Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Polycyclic aromatic hydrocarbon exposure and wheeze in a cohort of children with asthma in Fresno, CA

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are found widely in the ambient air and result from combustion of various fuels and industrial processes. PAHs have been associated with adverse human health effects such as cognitive development, childhood IQ, and respiratory health. The Fresno Asthmatic Children's Environment Study enrolled 315 children aged 6–11 years with asthma in Fresno, CA and followed the cohort from 2000 to 2008. Subjects were evaluated for asthma symptoms in up to three 14-day panels per year. Detailed ambient pollutant concentrations were collected from a central site and outdoor pollutants were measured at 83 homes for at least one 5-day period. Measurements of particle-bound PAHs were used with land-use regression models to estimate individual exposures to PAHs with 4-, 5-, or 6-member rings (PAH456) and phenanthrene for the cohort (approximately 22,000 individual daily estimates). We used a cross-validation-based algorithm for model fitting and a generalized estimated equation approach to account for repeated measures. Multiple lags and moving averages of PAH exposure were associated with increased wheeze for each of the three types of PAH exposure estimates. The odds ratios for asthmatics exposed to PAHs (ng/m3) ranged from 1.01 (95% CI, 1.00–1.02) to 1.10 (95% CI, 1.04–1.17). This trend for increased wheeze persisted among all PAHs measured. Phenanthrene was found to have a higher relative impact on wheeze. These data provide further evidence that PAHs contribute to asthma morbidity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

Abbreviations

AIC:

Akaike information criterion

ARIMA:

Autoregressive Integrated Moving Average

DSA:

Deletion, Substitution, Addition algorithm

EPA:

Environmental Protection Agency

FACES:

Fresno Asthmatic Children's Environment Study

FEF25–75:

forced expiratory flow between 25% and 75% of forced vital capacity

FEV1:

forced expiratory volume in 1 min

GEE:

generalized estimating equation

IgE:

immunoglobulin E

LUR:

land-use regression

PAH:

polycyclic aromatic hydrocarbon

PAH456:

sum of nine polycyclic aromatic hydrocarbons with 4-,5-, or 6-member rings

PM10−2.5:

particulate matter with a diameter between 2.5 and 10 μm

PM2.5:

particulate matter with a diameter smaller than 2.5 μm.

References

  1. National Heart, Lung, and Blood Institute. Morbidity and Mortality. 2009 Chart Book on Cardiovascular, Lung, and Blood Diseases. Bethesda, MD: National Institutes of Health, 2009.

  2. Ma L., Shima M., Yoda Y., Yamamoto H., Nakai S., Tamura K., Nitta H., Watanabe H., and Nishimuta T. Effects of airborne particulate matter on respiratory morbidity in asthmatic children. J Epidemiol 2008: 18 (3): 97–110.

    Article  Google Scholar 

  3. Ward D.J., and Ayres J.G. Particulate air pollution and panel studies in children: a systematic review. Occup Environ Med 2004: 61 (4): e13.

    Article  CAS  Google Scholar 

  4. McConnell R., Islam T., Shankardass K., Jerrett M., Lurmann F., Gilliland F., Gauderman J., Avol E., Kunzli N., Yao L., Peters J., and Berhane K. Childhood incident asthma and traffic-related air pollution at home and school. Environ Health Perspect 2010: 118 (7): 1021–1026.

    Article  CAS  Google Scholar 

  5. Rosenlund M., Berglind N., Pershagen G., Hallqvist J., Jonson T., and Bellander T. Long-term exposure to urban air pollution and myocardial infarction. Epidemiology 2006: 17 (4): 383–390.

    Article  Google Scholar 

  6. Tonne C., Melly S., Mittleman M., Coull B., Goldberg R., and Schwartz J. A case–control analysis of exposure to traffic and acute myocardial infarction. Environ Health Perspect 2007: 115 (1): 53–57.

    Article  CAS  Google Scholar 

  7. Jerrett M., Burnett R.T., Pope C.A. III, Ito K., Thurston G., Krewski D., Shi Y., Calle E., and Thun M. Long-term ozone exposure and mortality. N Engl J Med 2009a: 360 (11): 1085–1095.

    Article  CAS  Google Scholar 

  8. Jerrett M., Finkelstein M.M., Brook J.R., Arain M.A., Kanaroglou P., Stieb D.M., Gilbert N.L., Verma D., Finkelstein N., Chapman K.R., and Sears M.R. A cohort study of traffic-related air pollution and mortality in Toronto, Ontario, Canada. Environ Health Perspect 2009b: 117 (5): 772–777.

