Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Exposure vs toxicity levels of airborne quartz, metal and carbon particles in cast iron foundries

Abstract

Aerosol dust samples and quartz raw materials from different working stations in foundry plants were characterized in order to assess the health risk in this working environment. Samples were analysed by scanning and transmission electron microscopy coupled with image analysis and microanalysis, and by cathodoluminescence spectroscopy. In addition, the concentration and the solubility degree of Fe and other metals of potential health effect (Mn, Zn and Pb) in the bulk samples were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). Overall, the results indicate substantial changes in quartz crystal structure and texture when passing from the raw material to the airborne dust, which include lattice defects, non-bridging oxygen hole centres and contamination of quartz grains by metal and/or graphite particles. All these aspects point towards the relevance of surface properties on reactivity. Exposure doses have been estimated based on surface area, and compared with threshold levels resulting from toxicology. The possible synergistic effects of concomitant exposure to inhalable magnetite, quartz and/or graphite particles in the same working environment have been properly remarked.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Dutta D, Moudgil BM . Crystalline silica particles mediated lung injury. KONA 2007; 25: 76–87.

    Article  CAS  Google Scholar 

  2. Valavanidis A, Fiotakis K, Vlachogianni T . Airborne particulate matter and human health: toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. J Environ Sci Health C-Envir 2008; 26: 339–362.

    Article  CAS  Google Scholar 

  3. National Occupational Health and Safety Commission. Foundry Health Hazards. Australian Government Publishing Service: Canberra, Australia. 1989.

  4. Bjarnason SG . Toxicology of Chemical Mixtures: A Review of Mixtures Assessment. Technical memorandum (DRDC Suffield TM 2004-016). Defence Research and Development: Suffield, Canada. 2004.

    Google Scholar 

  5. Plumlee GS, Morman SA, Ziegler TL . The toxicological geochemistry of earth materials: an overview of processes and the interdisciplinary methods used to understand them. In: Sahai N, Schoonen M, (eds.). Medical Mineralogy and Geochemistry. Reviews in Mineralogy and Geochemistry Series, Vol. 64, Mineralogical Society of America: Washington, DC, USA. 2006 pp 5–57.

    Chapter  Google Scholar 

  6. Fubini B, Fenoglio I . Toxic potential of mineral dusts. Elements 2007; 3: 407–414.

    Article  CAS  Google Scholar 

  7. Harrison RM, Giorio C, Beddows DCS, Dall’Osto M . Size distribution of airborne particles controls outcome of epidemiological studies. Sci Total Environ 2010; 409: 289–293.

    Article  CAS  Google Scholar 

  8. UNI (Ente Nazionale Italiano di Unificazione) Igiene e sicurezza nel campo della saldatura. Metodi di campionamento ed analisi dei fumi. UNI: Milano, Italy 1991.

  9. Cliff G, Lorimer GW . The quantitative analysis of thin specimens. J Microscopy 1975; 103: 203–207.

    Article  Google Scholar 

  10. Ramseyer K, Baumann J, Matter A, Mullis J . Cathodoluminescence colours of alpha-quartz. Mineral Mag 1988; 52: 669–677.

    Article  CAS  Google Scholar 

  11. Cantone L, Nordio F, Hou L, Apostoli P, Bonzini M, Tarantini L et al Inhalable metal-rich air particles and histone H3K4 dimethylation and H3K9 acetylation in a cross-sectional study of steel workers. Environ Health Perspect 2011; 119: 964–969.

    Article  CAS  Google Scholar 

  12. Palotás ÁB, Rainey LC, Feldermann CJ, Sarofim AF, Vander Sande JB . Soot morphology: an application of image analysis in high-resolution transmission electron microscopy. Microsc Res Tech 1996; 33: 266–278.

    Article  Google Scholar 

  13. Hays MD, Vander Wal RL . Heterogeneous soot nanostructure in atmospheric and combustion source aerosols. Energy Fuels 2007; 21: 801–811.

    Article  CAS  Google Scholar 

  14. Götze J, Plötze M, Habermann D . Origin, special characteristics and practical applications of the cathodoluminescence (CL) of quartz-a review. Miner Petrol 2001; 71: 225–250.

