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An empirical model to estimate daily forest fire smoke
exposure over a large geographic area using air quality,
meteorological, and remote sensing data
Jiayun Yao1 and Sarah B. Henderson1,2

Exposure to forest fire smoke (FFS) is associated with a range of adverse health effects. The British Columbia Asthma Medication
Surveillance (BCAMS) product was developed to detect potential impacts from FFS in British Columbia (BC), Canada. However, it has
been a challenge to estimate FFS exposure with sufficient spatial coverage for the provincial population. We constructed an
empirical model to estimate FFS-related fine particulate matter (PM2.5) for all populated areas of BC using data from the most
extreme FFS days in 2003 through 2012. The input data included PM2.5 measurements on the previous day, remotely sensed
aerosols, remotely sensed fires, hand-drawn tracings of smoke plumes from satellite images, fire danger ratings, and the
atmospheric venting index. The final model explained 71% of the variance in PM2.5 observations. Model performance was tested in
days with high, moderate, and low levels of FFS, resulting in correlations from 0.57 to 0.83. We also developed a method to assign
the model estimates to geographical local health areas for use in BCAMS. The simplicity of the model allows easy application in
time-constrained public health surveillance, and its sufficient spatial coverage suggests utility as an exposure assessment tool for
epidemiologic studies on FFS exposure.
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INTRODUCTION
Forest fire smoke is a complex mixture of gases and solids1 that can
result in episodes of poor air quality at local, regional, and global
scales.2–5 Exposure to forest fire smoke has been associated with a
range of adverse health effects,6 from decreased birth weight7

to premature mortality.8 The most consistent evidence is related
to respiratory outcomes including increases in pharmaceutical
dispensations,9 physician visits,10 emergency room visits,11,12 and
hospital admissions.13,14 Over the past decade, the province of
British Columbia (BC), Canada has experienced four of the worst
wildfire seasons on record,15 partly due to a severe infestation of
mountain pine beetle that has left 170,000 km2 of dead timber as
fuel.16 This, in combination with more severe fire weather as the
global climate changes, means that BC is expecting more intense
and frequent fires in the coming decades.17,18

Public health authorities are aware that forest fire smoke
presents a health risk to the populations under their jurisdiction.
During the extreme fire season of 2010, many of the BC provincial
medical health officers used ad-hoc active surveillance methods
to evaluate the health effects of forest fire smoke within their
communities, including daily phone calls to local emergency
rooms and pharmacies. One mandate of Environmental Health
Services at the BC Center for Disease Control (BCCDC) is to support
these front-line personnel with relevant information and tools. In a
debriefing session following the 2010 fire season, the medical
health officers recommended the development of a province-
wide system for passive surveillance of the health effects

associated with smoke exposure. In 2012, the BCCDC released a
pilot version of the BC Asthma Medication Surveillance (BCAMS)
product, to detect potential impacts from forest fire smoke.19 The
objective of BCAMS is to provide local health authorities with a
product they can use to make evidence-based decisions about
interventions in their communities. The system reports on daily
dispensations of salbutamol sulfate, which is used to relieve acute
symptoms of obstructive lung diseases. Previous work found that
salbutamol dispensations increased rapidly and markedly during
smoke exposure episodes across BC.9 The BCAMS product
reports on salbutamol dispensations in 89 geographic local
health areas (LHAs) and combines this information with daily
PM2.5 measurements, where available. However, less than 50%
of the LHAs are covered by the provincial air quality monitoring
network, and the 2012 product did not include PM2.5

concentrations for LHAs without monitors. The primary objective
of this work was to generate PM2.5 estimates for the vast areas of
the province without PM2.5 measurements.
Forest fires in Canada are typically episodic in both space and

