Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Ultrafine particle levels at an international port of entry between the US and Mexico: Exposure implications for users, workers, and neighbors

Abstract

Exposure to diesel-emitted particles has been linked to increased cancer risk and cardiopulmonary diseases. Because of their size (<100 nm), exposure to ultrafine particles (UFPs) emitted from heavy-duty diesel vehicles (HDDV) might result in greater health risks than those associated with larger particles. Seasonal UFP levels at the International Bridge of the Americas, which connects the US and Mexico and has high HDDV traffic demands, were characterized. Hourly average UFP concentrations ranged between 1.7 × 103/cc and 2.9 × 105/cc with a mean of 3.5 × 104/cc. Wind speeds <2 m s−1 and temperatures <15 °C were associated with particle number concentrations above normal conditions. The presence of HDDV had the strongest impact on local UFP levels. Varying particle size distributions were associated with south- and northbound HDDV traffic. Peak exposure occurred on weekday afternoons. Although in winter, high exposure episodes were also observed in the morning. Particle number concentrations were estimated to reach background levels at 400 m away from traffic. The populations exposed to UFP above background levels include law enforcement officers, street vendors, private commuters, and commercial vehicle drivers as well as neighbors on both sides of the border, including a church and several schools.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. McClellan RO . Health effects of exposure to diesel exhaust particles. Annu Rev Pharmacol Toxicol 1987; 27: 279–300.

    Article  CAS  PubMed  Google Scholar 

  2. Diaz-Sanchez D . The role of diesel exhaust particles and their associated polyaromatic hydrocarbons in the induction of allergic airway disease. Allergy 1997; 52: 52–56 discussion 57–8.

    Article  CAS  PubMed  Google Scholar 

  3. Diaz-Sanchez D, Garcia MP, Wang M, Jyrala M, Saxon A . Nasal challenge with diesel exhaust particles can induce sensitization to a neoallergen in the human mucosa. J Allergy Clin Immunol 1999; 104: 1183–1188.

    Article  CAS  PubMed  Google Scholar 

  4. Diaz-Sanchez D, Penichet-Garcia M, Saxon A . Diesel exhaust particles directly induce activated mast cells to degranulate and increase histamine levels and symptom severity. J Allergy Clin Immunol 2000; 106: 1140–1146.

    Article  CAS  PubMed  Google Scholar 

  5. Diaz-Sanchez D, Jyrala M, Ng D, Nel A, Saxon A . In vivo nasal challenge with diesel exhaust particles enhances expression of the CC chemokines rantes, MIP-1alpha, and MCP-3 in humans. Clin Immunol 2000; 97: 140–145.

    Article  CAS  PubMed  Google Scholar 

  6. Kagawa J . Health effects of diesel exhaust emissions—a mixture of air pollutants of worldwide concern. Toxicology 2002; 181-182: 349–353.

    Article  CAS  PubMed  Google Scholar 

  7. Baulig A, Garlatti M, Bonvallot V, Marchand A, Barouki R, Marano F et al. Involvement of reactive oxygen species in the metabolic pathways triggered by diesel exhaust particles in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2003; 285: L671–L679.

    Article  CAS  PubMed  Google Scholar 

  8. Lewtas J . Air pollution combustion emissions: characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects. Mutat Res-Rev Mutat Res 2007; 636: 95–133.

    Article  CAS  Google Scholar 

  9. Garshick E, Laden F, Hart JE, Rosner B, Davis ME, Eisen EA et al. Lung cancer and vehicle exhaust in trucking industry workers. Environ Health Perspect 2008; 116: 1327–1332.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Holder AL, Lucas D, Goth-Goldstein R, Koshland CP . Cellular response to diesel exhaust particles strongly depends on the exposure method. Toxicol Sci 2007; 103: 108–115.