    Article  Google Scholar 

  15. Augustsson C, Bahlburg H . Cathodoluminescence spectra of detrital quartz as provenance indicators for Palaeozoic metasediments in southern Andean Patagonia. J South Am Earth Sci 2003; 16: 15–26.

    Article  Google Scholar 

  16. Ramseyer K, Mullis J . Factors influencing short-lived blue cathodoluminescence of α-quartz. Am Mineral 1990; 75: 791–800.

    CAS  Google Scholar 

  17. Kalceff SMA, Phillips MR . Cathodoluminescence microcharacterization of the defect structure of quartz. Phys Rev 1995; B52: 3122–3134.

    Article  Google Scholar 

  18. Koyama H . Cathodoluminescence study of SiO2 . J Appl Phys 1980; 51: 2228–2235.

    Article  CAS  Google Scholar 

  19. Fubini B, Fenoglio I, Ceschino R, Ghiazza M, Martra G, Tomatis M et al Relationship between the state of the surface of four commercial quartz flours and their biological activity in vitro and in vivo. Int J Hyg Environ Health 2004; 207: 89–104.

    Article  CAS  Google Scholar 

  20. Warheit DB, Webb TR, Colvin VL, Reed KL, Sayes CM . Pulmonary bioassay studies with nanoscale and fine-quartz particles in rats: toxicity is not dependent upon particle size but on surface characteristics. Toxicol Sci 2007; 95: 270–280.

    Article  CAS  Google Scholar 

  21. Lison D, Lardot C, Huaux F, Zanetti G, Fubini B . Influence of particle surface area on the toxicity of insoluble manganese dioxide dusts. Arch Toxicol 1997; 71: 725–729.

    Article  CAS  Google Scholar 

  22. Ghiazza M, Scherbart AM, Fenoglio I, Grendene F, Turci F, Martra G et al Surface iron inhibits quartz-induced cytotoxic and inflammatory responses in alveolar macrophages. Chem Res Toxicol 2011; 24: 99–110.

    Article  CAS  Google Scholar 

  23. Wang Z, Neuburg D, Li C, Su L, Kim JY, Chen JC et al Global gene expression profiling in whole-blood samples from individuals exposed to metal fumes. Environ Health Perspect 2005; 113: 233–241.

    Article  CAS  Google Scholar 

  24. Richardson-Boedler C . Metal passivity as mechanism of metal carcinogenesis: chromium, nickel, iron, copper, cobalt, platinum, molybdenum. Toxicol Environ Chem 2007; 89: 15–70.

    Article  CAS  Google Scholar 

  25. Karlsson HL, Gustafsson J, Cronholm P, Möller L . Size-dependent toxicity of metal oxide particles-a comparison between nano- and micrometer size. Toxicol Lett 2009; 188: 112–118.

    Article  CAS  Google Scholar 

  26. Ankamwar B, Lai TC, Huang JH, Liu RS, Hsiao M, Chen CH et al Biocompatibility of Fe3O4 nanoparticles evaluated by in vitro cytotoxicity assays using normal, glia and breast cancer cells. Nanotechnology 2010; 21: 75102–75110.

    Article  CAS  Google Scholar 

  27. Oteiza PI, Mackenzie GG, Verstraeten SV . Metals in neurodegeneration: involvement of oxidants and oxidant-sensitive transcription factors. Mol Aspects Med 2004; 25: 103–115.

    Article  CAS  Google Scholar 

  28. Aschner M, Lukey B, Tremblay A . The manganese research health program (MHRP): Status report and future research needs and directions. Neurotoxicology 2006; 27: 733–736.

    Article  CAS  Google Scholar 

  29. Karlsson HL, Cronholm P, Gustafsson J, Moller L . Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 2008; 21: 1726–1732.

    Article  CAS  Google Scholar 

  30. Adamson IYR, Prieditis H, Hedgecock C, Vincent R . Zinc is the toxic factor in the lung response to an atmospheric particulate sample. Toxicol Appl Pharmacol 2000; 166: 111–119.

    Article  CAS  Google Scholar 

  31. Xia T, Kovochich M, Liong M, Madler L, Gilbert B, Shi H et al Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2008; 2: 2121–2134.