time, which makes it challenging to estimate population smoke
exposure with adequate spatial and temporal resolution. Available
tools include air quality monitors, remote sensing observations,
physical models of smoke behavior, and information about fire
and meteorological conditions. All of these tools have limitations,
and none is the universally accepted ‘‘gold-standard’’ for smoke
exposure assessment. For example, the air quality monito-
ring network measures surface PM2.5, but the data are not
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source-specific, and they have insufficient spatial coverage to
capture smoke exposure for the entire population. On the other
hand, remote sensing observations cover vast geographic areas,
but do not measure surface concentrations and can easily be
obscured by cloud. Here we combine the strengths of multiple
tools to develop an empirical model for estimation of forest fire
smoke-related PM2.5 in areas of BC without air quality monitors.
The input data include PM2.5 measurements, remotely sensed
aerosols, remotely sensed fires, hand-drawn tracings of smoke
plumes from satellite images, fire danger ratings, and the
atmospheric venting index. The model is trained on data from
severe fire periods, and its performance is tested on low,
moderate, and severe fire days by comparing its estimates with
monitoring observations. We also develop a method for assigning
population-based estimates to each LHA for use in the BCAMS
product and for epidemiologic research.

MATERIALS AND METHODS
Study Area and Period
The province of BC (Figure 1) has a population of 4.6 million20 and a total
area of 944,735 km2, approximately two-thirds of which is covered by
forests. In the last decade, an average of 130,782 km2 has been burned
every year.
The study covered fire seasons from 2003 to 2012, and the smoke

exposure assessment model was built with data from days with the most
severe fire activity. These days were identified using the sum of
fire radiative power (FRP) as measured by the Moderate Resolution
Spectroradiometer (MODIS) instruments aboard the Aqua and Terra
satellites. The FRP is proportional to aerosol emissions,21,22 such that
days with the highest sums of FRP indicate the most smoky conditions. The
daily sum of FRP was calculated for the study area (Figure 1) for all
days from April to September for the 2003–2012 period. Data from
days in the 95th percentile were used to train the statistical model. Data
from high, moderate, and low-smoke days were used to evaluate its
performance.

Training and Prediction Cells
Given our objective of estimating the population exposure to smoke-
related PM2.5, only areas where the population resides were included in the
analyses. A grid with a resolution of 5 km� 5 km over the province was
created and overlaid with the locations of all BC communities. Grid cells
that contained one or more communities and their surrounding eight cells

were selected to produce the base grid for the modeling. Herein we refer
to the total of 6033 cells as ‘‘prediction cells’’, and ‘‘training cells’’ refers to
the subset of 70 prediction cells that contained at least one surface PM2.5

monitoring station at some time during the study period (Figure 1). The
number of training cells varied day-by-day over the study period, because
some PM2.5 monitors were added, some were taken offline, and some
failed over short- and long-term periods.

Data
The following paragraphs describe the dependent and independent
variables used to construct the model.

PMlag0 and PMlag1. We retrieved hourly measurements of PM2.5 concen-
trations (in mg/m3) from up to 85 monitoring stations from the BC Ministry
of Environment website (http://envistaweb.env.gov.bc.ca/). Daily averages
were calculated from midnight to midnight, Pacific Standard Time. The
current day average (PMlag0) in each available training cell was used as the
response variable for the regression model, and the previous day average
(PMlag1) was included as one of the potentially predictive variables, based
on previous work.23 If there was more than one functional monitoring
station in a single training cell on a given training day, the one with the
highest PM2.5 concentration was selected to represent the cell. When
the final trained model was applied, each prediction cell was assigned the
PMlag1 value from the nearest monitoring site, with a median distance of
53 km and maximum distance of 645 km.

AOD. We obtained aerosol optical depth (AOD) at a resolution of 10 km
from the National Aeronautics and Space Administration (NASA) (http://
ladsweb.nascom.nasa.gov/data/search.html). The AOD is a unitless mea-
sure of light absorption and extinction in the atmosphere. Several studies
have reported associations between columnar AOD and surface measure-
ments of PM2.5.

24,25 The MODIS instruments overpass most areas of the
Earth four times daily, and all data that wholly or partially covered BC were
downloaded. Because the AOD measurement for a column can be nullified
by the presence of cloud, we assigned the nearest valid AOD value within a
50 km radius, or set the value to null if no valid values were found. A daily
average of assigned AOD values was calculated for each training and
prediction cell.

