Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Time series analysis of personal exposure to ambient air pollution and mortality using an exposure simulator

Abstract

This paper describes a modeling framework for estimating the acute effects of personal exposure to ambient air pollution in a time series design. First, a spatial hierarchical model is used to relate Census tract-level daily ambient concentrations and simulated exposures for a subset of the study period. The complete exposure time series is then imputed for risk estimation. Modeling exposure via a statistical model reduces the computational burden associated with simulating personal exposures considerably. This allows us to consider personal exposures at a finer spatial resolution to improve exposure assessment and for a longer study period. The proposed approach is applied to an analysis of fine particulate matter of <2.5 μm in aerodynamic diameter (PM2.5) and daily mortality in the New York City metropolitan area during the period 2001–2005. Personal PM2.5 exposures were simulated from the Stochastic Human Exposure and Dose Simulation. Accounting for exposure uncertainty, the authors estimated a 2.32% (95% posterior interval: 0.68, 3.94) increase in mortality per a 10 μg/m3 increase in personal exposure to PM2.5 from outdoor sources on the previous day. The corresponding estimates per a 10 μg/m3 increase in PM2.5 ambient concentration was 1.13% (95% confidence interval: 0.27, 2.00). The risks of mortality associated with PM2.5 were also higher during the summer months.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1

References

  1. Pope III C.A., and Dockery D.W. Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc 2006: 56: 709–742.

    CAS  Article  Google Scholar 

  2. Gotschi T., Heinrich J., Sunyer J., and Kunzli N. Long-term effects of ambient air pollution on lung function: a review. Epidemiology 2008: 19: 690–701.

    Article  Google Scholar 

  3. Katsouyanni K., Samet J.M., Anderson H.R., Atkinson R., Le Tertre A., and Medina S., et al. Air pollution and health: a European and North American approach (APHENA). Res Rep Health Eff Inst 2009: 142: 5–90.

    CAS  Google Scholar 

  4. Dockery D.W. Health effects of particulate air pollution. Ann Epidemiol 2009: 11: 257–263.

    Article  Google Scholar 

  5. Avery C.L., Mills K.T., Williams R., McGraw K.A., Poole C., and Smith R.L., et al. Estimating error in using ambient PM2.5 concentrations as proxies for personal exposures: a review. Epidemiology 2010: 21: 215–223.

    Article  Google Scholar 

  6. Sarnat J.A., Wilson W.E., Strand M., Brook J., Wyzga R., and Lumley T. Panel discussion review: session 1—exposure assessment and related errors in air pollution epidemiologic studies. J Expo Sci Environ Epidemiol 2007: 17: S75–S82.

    CAS  Article  Google Scholar 

  7. Dominici F., Zeger S.L., and Samet J.M. A measurement error model for time-series studies of air pollution and mortality. Biostatistics 2000: 1: 157–175.

    CAS  Article  Google Scholar 

  8. Janssen N.A., Schwartz J., Zanobetti A., and Suh H.H. Air conditioning and source-specific particles as modifiers of the effects of PM10 on hospital admission for heart and lung disease. Environ Health Perspect 2002: 110: 43–49.

    CAS  Article  Google Scholar 

  9. Bell M.L., Ebisu K., Peng R.D., and Dominici F. Adverse health effects of particulate air pollution: modification by air conditioning. Epidemiology 2009: 20: 682–686.

    Article  Google Scholar 

  10. Ozkaynak H., Xue J., Spengler J., Wallace L., Pellizzari E., and Jenkins P. Personal exposure to airborne particles and metals: results from the Particle TEAM study in Riverside, California. J Expo Anal Environ Epidemiol 1996: 6: 57–78.

    CAS  PubMed  Google Scholar 

  11. Williams R., Suggs J., Creason J., Rodes C., Lawless P., and Kwok R., et al. The 1998 Baltimore Particulate Matter Epidemiology-Exposure Study: part 2. Personal exposure assessment associated with an elderly study population. J Expo Anal Environ Epidemiol 2000a: 10: 533–543.