    Article  Google Scholar 

  11. Møller P, Folkmann JK, Forchhammer L, Bräuner EV, Danielsen PH, Risom L et al. Air pollution, oxidative damage to DNA, and carcinogenesis. Cancer Lett 2008; 266: 84–97.

    Article  PubMed  Google Scholar 

  12. USEPA. Health assessment document for diesel engine exhaust, 1000 2002.

  13. Ris C . U.S. EPA Health Assessment for diesel engine exhaust: a review. Inhal Toxicol 2007; 19: 229–239.

    Article  CAS  PubMed  Google Scholar 

  14. World Health Organization. IARC: Diesel Engine Exhaust Carcinogenic. Lyon, France. 2012 Accessed on June 22, 2012 from http://www.press.iarc.fr/pr213_E.pdf.

  15. Oberdorster G, Gelein RM, Ferin J, Weiss B . Association of particulate air pollution and acute mortality: involvement of ultrafine particles? Inhal Toxicol 1995; 7: 111–124.

    Article  CAS  PubMed  Google Scholar 

  16. MacNee W, Donaldson K . Exacerbations of COPD: environmental mechanisms. Chest 2000; 117: 390S–397SS.

    Article  CAS  PubMed  Google Scholar 

  17. Ibald-Mulli A, Wichmann H-E, Kreyling W, Peters A . Epidemiological evidence on health effects of ultrafine particles. J Aerosol Med 2002; 15: 189–201.

    Article  CAS  PubMed  Google Scholar 

  18. Berry JP, Arnoux B, Stanislas G, Galle P, Chretien J . A microanalytic study of particles transport across the alveoli: role of blood platelets. Biomedicine 1977; 27: 354–357.

    CAS  PubMed  Google Scholar 

  19. Oberdörster G . Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Environ Health 2001; 74: 1–8.

    Article  PubMed  Google Scholar 

  20. Kreyling WG, Semmler M, Erbe F, Mayer P, Takenaka S, Schulz H et al. Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health Part A 2002; 65: 1513–1530.

    Article  CAS  Google Scholar 

  21. Nemmar A, Hoylaerts MF, Hoet PH, Dinsdale D, Smith T, Xu H et al. Ultrafine particles affect experimental thrombosis in an in vivo hamster model. Am J Respir Crit Care Med 2002; 166: 998–1004.

    Article  PubMed  Google Scholar 

  22. Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Lunts A et al. Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxicol Environ Health Part A 2002; 65: 1531–1543.

    Article  Google Scholar 

  23. Prahalad AK, Soukup JM, Inmon J, Willis R, Ghio AJ, Becker S et al. Ambient air particles: effects on cellular oxidant radical generation in relation to particulate elemental chemistry. Toxicol Appl Pharmacol 1999; 158: 81–91.

    Article  CAS  PubMed  Google Scholar 

  24. Dockery DW, Luttmann-Gibson H, Rich DQ, Link MS, Mittleman MA, Gold DR et al. Association of air pollution with increased incidence of ventricular tachyarrhythmias recorded by implanted cardioverter defibrillators. Environ Health Perspect 2005; 113: 670–674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Park SK, O'Neill MS, Vokonas PS, Sparrow D, Schwartz J . Effects of air pollution on heart rate variability: the VA normative aging study. Environ Health Perspect 2005; 113: 304–309.

    Article  PubMed  Google Scholar 

  26. Morawska L, Ristovski Z, Jayaratne ER, Keogh DU, Ling X . Ambient nano and ultrafine particles from motor vehicle emissions: characteristics, ambient processing and implications on human exposure. Atmos Environ 2008; 42: 8113–8138.

    Article  CAS  Google Scholar 

  27. El Paso Metropolitan Planning Office. El Paso Border Improvement Plan. El Paso MPO 2006; 1: 1–123.

    Google Scholar 

  28. Lund AK, Lucero J, Harman M, Madden MC, McDonald JD, Seagrave JC et al. The oxidized low-density lipoprotein receptor mediates vascular effects of inhaled vehicle emissions. Am J Respir Crit Care Med 2011; 184: 82–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Campen MJ, Lund AK, Knuckles TL, Conklin DJ, Bishop B, Young D et al. Inhaled diesel emissions alter atherosclerotic plaque composition in ApoE−/− mice. Toxicol Appl Pharmacol 2010; 242: 310–317.