FRP. We obtained the FRP also detected by MODIS from the Fire
Information Resource management System at NASA. It is one of the
attributes recorded for each fire detected by the instruments, indicating
the rate of energy emitted from the fire in Gigawatts (GW). Each training
and prediction cell was assigned the daily sum of all FRP values within a

Figure 1. Study area and model estimate base grid. Left panel: location of British Columbia in North America, boundary of our model prediction
grid and the boundary within which the sum FRP is calculated to identify days with different intensity of fire activities. Right panel: local health
areas in BC (divided by the gray lines), the model training grid cells (where PM2.5 monitors are located) and prediction grid cells.
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100 km radius. Other radii were tested in the exploratory analyses, and the
100 km was found to be most strongly associated with the PM2.5

measurements.

HMS. The Hazard Mapping System (HMS) provides smoke plume shapes
hand-drawn by trained analysts at the US National Oceanic and
Atmospheric Administration (NOAA), who integrate observations from
seven different satellites.26 All plumes observed within one 24-hour period
during the daytime were dissolved into a single shape showing areas that
had been covered by smoke. Training and prediction cells that had their
centers covered by the plume were assigned a value of 1, otherwise a 0.
Complete HMS data were not available from 2003 to August 2005, but we
included some archived data for the extreme 2003 fire season in the
southern interior of BC.10

FDR. We retrieved daily Fire Danger Rating (FDR) values for 268 stations
across BC from the provincial Wildfire Management Branch. The FDR is a
numeric index between 1 and 5 that indicates the fire risk in an area based
on meteorological conditions, fuel availability, fuel moisture, and other
indicators.27 The FDR from the nearest station was assigned to the training
and prediction cells.

VI. The BC Ministry of Environment and Environment Canada provide
daily forecasts of the venting index (VI) at 29 stations across the province.
The VI ranges from 1 to 100, indicating the potential for the atmosphere to
disperse airborne pollutants, based on the wind speed in the mixed layer
and the thickness of the mixed layer. The VI of the nearest station was
assigned to the training and prediction cells.

Model Fitting, Selection and Evaluation
All data were processed and analyzed in the R statistical computing
environment (R Core Team, Vienna, Austria). First, we used simple linear
regression to assess the associations between the PMlag0 response variable
and the seven potentially predictive covariates (PMlag1, AOD, FRP, HMS,
FDR, and VI) in the training cells. All data were pooled such that each day
of data from each available training cell was treated as independent from
the others in space and time. These assumptions were checked using
mixed-effects models that included random effects for station number and
smoke day; no significant changes to the fixed effects of the covariates
were observed. Next, multiple linear regressions were fitted with all
potentially predictive covariates that were associated with PMlag0 in the

simple linear regressions, using a forward stepwise approach to maximize
the adjusted R-squared (R2) of the model. Given that1 these models will be
used in near-real-time for our surveillance work and2 values for three of the
covariates (AOD, HMS, and VI) were/are sometimes missing, we also fitted
supplemental models without these variables. In preliminary analyses we
found that the highest PMlag0 estimated by the models was 150mg/m3, and
only 12 out of 3305 training observations were in the 150 to 257.8mg/m3

range. Thus, all observed PMlag0 values over 150mg/m
3 were set to 150mg/m3

for fitting the final models.
The overall model performance was evaluated using data in time

periods with different smoke intensity. The percentiles of the log-normally
distributed daily sum of provincial FRP were used to indicate the degree of
smokiness. The predicted PMlag0 values were compared with the observed
PM2.5 concentrations for high, moderate, and low-smoke days in the 95th,
50th–55th, and 5th percentiles of the FRP distribution, respectively.
Because the high-smoke days were used to train the model, we used a
leave-one-out approach to evaluate its performance in this range. Data for
the high-smoke days came from eight years between 2003 and 2012 (there
were no large fires in 2008 and 2011). A model with the variables identified
during the selection process was fitted to all of the data excluding those
from one year, and then used to make predictions for the excluded year.
Basic model evaluation statistics were calculated for each test to assess

the agreement. These included the normalized root mean squared error
(NRMSE) and Pearson’s correlation coefficient (r). The NRMSE is a measure
of the average difference between predictions and observations, with
smaller NRMSE values indicating better prediction accuracy.

Population-Based Exposure Assignment
The BCAMS surveillance system summarizes data aggregated to the LHA
geographic units (Figure 1), so we assigned the exposure estimates from
the model to each LHA based on the spatial distribution of population
within the region. First, estimates were assigned to the geographic centers
of dissemination areas (DAs) from the 2006 census, most of which have a
population of 400–700 persons.28 Population-weighted averages were
calculated using all estimates for the DAs within each LHA boundary,
which ranged from 3 to 474 across the LHAs.

