkers of woodsmoke exposure. Environ Sci Technol 2006; 40: 2163–2170.

    Article  CAS  PubMed  Google Scholar 

  33. Li Z, Romanoff LC, Trinidad DA, Hussain N, Jones RS, Porter EN et al. Measurement of urinary monohydroxy polycyclic aromatic hydrocarbons using automated liquid-liquid extraction and gas chromatography/isotope dilution high-resolution mass spectrometry. Anal Chem 2006; 78: 5744–5751.

    Article  CAS  PubMed  Google Scholar 

  34. Li Z, Romanoff L, Bartell S, Pittman EN, Trinidad DA, McClean M et al. Excretion profiles and half-lives of ten urinary polycyclic aromatic hydrocarbon metabolites after dietary exposure. Chem Res Toxicol 2012; 25: 1452–1461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bartell SM . Bias in half-life estimates using log concentration regression in the presence of background exposures, and potential solutions. J Expo Sci Environ Epidemiol 2012; 22: 299–303.

    Article  CAS  PubMed  Google Scholar 

  36. CDC. National report on human exposure to environmental chemicals, updated tables, August 2014. 2014. Available from http://www.cdc.gov/exposurereport/. Accessed 12 November 2014.

  37. Maroni M, Colosio C, Ferioli A, Fait A . Biological monitoring of pesticide exposure: a review. Toxicology 2000; 143: 5–118.

    Article  CAS  Google Scholar 

  38. Pahari AK, Majumdar S, Mandal TK, Chakraborty AK, Bhattacharyya A, Chowdhury A . Toxico-kinetics, recovery, and metabolism of napropamide in goats following a single high-dose oral administration. J Agric Food Chem 2001; 49: 1817–1824.

    Article  CAS  PubMed  Google Scholar 

  39. Walle T, Gaffney TE . Propranolol metabolism in man and dog: mass spectrometric identification of six new metabolites. J Pharmacol Exp Ther 1972; 182: 83–92.

    CAS  PubMed  Google Scholar 

  40. Preuss R, Angerer J, Drexler H . Naphthalene - an environmental and occupational toxicant. Int Arch Occup Environ Health 2003; 76: 556–576.

    Article  CAS  PubMed  Google Scholar 

  41. Yang M, Koga M, Katoh T, Kawamoto T . A study for the proper application of urinary naphthols, new biomarkers for airborne polycyclic aromatic hydrocarbons. Arch Environ Contam Toxicol 1999; 36: 99–108.

    Article  CAS  PubMed  Google Scholar 

  42. Re-Poppi N, Santiago-Silva M . Polycyclic aromatic hydrocarbons and other selected organic compounds in ambient air of Campo Grande City, Brazil. Atmos Environ 2005; 39: 2839–2850.

    Article  CAS  Google Scholar 

  43. Sitaras IE, Bakeas EB, Siskos PA . Gas/particle partitioning of seven volatile polycyclic aromatic hydrocarbons in a heavy traffic urban area. Sci Total Environ 2004; 327: 249–264.

    Article  CAS  PubMed  Google Scholar 

  44. Akyuz M, Cabuk H . Gas-particle partitioning and seasonal variation of polycyclic aromatic hydrocarbons in the atmosphere of Zonguldak, Turkey. Sci Total Environ 2010; 408: 5550–5558.

    Article  PubMed  Google Scholar 

  45. Li Z, Mulholland JA, Romanoff LC, Pittman EN, Trinidad DA, Lewin MD et al. Assessment of non-occupational exposure to polycyclic aromatic hydrocarbons through personal air sampling and urinary biomonitoring. J Environ Monit 2010; 12: 1110–1118.

    Article  CAS  PubMed  Google Scholar 

  46. Kato M, Loomis D, Brooks LM, Gattas GFJ, Gomes L, Carvalho AB et al. Urinary biomarkers in charcoal workers exposed to wood smoke in Bahia State, Brazil. Cancer Epidemiol Biomarkers Prev 2004; 13: 1005–1012.

    CAS  PubMed  Google Scholar 

  47. Bieniek G . The presence of 1-naphthol in the urine of industrial workers exposed to naphthalene. Occup Environ Med 1994; 51: 357–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. St Helen G, Goniewicz ML, Dempsey D, Wilson M, Jacob P, III, Benowitz NL . Exposure and kinetics of polycyclic aromatic hydrocarbons (PAHs) in cigarette smokers. Chem Res Toxicol 2012; 25: 952–964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sobus JR, Mcclean MD, Herrick RF, Waidyanatha S, Onyemauwa F, Kupper LL et al. Investigation of PAH biomarkers in the urine of workers exposed to hot asphalt. Ann Occup Hyg 2009; 53: 551–560.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Huang W, Smith TJ, Ngo L, Wang T, Chen H, Wu F et al. Characterizing and biological monitoring of polycyclic aromatic hydrocarbons in exposures to diesel exhaust. Environ Sci Technol 2007; 41: 2711–2716.

    Article  CAS  PubMed  Google Scholar 

  51. Brzeznicki S, Jakubowski M, Czerski B . Elimination of 1-hydroxypyrene after human volunteer exposure to polycyclic aromatic hydrocarbons. Int Arch Occup Environ Health 1997; 70: 257–260.

    Article  CAS  PubMed  Google Scholar 

  52. Lafontaine M, Payan JP, Delsaut P, Morele Y . Polycyclic aromatic hydrocarbon exposure in an artificial shooting target factory: assessment of 1-hydroxypyrene urinary excretion as a biological indicator of exposure. Ann Occup Hyg 2000; 44: 89–100.

    Article  CAS  PubMed  Google Scholar 

  53. Needham LL, Barr DB, Calafat AM . Characterizing children's exposures: beyond NHANES. Neurotoxicology 2005; 26: 547–553.

    Article  PubMed  Google Scholar 

  54. Simoneit BRT, Schauer JJ, Nolte CG, Oros DR, Elias VO, Fraser MP et al. Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmos Environ 1999; 33: 173–182.

    Article  CAS  Google Scholar 

  55. Fraser MP, Lakshmanan K . Using levoglucosan as a molecular marker for the long-range transport of biomass combustion aerosols. Environ Sci Technol 2000; 34: 4560–4564.

    Article  CAS  Google Scholar 

  56. Hawthorne SB, Miller DJ, Barkley RM, Krieger MS . Identification of methoxylated phenols as candidate tracers for atmospheric wood smoke pollution. Environ Sci Technol 1988; 22: 1191–1196.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the study participants for their time and devotion, Scott Bartell for the pharmacokinetic model code, and Dan Middleton and Donald Hilton for commenting on the manuscript. This work was funded in part by the National Institute of Occupational Safety and Health (#R03-OH007656). EAR is supported by the National Institute of Environmental Health Sciences (T32ES015459). The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Li.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Journal of Exposure Science and Environmental Epidemiology website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Trinidad, D., Pittman, E. et al. Urinary polycyclic aromatic hydrocarbon metabolites as biomarkers to woodsmoke exposure — results from a controlled exposure study. J Expo Sci Environ Epidemiol 26, 241–248 (2016). https://doi.org/10.1038/jes.2014.94

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jes.2014.94

Keywords

Search

Quick links