    Article  CAS  PubMed  Google Scholar 

  30. Lund AK, Lucero J, Lucas S, Madden MC, McDonald JD, Seagrave JC et al. Vehicular emissions induce vascular MMP-9 expression and activity associated with endothelin-1-mediated pathways. Arterioscler Thromb Vasc Biol 2009; 29: 511–517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Olvera HA, Li W-W, Garcia H . Air Quality Characterization at the International Bridge of the Americas. Project No. A-08-4. Editor; Southwest Consortium for Environmental Research and Policy: San Diego, CA. 2011.

    Google Scholar 

  32. Zietsman J, Villa JC, Forrest TL, Storey JM . Mexican Truck Idling Emissions at the El Paso-Ciudad Juarez Border 2005.

  33. Briggs D, Collins S, Elliot P, Fischer P, Kingham S, Lebret E et al. Mapping urban air pollution using GIS: a regression-based approach. Int J Geogr Inf Sci 1997; 11: 699–718.

    Article  Google Scholar 

  34. Brauer M, Hoek G, van Vliet P, Meliefste K, Fischer P, Gehring U et al. Estimating long-term average particulate air pollution concentrations: application of traffic indicators and geographic information systems. Epidemiology 2003; 14: 228–239.

    PubMed  Google Scholar 

  35. Morgenstern V, Zutavern A, Cyrys J, Brockow I, Gehring U, Koletzko S et al. Respiratory health and individual estimated exposure to traffic-related air pollutants in a cohort of young children. Occup Environ Med 2007; 64: 8–16.

    Article  CAS  PubMed  Google Scholar 

  36. T Jolliffe I . Principal component analysis 2002; 487.

  37. TSI. Aerosol Instrument Manager 2006, 1–113 Accessed on July 3, 2012 from: at http://www.tsi.com/uploadedFiles/Product.../1930038G-AIM-SMPS.pdf.

  38. Janhall S, Olofson KFG, Andersson PU, Pettersson JBC, Hallquist M . Evolution of the urban aerosol during winter temperature inversion episodes. Atmos Environ 2006; 40: 5355–5366.

    Article  Google Scholar 

  39. Zhu Y, Hinds WC, Krudysz M, Kuhn T, Froines J, Sioutas C . Penetration of freeway ultrafine particles into indoor environments. J Aerosol Sci 2005; 36: 303–322.

    Article  CAS  Google Scholar 

  40. Zhu Y, Hinds W, Kim S, Sioutas C . Concentration and size distribution of ultrafine particles near a major highway. J Air Waste Manage Assoc 2002; 52: 1032–1042.

    Article  Google Scholar 

  41. Kittelson DB, Watts WF, Johnson JP . Fine particle (nanoparticle) emissions on Minnesota highways. Minnesota Department of Transportation. 2001; 75.

    Google Scholar 

  42. Olivares G, Johansson C, Ström J, Hansson H-C . The role of ambient temperature for particle number concentrations in a street canyon. Atmos Environ 2007; 41: 2145–2155.

    Article  CAS  Google Scholar 

  43. Seigneur C . Current Understanding of ultra fine particulate matter. Coordinating Research Council, Report-CRC-A66 2008; 1: 1–41.

    Google Scholar 

  44. Hinds WC . Aerosol Technology. Wiley-Interscience. 1999.

    Google Scholar 

  45. Zhu Y, Kuhn T, Mayo P, Hinds WC . Comparison of daytime and nighttime concentration profiles and size distributions of ultrafine particles near a major highway. Environ Sci Technol 2006; 40: 2531–2536.