    Article  CAS  Google Scholar 

  9. Kunzli N., Kaiser R., Medina S., Studnicka M., Chanel O., Filliger P., Herry M., Horak Jr. F., Puybonnieux-Texier V., Quenel P., Schneider J., Seethaler R., Vergnaud J.C., and Sommer H. Public-health impact of outdoor and traffic-related air pollution: a European assessment. Lancet 2000: 356 (9232): 795–801.

    Article  CAS  Google Scholar 

  10. Health Effects Institutes. HEI Panel on the Health Effects of Traffic-Related Air Pollution Traffic-Related Air Pollution: A Critical Review of the Literature on Emissions, Exposure, and Health Effects. Health Effects Institute, Boston, MA, 2010.

  11. Delfino R.J., Staimer N., Tjoa T., Gillen D.L., Polidori A., Arhami M., Kleinman M.T., Vaziri N.D., Longhurst J., and Sioutas C. Air pollution exposures and circulating biomarkers of effect in a susceptible population: clues to potential causal component mixtures and mechanisms. Environ Health Perspect 2009: 117 (8): 1232–1238.

    Article  CAS  Google Scholar 

  12. Burton A. Children's health: methylation links prenatal PAH exposure to asthma. Environ Health Perspect 2009: 117 (5): A195.

    Article  Google Scholar 

  13. Holgate S.T. Air Pollution and Health. Academic Press, San Diego, CA, 1999, xiv, 1065pp.

    Google Scholar 

  14. Krewski D., Jerrett M., Burnett R.T., Ma R., Hughes E., Shi Y., Turner M.C., Pope C.A. III, Thurston G., Calle E.E., Thun M.J., Beckerman B., DeLuca P., Finkelstein N., Ito K., Moore D.K., Newbold K.B., Ramsay T., Ross Z., Shin H., and Tempalski B. Extended follow-up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality. HEI Research Report 140. Health Effects Institute, Boston, MA.

  15. Pope C.A. III Respiratory disease associated with community air pollution and a steel mill, Utah Valley. Am J Public Health 1989: 79 (5): 623–628.

    Article  Google Scholar 

  16. Perera F.P., Rauh V., Whyatt R.M., Tsai W.Y., Tang D.L., Diaz D., Hoepner L., Barr D., Tu Y.H., Camann D., and Kinney P. Effect of prenatal exposure to airborne polycyclic aromatic hydrocarbons on neurodevelopment in the first 3 years of life among inner-city children. Environ Health Perspect 2006: 114 (8): 1287–1292.

    Article  CAS  Google Scholar 

  17. Perera F.P., Li Z.G., Whyatt R., Hoepner L., Wang S.A., Camann D., and Rauh V. Prenatal airborne polycyclic aromatic hydrocarbon exposure and child IQ at age 5 years. Pediatrics 2009: 124 (2): E195–E202.

    Article  Google Scholar 

  18. Jedrychowski W., Galas A., Pac A., Flak E., Camman D., Rauh V., and Perera F. Prenatal ambient air exposure to polycyclic aromatic hydrocarbons and the occurrence of respiratory symptoms over the first year of life. Eur J Epidemiol 2005: 20 (9): 775–782.

    Article  CAS  Google Scholar 

  19. Delfino R.J. Epidemiologic evidence for asthma and exposure to air toxics: linkages between occupational, indoor, and community air pollution research. Environ Health Perspect 2002: 110 (Suppl 4): 573–589.

    Article  CAS  Google Scholar 

  20. Jedrychowski W., Perera F.P., Whyatt R., Mroz E., Flak E., Jacek R., Penar A., Spengler J., and Camman D. Wheezing and lung function measured in subjects exposed to various levels of fine particles and polycyclic aromatic hydrocarbons. Central Eur J Med 2007: 2 (1): 66–78.

    Google Scholar 

  21. Tsien A., DiazSanchez D., Ma J., and Saxon A. The organic component of diesel exhaust particles and phenanthrene, a major polyaromatic hydrocarbon constituent, enhances IgE production by IgE-secreting EBV-transformed human B cells in vitro. Toxicol Appl Pharmacol 1997: 142 (2): 256–263.

    Article  CAS  Google Scholar 

  22. Nel A.E., Diaz-Sanchez D., Ng D., Hiura T., and Saxon A. Enhancement of allergic inflammation by the interaction between diesel exhaust particles and the immune system. J Allergy Clin Immunol 1998: 102 (4): 539–554.

    Article  CAS  Google Scholar 

  23. Lubitz S., Schober W., Pusch G., Effner R., Klopp N., Behrendt H., and Buters J.T.M. Polycyclic aromatic hydrocarbons from diesel emissions exert proallergic effects in birch pollen allergic individuals through enhanced mediator release from basophils. Environ Toxicol 2010: 25 (2): 188–197.

    CAS  PubMed  Google Scholar 

  24. Nel A.E., Diaz-Sanchez D., and Li N. The role of particulate pollutants in pulmonary inflammation and asthma: evidence for the involvement of organic chemicals and oxidative stress. Curr Opin Pulm Med 2001: 7 (1): 20–26.