RESULTS
A total of 92 high-smoke days were identified from 2003 to 2012
(Table 1). Most of these days occurred in 2003, 2004, 2009, and
2010, which were also recorded as extreme fire seasons by the
Wildfire Management Branch.15 Province-wide FRP and PM2.5

concentrations varied across the high, moderate, and low-smoke
days (Table 1).
Simple linear regressions between PMlag0 and each of the six

potentially predictive covariates all resulted in significant associa-
tions at the a¼ 0.05 level. The PMlag1 had the highest variance
explained (R2¼ 0.60), followed by AOD (R2¼ 0.23), FRP (R2¼ 0.12),
HMS (R2¼ 0.11), VI (R2¼ 0.03) and FDR (R2¼ 0.02).
The best multiple regression model included all candidate

variables, except the FDR (Table 2). Similar to results of the simple
linear regressions, PMlag1 was the most important variable for
explaining the variance in PM2.5, followed by AOD and FRP. The
model explained a total of 71% variance in the PMlag0 values. The
total number of observations used in the all-variable regression
was 2062, with 1048 observations excluded due to missing values

Table 2. Final model summary.

R2¼ 0.708, n¼ 2062

Coefficient Std. Err t value P Importancea

Intercept � 1.524 0.562 � 2.714 0.007
PMlag1 0.80 0.02 45.4 o0.001 0.62
AOD 10.23 0.53 19.3 o0.001 0.21
FRP 0.14 0.02 9.8 o0.001 0.10
HMS 1.55 0.44 3.5 o0.001 0.06
VI 0.02 0.01 2.5 0.011 0.01

aImportance was calculated as the proportion of variance explained
attributable to the variable (i.e. the partial R2).

Table 1. Summary of province-wide FRP sums and PM2.5 concentrations on high, moderate, and low-smoke days.

Smoke days Sum FRP
percentile

Sum
FRP (GW)

Number of
observations

Monitor PM2.5 (mg/m3)

Min Mean (SD) Max

High 95th Z85.89 3110 0.04 11.44 (17.69) 257.80a

Moderate 50th–55th Z2.86
r3.70

3348 0.06 4.93 (4.95) 140.14

Low 5th r0.013 3776 0.04 3.20 (2.17) 23.98

aConstrained to 150 mg/m3 for model training.
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mainly in AOD, HMS, and VI. To supplement the final model when
missing values occurred, three models excluding one of AOD, HMS
or VI, were developed. These models explained 65%, 69%, and
70% of the variance, respectively.
Fitted values for high-smoke days were calculated from the final

model where possible, and from the supplemental models where
data were missing. When the complete set of estimates was
compared with the observed PM2.5 concentrations in the training
cells, the correlation was 0.84 and the NRMSE was 55.6%. When
estimates omitting one year of data were compared with the
observed PM2.5 concentrations on high-smoke days in the omitted
year, the mean r and NRMSE values across all tests were 0.70% and
84%, respectively. Better performance was generally observed in
years with intense fire seasons (Table 3).
When predicted values for the moderate and low-smoke days

were compared with observed values in the training cells, the
correlations were 0.59 and 0.57, respectively, and the NRMSE
values were 91.8% and 101.7%. The correlations increased and the
error decreased with increasing fire intensity. Scatterplots show
clear differences in modeled and observed PM2.5 across the smoke
day categories (Figure 2).
One day was selected from each of the high, moderate, and

low-fire-smoke groups as an example to show the final output of
model estimates across the prediction cells (Figure 3a). Uncon-
trolled fires were burning in the north and central interior on the
high-smoke day (sum FPR¼ 67.0GW) and the mean estimate was
8.3 mg/m3, with a range from 2.0 to 38.7 mg/m3. Some small fires
were observed in the northeast part of the province on the
moderate-smoke day (sum FRP¼ 3.7GW) and the mean estimate
was 5.6 mg/m3, with a range from 2.2 to 14.3 mg/m3. No fire was
observed on the low-smoke day (sum FRP¼ 0) and the mean
estimate across the province was 4.2 mg/m3, with a range from 1.6
to 11.6 mg/m3. The DA population-weighted average of estimates
for these three days was assigned to each of the LHAs (Figure 3b).
The mean (range) of estimates for the high, moderate, and low-
smoke days for all LHAs was 6.1 (2.1–31.4), 6.0 (2.8–12.9) and 4.1
(2.0–5.9)mg/m3, respectively.

