Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Calibrating MODIS aerosol optical depth for predicting daily PM2.5 concentrations via statistical downscaling

Abstract

There has been a growing interest in the use of satellite-retrieved aerosol optical depth (AOD) to estimate ambient concentrations of PM2.5 (particulate matter <2.5 μm in aerodynamic diameter). With their broad spatial coverage, satellite data can increase the spatial–temporal availability of air quality data beyond ground monitoring measurements and potentially improve exposure assessment for population-based health studies. This paper describes a statistical downscaling approach that brings together (1) recent advances in PM2.5 land use regression models utilizing AOD and (2) statistical data fusion techniques for combining air quality data sets that have different spatial resolutions. Statistical downscaling assumes the associations between AOD and PM2.5 concentrations to be spatially and temporally dependent and offers two key advantages. First, it enables us to use gridded AOD data to predict PM2.5 concentrations at spatial point locations. Second, the unified hierarchical framework provides straightforward uncertainty quantification in the predicted PM2.5 concentrations. The proposed methodology is applied to a data set of daily AOD values in southeastern United States during the period 2003–2005. Via cross-validation experiments, our model had an out-of-sample prediction R2 of 0.78 and a root mean-squared error (RMSE) of 3.61 μg/m3 between observed and predicted daily PM2.5 concentrations. This corresponds to a 10% decrease in RMSE compared with the same land use regression model without AOD as a predictor. Prediction performances of spatial–temporal interpolations to locations and on days without monitoring PM2.5 measurements were also examined.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. Liu Y, Park R, Li Q, Kilaru V, Sarnat J . Mapping annual mean ground-level PM2.5 concentrations using Multiangle Imaging Spectroradiometer aerosol opitcal thickness over the contiguous United States. J Geophys Res 2004; 109: 3269–3278.

    Google Scholar 

  2. Liu Y, Sarnat J, Kilaru V, Jacob D, Koutrakis P . Estimating ground-level PM2.5 in the eastern United States using satellite remote sensing. Environ Sci Technol 2005; 39: 3269–3278.

    Article  CAS  Google Scholar 

  3. Paciorek CJ, Liu Y, Moreno-Marcias H, Kondragunta S . Spatiotemporal associations between GOES aerosol optical depth retrievals and ground-level PM2.5 . Environ Sci Technol 2008; 42: 5800–5806.

    Article  CAS  Google Scholar 

  4. Paciorek CJ, Liu Y . Limitations of remotely sensed aerosol as a spatial proxy for fine particulate matter. Environ Health Persp 2009; 117: 904–909.

    Article  Google Scholar 

  5. Liu Y, Paciorek CJ, Koutrakis P . Estimating regional spatial and temporal variability of PM2.5 concentrations using satellite data, meteorology, and land use information. Environ Health Persp 2009; 117: 886–892.

    Article  Google Scholar 

  6. Kloog I, Koutrakis P, Coull BA, Lee HJ, Schwartz J . Assessing temporally and spatially resolved PM2.5 exposures for epidemiological studies using satellite aerosol optical depth measurements. Atmos Environ 2011; 45: 6267–6275.

    Article  CAS  Google Scholar 

  7. Lee HJ, Liu Y, Coull BA, Schwartz J, Koutrakis P . A novel calibration approach of MODIS AOD data to predict PM2.5 concentrations. Atmos Chem Phys 2011; 11: 7911–8002.

    Google Scholar 

  8. Franklin M, Zeka A, Schwartz J . Association between and all-cause and specific-cause mortality in 27 US communities. J Expo Sci Environ Epidemiol 2007; 17: 279–287.

    Article  CAS  Google Scholar 

  9. Samet JM, Dominici F, Curriero F, Coursac I, Zeger SL . Particulate air Pollution and mortality in 20 U.S. cities: 1987–1994. New Engl J Med 2000; 343: 1742–1757.

    Article  CAS  Google Scholar 

  10. Dominici F, Peng D, Bell M, Pham M, McDermott A, Zeger SL et al. Fine particulates air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA 2006; 295: 1127–1135.

    Article  CAS  Google Scholar 

  11. Sarnat SE, Klein M, Sarnat JA, Mulholland J, Russell AG, Flanders WD et al. An examination of exposure measurement error from air pollutant spatial variability in time-series studies. J Expo Sci Environ Epidemiol 2010; 20: 135–146.

    Article  CAS  Google Scholar 

  12. Darrow LA, Klein M, Strickland MJ, Mulholland JA, Tolbert PE . Ambient air pollution and birth weight in full-term infants in Atlanta, 1994–2004. Environ Health Persp 2011; 119: 731–737.

    Article  CAS  Google Scholar 

  13. Chang HH, Reich BJ, Miranda ML . Time-to-event analysis of fine particle air pollution and preterm birth: results from North Carolina, 2001–2005. Am J Epidemiol 2012; 175: 91–98.

    Article  Google Scholar 

  14. Kloog I, Coull BA, Zanobetti A, Koutrakis P, Schwartz JD . Acute and chronic effects of particles on hospital admissions in New-England. PLoS One 2012; 7: e34664.