    Article  CAS  Google Scholar 

  32. Limbach LK, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ . Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 2007; 41: 4158–4163.

    Article  CAS  Google Scholar 

  33. Gilbert SG, Weiss B . A rationale for lowering the blood lead action level from 10–2 μg/dl. Neurotoxicology 2006; 27: 693–701.

    Article  CAS  Google Scholar 

  34. Manikantan P, Balachandar V, Sasikala K . DNA damage in workers occupationally exposed to lead using comet assay. Int J Biol 2010; 2: 103–110.

    Article  CAS  Google Scholar 

  35. Nagy G, Pinter G, Kohut G, Adam AL, Trencsenyi G, Hornok L et al Time-lapse analysis of cell death in mammalian and fungal cells. DNA Cell Biol 2010; 29: 249–259.

    Article  CAS  Google Scholar 

  36. International Agency for Research on Cancer (IARC). Carbon Black, Titanium Dioxide, and Talc. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Vol. 93, IARC: Lyon, France. 2010.

  37. Gardiner K, van Tongeren M, Harrington JM . Respiratory health effects from exposure to carbon black: results of the phase II and III cross-sectional studies in the European carbon black manufacturing industry. Occup Environ Med 2001; 58: 496–503.

    Article  CAS  Google Scholar 

  38. Puntoni R, Ceppi M, Gennaro V, Ugolini D, Puntoni M, La Manna G et al Occupational exposure to carbon black and risk of cancer. Cancer Causes Control 2004; 15: 511–516.

    Article  Google Scholar 

  39. Sager TM, Castranova V . Surface area of particle administered versus mass in determining the pulmonary toxicity of ultrafine and fine carbon black: comparison to ultrafine titanium dioxide. Part Fibre Toxicol 2009; 6: 15.

    Article  Google Scholar 

  40. Araujo JA . Particulate air pollution, systemic oxidative stress, inflammation, and atherosclerosis. Air Qual Atmos Health 2011; 4: 79–93.

    Article  Google Scholar 

  41. Squadrito GL, Cueto R, Dellinger B, Pryor WA . Quinoid redox cycling as a mechanism for sustained free radical generation by inhaled airborne particulate matter. Free Rad Biol Med 2001; 9: 1132–1138.

    Article  Google Scholar 

  42. Castranova V, Vallyathan V, Ramsey DM, McLaurin JL, Pack D, Leonard S et al Augmentation of pulmonary reactions to quartz inhalation by trace amounts of iron-containing particles. Environ Health Perspect 1997; 105: 1319–1324.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Cullen RT, Vallyathan V, Hagen S, Donaldson K . Protection by iron against the toxic effect of quartz. Ann Occup Hyg 1997; 41: 1420–1425.

    Google Scholar 

  44. Linak WP, Yoo J-I, Wasson SJ, Zhu W, Wendt JOL, Huggins FE et al Ultrafine ash aerosols from coal combustion: characterization and health effects. Proc Combust Inst 2007; 31: 1929–1937.

    Article  Google Scholar 

  45. Gminski R, Decker K, Heinz C, Seidel A, Könczöl M, Goldenberg E et al Genotoxic effects of three selected black toner powders and their dimethyl sulfoxide extracts in cultured human epithelial A549 lung cells in vitro. Environ Mol Mutagen 2011; 52: 296–309.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G Vaggelli (Istituto di Geoscienze e Georisorse, University of Torino, Italy) for SEM cathodoluminescence analyses, and S Becagli, R Traversi and R Udisti (Dipartimento di Chimica, University of Firenze) for ICP-AES determinations. Grammar and style check of the manuscript by B Doherty is greatly appreciated. The research was funded by the Istituto Nazionale per l’Assicurazione contro gli Infortuni sul Lavoro (INAIL), and by Regione Umbria (POR UMBRIA FSE 2007-2013 Research Fund).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatrice Moroni.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moroni, B., Viti, C. & Cappelletti, D. Exposure vs toxicity levels of airborne quartz, metal and carbon particles in cast iron foundries. J Expo Sci Environ Epidemiol 24, 42–50 (2014). https://doi.org/10.1038/jes.2013.3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jes.2013.3

Keywords

This article is cited by

Search

Quick links