DISCUSSION
Our objective was to model smoke-related PM2.5 concentrations in
populated areas of BC that are not covered by the air quality

monitoring network. We constructed a linear regression model
using multiple sources of data, including PMlag1 monitor
measurements, remotely sensed fire radiative power, aerosol
optical depth, smoke plume images, and a venting index that
indicated pollutant dispersion potential. The final model explained
71% of the variance in the current day PM2.5 measurements.
Comparison between model estimates and monitor observations
suggested good agreement on days with different degrees of
smokiness, with overall correlations from 0.57 to 0.84 and NRMSE
values less than 102%. The results from the leave-one-out
approach indicated better model performance during intense
forest fire seasons.
Our model performs well compared with other existing PM2.5

models optimized for forest fire smoke. Price et al.23 developed an
empirical model for Sydney and Perth, Australia, to estimate
smoke-related PM levels based on FRP, fire danger, measured
PM2.5, and meteorological variables. The best models explained
56% and 31% of the variance in PM2.5 concentrations at Sydney
and Perth, respectively. In addition, our model performance
was comparable with that of physical dispersion models.

Figure 2. Scatterplots of model estimates against monitor
observations.

Table 3. Summary of leave-one-out analyses for high-smoke days,
omitting one year of data from the training model and using the
results to estimate concentrations during the omitted year.

Year omitted Number of
observations omitted

r NRMSE (%)a

2003b 575 0.77 83.2
2004b 337 0.76 74.5
2005 33 0.79 90.1
2006 204 0.82 64.3
2007 39 0.41 131.3
2009b 739 0.69 76.8
2010b 760 0.83 56.1
2012 383 0.56 95.8
Average — 0.70 84.0
None 0 0.84 55.6

Equation 1 NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN

i¼1
ðPi �OiÞ2

q

Omax �Omin
Where N, number of observations/

estimates; Oi, the ith observation from monitor; Pi, the ith estimate from
model; Omax, the maximum value of observations, Omin, the minimum value
of observations.
aNRMSE, normalized root mean squared error.
bYear with intense fire season.

Forest fire smoke exposure modeling
Yao and Henderson

331

& 2014 Nature America, Inc. Journal of Exposure Science and Environmental Epidemiology (2014), 328 – 335



Figure 3. (a) Examples of model estimate outputs. (b) Model estimates assigned to local health areas.
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Smoke-related PM10 (PMo10 micrometer in aerodynamic
diameter) estimated from the CALPUFF model in Henderson
et al.29 had a mean correlation of 0.60 with measured

concentrations, and evaluation of smoke forecasting systems in
Canada and Europe30,31 generally had correlations from 0.29 to 0.5
with PM2.5 observations.
One key difference between our work and that by Price et al. is

that we developed an empirical model for a vast region rather
than a single site. In this model we assumed spatial independence
in the observed data from different sites. To evaluate this
assumption, we calculated the Moran’s I value32 for the mean
regression residuals at the different monitor locations. No
significant spatial autocorrelation was found at the a¼ 0.05 level
(I¼ 0.07, P¼ 0.11), suggesting that most of the spatial pattern in
the PM2.5 measurements was explained by the model variables.
One key similarity between our work and that of Price et al. was
the importance of PMlag1 for the PMlag0 model. Although this is
not a concern for the training cells (all of which contained
monitoring stations), many of the predictions cells are distant from
those monitoring stations (Figure 1). The median distance
between the prediction grids and their nearest monitor was
53 km, with an interquartile range of 22 to 104 km, and a
maximum of 645 km. We chose to retain the PMlag0 variable
despite this limitation because it allows the models to reflect the
known state of province-wide air quality, as observed with a
relatively dense monitoring network. Although estimates for
prediction cells at greater distances from monitoring stations are
likely less accurate than those in closer proximity, inclusion of the
other variables offers an improvement over no data, or use of the
nearest PM2.5 observation alone. On the basis of the training data,
our model explains 71% of the variance, a model with PMlag1