    Article  CAS  Google Scholar 

  25. Li N., Sioutas C., Cho A., Schmitz D., Misra C., Sempf J., Wang M., Oberley T., Froines J., and Nel A. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 2003: 111 (4): 455–460.

    Article  CAS  Google Scholar 

  26. Wilson J.G., Kingham S., Pearce J., and Sturman A.P. A review of intraurban variations in particulate air pollution: Implications for epidemiological research. Atmos Environ 2005: 39 (34): 6444–6462.

    Article  CAS  Google Scholar 

  27. Lehndorff E., and Schwark L. Biomonitoring of air quality in the Cologne Conurbation using pine needles as a passive sampler — Part II: polycyclic aromatic hydrocarbons (PAH). Atmos Environ 2004: 38 (23): 3793–3808.

    Article  CAS  Google Scholar 

  28. Levy J.I., Houseman E.A., Spengler J.D., Loh P., and Ryan L. Fine particulate matter and polycyclic aromatic hydrocarbon concentration patterns in Roxbury, Massachusetts: a community-based GIS analysis. Environ Health Perspect 2001: 109 (4): 341–347.

    Article  CAS  Google Scholar 

  29. Briggs D.J., de Hoogh C., Guiliver J., Wills J., Elliott P., Kingham S., and Smallbone K. A regression-based method for mapping traffic-related air pollution: application and testing in four contrasting urban environments. Sci Total Environ 2000: 253 (1–3): 151–167.

    Article  CAS  Google Scholar 

  30. Mann J.K., Balmes J.R., Bruckner T.A., Mortimer K.M., Margolis H.G., Pratt B., Hammond S.K., Lurmann F., and Tager I.B. Short-term effects of air pollution on wheeze in asthmatic children in Fresno, California. Environ Health Perspect 2010: 118 (10): 1497–1502.

    Article  CAS  Google Scholar 

  31. Margolis H.G., Mann J.K., Lurmann F.W., Mortimer K.M., Balmes J.R., Hammond S.K., and Tager I.B. Altered pulmonary function in children with asthma associated with highway traffic near residence. Int J Environ Health Res 2009: 19 (2): 139–155.

    Article  Google Scholar 

  32. Tager I.B., Lurmann F.W., Haight T., Alcorn S., Penfold B., and Hammond S.K. Temporal and spatial patterns of ambient endotoxin concentrations in Fresno, California. Environ Health Perspect 2010.

  33. Noth E.M., Hammond S.K., Biging G.S., and Tager I.B. A spatial-temporal regression model to predict daily outdoor residential PAH concentrations in an epidemiologic study in Fresno, CA. Atmos Environ 2011: 45 (14): 2394–2403.

    Article  CAS  Google Scholar 

  34. Pleil J.D., Sobus J.R., Madden M.C., Funk W.E., Hubbard H.F., and Rappaport S.M. Identification of surrogate measures of diesel exhaust exposure in a Controlled Chamber Study. Environ Sci Technol 2008: 42 (23): 8822–8828.

    Article  Google Scholar 

  35. Wilson J.G., and Zawar-Reza P. Intraurban-scale dispersion modelling of particulate matter concentrations: applications for exposure estimates in cohort studies. Atmos Environ 2006: 40 (6): 1053–1063.

    Article  Google Scholar 

  36. Sinisi S.E., and van der Laan M.J. Deletion/substitution/addition algorithm in learning with applications in genomics. Stat Appl Genet Mol Biol 2004: 3; Article18.

  37. van der Laan M.J., and Robins J.M. Unified Methods for Censored Longitudinal Data and Causality. Springer, New York, NY, 2002.

    Google Scholar 

  38. Schauer J.J., and Cass G.R. Source apportionment of wintertime gas-phase and particle-phase air pollutants using organic compounds as tracers. Environ Sci Technol 2000: 34 (9): 1821–1832.

    Article  CAS  Google Scholar 

  39. Box G., Jenkins G., and Reinsel G. Time Series Analysis, Forecastings and Control, 3rd edn Prentice-Hall, Englewood Cliffs, NJ, 1994.

    Google Scholar 

  40. Sioutas C., Delfino R.J., and Singh M. Exposure assessment for atmospheric ultrafine particles (UFPs) and implications in epidemiologic research. Environ Health Perspect 2005: 113 (8): 947–955.

    Article  Google Scholar 

  41. Miller R.L., Garfinkel R., Horton M., Camann D., Perera F.P., Whyatt R.M., and Kinney P.L. Polycyclic aromatic hydrocarbons, environmental tobacco smoke, and respiratory symptoms in an inner-city birth cohort. Chest 2004: 126 (4): 1071–1078.