    Article  CAS  Google Scholar 

  15. Koelemeijer R, Homan C, Mattijsen J . Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe. Atmos Environ 2006; 40: 5304–5315.

    Article  CAS  Google Scholar 

  16. Gupta P, Christopher S, Wang J, Gehrig R, Lee Y, Kumar N . Satellite remote sensing of particulate matter and air quality assessment over global cities. Atmos Environ 2006; 40: 5880–5892.

    Article  CAS  Google Scholar 

  17. Brauer M, Amann M, Burnett RT, Cohen A, Dentener F, Ezzati M et al. Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution. Environ Sci Technol 2012; 46: 652–660.

    Article  CAS  Google Scholar 

  18. Berrocal VJ, Gelfand AE, Holland DM . A spatio-temporal downscaler for output from numerical models. J Agric Biol Environ Stat 2010; 15: 176–197.

    Article  Google Scholar 

  19. Berrocal VJ, Gelfand AE, Holland DM . A bivariate space-time downscaler under space and time misalignment. Ann Appl Stat 2010; 4: 1942–1975.

    Article  Google Scholar 

  20. Berrocal VJ, Craigmile PF, Guttorp P . Regional climate model assessment using statistical upscaling and downscaling techniques. Environmetrics 2012; 23: 482–492.

    Article  Google Scholar 

  21. Fuentes M, Raftery AE . Model evaluation and spatial interpolation by Bayesian combination of observations with outputs from numerical models. Biometrics 2005; 61: 36–45.

    Article  Google Scholar 

  22. Paciorek CJ . Combining spatial information sources while accounting for systematic errors in proxies. J Roy Stat Soc C 2012; 61: 429–451.

    Article  Google Scholar 

  23. Gryparis A, Paciorek CJ, Zeka A, Schwartz J, Coull BA . Measurement error caused by spatial misalignment in environmental epidemiology. Biostatistics 2009; 10: 258–274.

    Article  Google Scholar 

  24. Lee D, Shaddick G . Spatial modeling of air pollution in studies of its short-term health effects. Biometrics 2010; 66: 1238–1246.

    Article  CAS  Google Scholar 

  25. Szpiro AA, Sheppard L, Lumley T . Efficient measurement error correction with spatially misaligned data. Biostatistics 2011; 12: 610–623.

    Article  Google Scholar 

  26. Szpiro AA, Paciorek CJ, Sheppard L . Does more accurate exposure prediction necessarily improve health effect estimates? Epidemiology 2011; 22: 680–685.

    Article  Google Scholar 

  27. Levy RC, Remer LA, Dubovik O . Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land. J Geophys Res Atmos 2007; 112: D13210 doi:10.1029/2006JD007815.

    Article  CAS  Google Scholar 

  28. Levy RC, Remer LA, Kleidman RG, Mattoo S, Ichoku C, Kahn R et al. Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmos Chem Phys 2010; 10: 10399–10420.

    Article  CAS  Google Scholar 

  29. Kaufman CG, Schervish MJ, Nychka DW . Covariance tapering for likelihood-based estimation in large spatial datasets. J Am Stat Assoc 2008; 103: 1545–1555.

    Article  CAS  Google Scholar 

  30. Wendland H . Piecewise polynomial, positive definite and compactly supported radial functions of minimal degrees. Adv Comput Math 1995; 4: 389–396.

    Article  Google Scholar 

  31. Chib S, Greenberg E . Understanding the Metropolis-Hastings algorithm. Am Stat 1995; 49: 327–335.

    Google Scholar 

  32. Casella G, George EI . Explaining the Gibbs sampler. Am Stat 1992; 46: 167–174.

    Google Scholar 

  33. R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria. 2012.

  34. Peng RD, Bell ML . Spatial misalignment in time series studies of air pollution and health data. Biostatistics 2010; 11: 393–304.

    Article  Google Scholar 

  35. Chang HH, Peng RD, Dominici F . Estimating the acute health effects of coarse particulate matter accounting for exposure measurement error. Biostatistics 2011; 12: 637–652.

    Article  Google Scholar 

  36. Kumar N, Chu AD, Foster AD, Peters T, Willis R . Satellite remote sensing for developing time and space resolved estimates of ambient particulate in Cleveland, OH. Aerosol Sci Technol 2011; 45: 1090–1108.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was partially supported by the USEPA grant R834799, NIH grant R01ES019897, and NASA grant NNX09AT52G. Its contents are solely the responsibility of the grantee and do not necessarily represent the official views of the USEPA. Further, USEPA does not endorse the purchase of any commercial products or services mentioned in the publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard H Chang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Journal of Exposure Science and Environmental Epidemiology website

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chang, H., Hu, X. & Liu, Y. Calibrating MODIS aerosol optical depth for predicting daily PM2.5 concentrations via statistical downscaling. J Expo Sci Environ Epidemiol 24, 398–404 (2014). https://doi.org/10.1038/jes.2013.90

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jes.2013.90

Keywords

  • empirical/statistical models
  • exposure modeling
  • particulate matter

This article is cited by

Search

Quick links