alone explains 60% of the variance, and a model without PMlag1

explains 42% of the variance. To further evaluate the model,
it would be ideal to have field measurements in areas far from
monitors. However, our primary objective was to estimate
population-weighted exposure at the LHA level using DA
centroids, and the median distance between the DA population
centroids and the nearest monitor was only 5 km, with an
interquartile range of 3 to 11 km, so model estimates for grids far
removed from monitors did not have much weight in the final
results. Overall, our model without the PMlag1 is comparable with
other empirical and physical models of forest fire smoke. This
suggests that our methods could be used for similar model
construction in regions with smaller monitoring networks.
One advantage of our model over smoke forecasting tools is

that it captures smoke originating from outside of the modeling
domain. In July 2012, smoke from the massive forest fires in
Siberia was transported across the Pacific to BC, resulting in

Figure 4. Model estimates for fire smoke transported from Siberia in
July 2012.

Figure 5. Example of the side-by-side plot of smoke information in
the 2013 British Columbia Asthma Medication Surveillance (BCAMS)
product. Blue line indicates PM2.5 measurements from monitor
within the local health area, red line and green line indicate the
population-weighted average estimates from the model in this
study and forecasts from the BlueSky system, respectively.
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province-wide air quality degradation for several days, starting on
7 July (Figure 4). According to our model estimates, the Siberian
smoke lingered until 13 July, which is confirmed using news and
BCAMS reports from the period.19

Although our model is optimized to capture the impacts of
forest fire smoke, the inclusion of variables that are not specific to
fire (PMlag0, AOD, and VI) means that it will capture the impacts of
other sources. This is not a concern for the BCAMS application
because any increase in PM2.5 has public health relevance and
may trigger increased salbutamol dispensations. However, this
limitation must be considered when using model estimates for
epidemiologic studies specific to the health impacts of forest fire
smoke. One strategy would be to limit epidemiologic analyses to
smoky days based on the sum of FRP, as previously done by Elliott
et al.9 Alternately, an empirical model that is even more specific to
fire smoke could be developed by adding in further fire-relevant
variables, such as concentrations forecast by physical models. The
BlueSky Western Canada Wildfire Smoke Forecasting System has
been operational since 2010.33 It produces PM2.5 forecasts at a
10 km resolution by inputting smoke emission estimates and
meteorological parameters to the HYSPLIT dispersion model, and
these estimates have been successfully correlated with population
health indicators in BC.31 During the summer of 2013 the BCAMS
product included a side-by-side plot of smoke information from
our model, BlueSky, and provincial PM2.5 monitors. However, we
did not include data from BlueSky in our model because BlueSky is
early in its Canadian development, and data are often missing
when technical changes are implemented (Figure 5). Furthermore,
our surveillance algorithm and epidemiologic studies use data
that start in 2003, and BlueSky has only been operational since
2010, which includes only one intense fire season. As the record of
BlueSky estimates gets longer and more stable, we will explore
their integration into our empirical model. By incorporating
BlueSky and some other data sources of hourly information such
as the AOD measurements from the Geostationary Operational
Environmental Satellite (GOES), it is also possible to refine the
model to estimate hourly PM2.5.
With our methods to assign model estimates by LHA, we are

able to provide improved information on forest fire smoke
exposure in the 2013 version of the BCAMS product (Figure 5).
In addition, with model estimates of a much finer spatial
resolution than many other exposure assessment tools, we are
able to conduct epidemiologic studies with health outcome data
aggregated at a much finer spatial resolution, such as residential
postal codes.
In conclusion, we have developed a smoke-optimized empirical

model that estimates PM2.5 concentrations by combining multiple
data sources that reflect aerosol measurements, fire information,
and atmospheric conditions. Model estimates agreed with PM2.5

observations on high, moderate, and low-smoke days. The spatial
resolution and geographic coverage of the model offers improve-
ments over exposure estimates from the air quality monitoring
network alone. Its simplicity allows easy application in time-
constrained public health surveillance activities, and its coverage
of unmonitored areas suggests utility as an exposure assessment
tool for epidemiologic studies to further investigate the health
effects of forest fire smoke exposure.
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