    Article  CAS  Google Scholar 

  42. Salam M.T., Lin P.C., Avol E.L., Gauderman W.J., and Gilliland F.D. Microsomal epoxide hydrolase, glutathione S-transferase P1, traffic and childhood asthma. Thorax 2007: 62 (12): 1050–1057.

    Article  Google Scholar 

  43. Nadeau K.C., McDonald-Hyman C., Noth E.M., Pratt B., Hammond S.K., Balmes J.R., and Tager I.B. Ambient air pollution impairs T-cell function in asthma. J Allergy Clin Immunol 2010: 126 (4): 845–852.

    Article  CAS  Google Scholar 

  44. Baccarelli A., Wright R.O., Bollati V., Tarantini L., Litonjua A.A., Suh H.H., Zanobetti A., Sparrow D., Vokonas P.S., and Schwartz J. Rapid DNA methylation changes after exposure to traffic particles. Am J Resp Crit Care Med 2009: 179 (7): 572–578.

    Article  CAS  Google Scholar 

  45. Marr L.C., Kirchstetter T.W., Harley R.A., Miguel A.H., Hering S.V., and Hammond S.K. Characterization of polycyclic aromatic hydrocarbons in motor vehicle fuels and exhaust emissions. Environ Sci Technol 1999: 33 (18): 3091–3099.

    Article  CAS  Google Scholar 

  46. Chen L.W.A., Watson J.G., Chow J.C., and Magliano K.L. Quantifying PM2.5 source contributions for the San Joaquin Valley with multivariate receptor models. Environ Sci Technol 2007: 41 (8): 2818–2826.

    Article  CAS  Google Scholar 

  47. Chow J.C., Watson J.G., Lowenthal D.H., Chen L.W.A., Zielinska B., Mazzoleni L.R., and Magliano K.L. Evaluation of organic markers for chemical mass balance source apportionment at the Fresno Supersite. Atmos Chem Phys 2007: 7 (7): 1741–1754.

    Article  CAS  Google Scholar 

  48. Berkson J. Are there 2 regressions. J Am Stat Assoc 1950: 45 (250): 164–180.

    Article  Google Scholar 

  49. Knuiman M.W., Divitini M.L., Buzas J.S., and Fitzgerald P.E. Adjustment for regression dilution in epidemiological regression analyses. Ann Epidemiol 1998: 8 (1): 56–63.

    Article  CAS  Google Scholar 

  50. Zeger S.L., Thomas D., Dominici F., Samet J.M., Schwartz J., Dockery D., and Cohen A. Exposure measurement error in time-series studies of air pollution: concepts and consequences. Environ Health Perspect 2000: 108 (5): 419–426.

    Article  CAS  Google Scholar 

  51. Szpiro A.A., Paciorek C.J., and Sheppard L. Does more accurate exposure prediction necessarily improve health effect estimates? Epidemiology (Cambridge, MA) 2011: 22 (5): 680–685.

    Article  Google Scholar 

  52. Johnson M., Isakov V., Touma J.S., Mukerjee S., and Ozkaynak H. Evaluation of land-use regression models used to predict air quality concentrations in an urban area. Atmos Environ 2010: 44 (30): 3660–3668.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Boriana Pratt for data management and programming and the FACES team of investigators and field staff. We thank Fred Lurmann and colleagues at Sonoma Technology for the exposure assessment. This work was supported by California Air Resources Board Contract Nos. 99-322, 99-323, and -01-346, Division of Lung Diseases, National Heart Lung and Blood Institute Grant No. R01 HL081521, Mickey Leland National Urban Air Toxics Research Program, and RFA 2005-01 US Environmental Protection Agency Office of Transportation and Air Quality (P.O. No. 2A-0540-NASX).

Disclaimer

We declare no competing financial interests for this work. The statements and conclusions in this article are those of the author and not necessarily those of the California Air Resources Board. The mention of commercial products, their source, or their use in connection with material reported herein is not to be construed as actual or implied endorsement of such products. The research described in this article was funded by the Mickey Leland National Urban Air Toxics Research Center (NUATRC), an organization jointly funded by the United States Environmental Protection Agency and private industry sponsors. The contents of this article do not necessarily reflect the views of NUATRC, or its sponsors, nor do they necessarily reflect the views and policies of the EPA or any of the private industry sponsors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara L Gale.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Journal of Exposure Science and Environmental Epidemiology website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gale, S., Noth, E., Mann, J. et al. Polycyclic aromatic hydrocarbon exposure and wheeze in a cohort of children with asthma in Fresno, CA. J Expo Sci Environ Epidemiol 22, 386–392 (2012). https://doi.org/10.1038/jes.2012.29

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jes.2012.29

Keywords

This article is cited by

Search

Quick links