    CAS  Article  Google Scholar 

  12. Williams R., Suggs J., Zweidinger R., Evans G., Creason J., and Kwok R., et al. The 1998 Baltimore Particulate Matter Epidemiology-Exposure Study: part 1. Comparison of ambient, residential outdoor, indoor and apartment particulate matter monitoring. J Expo Anal Environ Epidemiol 2000b: 10: 518–532.

    CAS  Article  Google Scholar 

  13. McBride S.J., Williams R.W., and Creason J. Bayesian hierarchical modeling of personal exposure to particulate matter. Atmos Environ 2007: 41: 6143–6155.

    CAS  Article  Google Scholar 

  14. McCurdy T., Glen G., Smith L., and Lakkadi Y. The national exposure research laboratory's consolidated human activity database. J Expo Anal Environ Epidemiol 2000: 10: 566–578.

    CAS  Article  Google Scholar 

  15. Zidek J., Shaddick G., White R., Meloche J., and Chat eld C. Using a probabilistic model (pCNEM) to estimate personal exposure to air pollution. Environmetrics 2005: 16: 481–493.

    Article  Google Scholar 

  16. US EPA. Total Risk Integrated Methodology TRIM.Expo Inhalation User's Document Volume I: Air Pollutants Exposure Model (APEX, version 3) User's Guide 2003.

  17. Burke J.M., Zufall M.J., and Ozkaynak H. A population exposure model for particulate matter: case study results for PM2.5 in Philadelphia, PA. J Expo Anal Environ Epidemiol 2001: 11: 470–489.

    CAS  Article  Google Scholar 

  18. Holloman C.H., Bortnick S.M., Morara M., Strauss W.J., and Calder C.A. A Bayesian hierarchical approach for relating PM2.5 exposure to cardiovascular mortality in North Carolina. Environ Health Perspect 2004: 112: 1282–1288.

    CAS  Article  Google Scholar 

  19. Calder C.A., Holloman C.H., Bortnick S., Strauss W., and Morara M. Relating ambient particulate matter concentration levels to mortality using an exposure simulator. J Am Stat Assoc 2008: 103: 137–148.

    CAS  Article  Google Scholar 

  20. Blangiardo M., Hansell A., and Richardson S. A Bayesian model of time activity data to investigate health effect of air pollution in time series studies. Atmos Environ 2011: 45: 379–386.

    CAS  Article  Google Scholar 

  21. Shaddick G., Lee D., Zidek J.V., and Salway R. Estimating exposure response functions using ambient pollution concentrations. Ann App Sta 2008: 2: 1249–1270.

    Article  Google Scholar 

  22. Reich B.J., Fuentes M., and Burke J. Analysis of the effects of ultrafine particulate matter while accounting for human exposure. Environmetrics 2008: 20: 131–136.

    Article  Google Scholar 

  23. Berrocal V.J., Gelfand A.E., Holland D.M., Burke J., and Miranda M.L. On the use of a PM2.5 exposure simulator to explain birthweight. Environmetrics 2011: 22: 553–571.

    Article  Google Scholar 

  24. Long C.M., Suh H.H., and Koutrakis P. Characterization of indoor particle sources using continuous mass and size monitors. J Air Waste Manag Assoc 2000: 50: 1236–1250.

    CAS  Article  Google Scholar 

  25. Ivy D., Mulholland J.A., and Russell A.G. Development of ambient air quality population-weighted metrics for use in time-series health studies. J Air Waste Manag Assoc 2008: 58: 711–720.

    CAS  Article  Google Scholar 

  26. Strickland M.J., Darrow L.A., Mulholland J.A., Klein M., Flanders W.D., and Winquist A., et al. Implications of different approaches for characterizing ambient air pollutant concentrations within the urban airshed for time-series studies and health benefits analyses. Environ Health 2011: 10: 36.

    Article  Google Scholar 

  27. McMillan N.J., Holland D.M., Morara M., and Feng J. Combining numerical model output and particulate data using Bayesian space-time modeling. Environmentrics 2009: 21: 48–65.

    Google Scholar 

  28. Byun D.J., and Schere K.L. Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system. Appl Mech Rev 2006: 59: 51–77.

    Article  Google Scholar 

  29. Cao Y., and Frey H.C. Assessment of inter-individual and geographic variability in human exposure to fine particulate matter in environmental tobacco smoke. Risk Anal 2011a: 31: 578–591.

    Article  Google Scholar 

  30. Cao Y., and Frey H.C. Geographic differences in inter-individual variability of human exposure to fine particulate matter. Atmos Environ 2011b: 45: 5684–5691.

    CAS  Article  Google Scholar 

  31. Liu X., and Frey H.C. Modeling of in-vehicle human exposure to ambient fine particulate matter. Atmos Environ 2011: 45: 4745–4752.

    CAS  Article  Google Scholar 

  32. Koontz M.B., and Rector H.E. Estimation of distribution of residential air exchange rates (Report #600R95180). U.S. Environmental Protection Agency, 1995.

  33. Murray D.M., and Burmaster D.E. Residential air exchange-rates in the United States empirical and estimated parametric distributions by season and climatic region. Risk Anal 1995: 15: 459–465.

    Article  Google Scholar 

  34. Weisel C.P., Zhang J., Turpin B.J., Morandi M.T., Colome S., and Stock T.H., et al. Relationships of Indoor, Outdoor, and Personal Air (RIOPA). Part I. Collection methods and descriptive analyses. Res Rep Health Eff Inst 2005: 130: 1–107; discussion 109–127.

    Google Scholar 

  35. Schwartz J. The distributed lag between air pollution and daily deaths. Epidemiology 2000: 11: 320–326.

    CAS  Article  Google Scholar 

  36. Samet J.M., Dominici F., Curriero F.C., Coursac I., and Zeger S.L. Fine particulate air pollution and mortality in 20 U.S. cities, 1987–1994. N Engl J Med 2000: 343: 1742–1749.

    CAS  Article  Google Scholar 

  37. Peng R.D., and Bell M.L. Spatial misalignment in time series studies of air pollution and health data. Biostatistics 2010: 11: 720–740.

    Article  Google Scholar 

  38. Peng R.D., Dominici F., Pastor-Barriuso R., Zeger S.L., and Samet J.M. Seasonal analyses of air pollution and mortality in 100 US cities. Am J Epidemiol 2005: 161: 585–594.

    Article  Google Scholar 

  39. Mar T.F., Norris G.A., Koenig J.Q., and Larson T.V. Associations between air pollution and mortality in Phoenix, 1995–1997. Environ Health Perspect 2000: 108: 347–353.

    CAS  Article  Google Scholar 

  40. Peng R.D., Belle M.L., Geyh A.S., McDermott A., Zeger S.L., Samet J.M., and Dominici F. Emergency admissions for cardiovascular and respiratory diseases and the chemical composition of fine particle air pollution. Environ Health Perspect 2004: 117: 957–963.

    Article  Google Scholar 

  41. Sheppard L. Acute air pollution effects: consequences of exposure distribution and measurements. J Toxicol Environ Health A 2005: 68: 1127–1135.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The research is supported by Grant DMS-0635449, DMS-0706731, DMS-0706731, DMS-0353029 from the National Science Foundation, US EPA Grant RD-83329201-4, US EPA STAR Research Assistance Agreement No. R833863, and Grant No. 1 R01 ES014843-01A2 from the National Institutes of Health. The authors thank Lucas M Neas and Judy Schmid of the National Health and Environmental Effects Research Laboratory of the US Environmental Protection Agency for providing the mortality data. Janet M Burke and Haluk Ozkaynak of the National Exposure Research Laboratory of the US Environmental Protection Agency provided access to SHEDS-PM and guidance regarding its use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard H Chang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chang, H., Fuentes, M. & Frey, H. Time series analysis of personal exposure to ambient air pollution and mortality using an exposure simulator. J Expo Sci Environ Epidemiol 22, 483–488 (2012). https://doi.org/10.1038/jes.2012.53

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jes.2012.53

Keywords

  • exposure modeling
  • particulate matter
  • time series analysis

This article is cited by

Search

Quick links