    Article  CAS  PubMed  Google Scholar 

  46. Janhäll S, Jonsson ÅM, Molnár P, Svensson EA, Hallquist M . Size resolved traffic emission factors of submicrometer particles. Atmos Environ 2004; 38: 4331–4340.

    Article  Google Scholar 

  47. Nelson PRC, Taylor PA, MacGregor JF . Missing data methods in PCA and PLS: score calculations with incomplete observations. Chemometr Intell Lab Syst 1996; 35: 45–65.

    Article  CAS  Google Scholar 

  48. Zhu Y, Hinds W, Kim S, Shen S, Sioutas C . Study of ultrafine particles near a major highway with heavy-duty diesel traffic. Atmos Environ 2002; 36: 4323–4335.

    Article  CAS  Google Scholar 

  49. Franklin LM, Bika AS, Watts WF, Kittelson DB . Comparison of water and butanol based CPCs for examining diesel combustion aerosols. Aerosol Sci Tech 2010; 44: 629–638.

    Article  CAS  Google Scholar 

  50. Wang J, Storey J, Domingo N, Huff S, Thomas J, West B . Studies of diesel engine particle emissions during transient operations using an engine exhaust particle sizer. Aerosol Sci Tech 2006; 40: 1002–1015.

    Article  CAS  Google Scholar 

  51. Zhu Y, Eiguren-Fernandez A, Hinds WC, Miguel AH . In-cabin commuter exposure to ultrafine particles on Los Angeles freeways. Environ Sci Technol 2007; 41: 2138–2145.

    Article  CAS  PubMed  Google Scholar 

  52. Cheng Y-H, Huang C-H, Huang H-L, Tsai C-J . Concentrations of ultrafine particles at a highway toll collection booth and exposure implications for toll collectors. Sci Total Environ 2010; 409: 364–369.

    Article  CAS  PubMed  Google Scholar 

  53. Wheatley ADA, Sadhra SS . Occupational exposure to diesel exhaust fumes. Ann Occup Hyg 2004; 48: 369–376.

    CAS  PubMed  Google Scholar 

  54. Wake D, Mark D, Northage C . Ultrafine aerosols in the workplace. Ann Occup Hyg 2002; 46: 235–238.

    Google Scholar 

  55. Noble C, Mukerjee S, Gonzales M, Rodes CE, Lawless PA, Natarajan S et al. Continuous measurement of fine and ultrafine particulate matter, criteria pollutants and meteorological conditions in urban El Paso, Texas. Atmos Environ 2003; 37: 827–840.

    Article  CAS  Google Scholar 

  56. Reponen T, Grinshpun SA, Trakumas S, Martuzevicius D, Wang Z-M, LeMasters G et al. Concentration gradient patterns of aerosol particles near interstate highways in the Greater Cincinatti airshed. J. Environ Monit 2003; 5: 557–562.

    Article  CAS  PubMed  Google Scholar 

  57. Zhang Q, Zhu Y . Measurements of ultrafine particles and other vehicular pollutants inside school buses in South Texas. Atmos Environ 2010; 44: 253–261.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by Award Number A-08-4 from the Southwest Consortium For Environmental Research and Policy, by Award Number 3P20MD002287-05S1 from the National Institute on Minority Health and Health Disparities and the Environmental Protection Agency, and by Award Number S11 ES013339 from the National Institute of Environmental Health Sciences (NIEHS). The content is solely the responsibility of the authors and does not necessarily represent the official views of the Hispanic Health Disparities Research Center, the National Institute on Minority Health and Health Disparities or the National Institutes of Health, or the Environmental Protection Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hector A Olvera.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olvera, H., Lopez, M., Guerrero, V. et al. Ultrafine particle levels at an international port of entry between the US and Mexico: Exposure implications for users, workers, and neighbors. J Expo Sci Environ Epidemiol 23, 289–298 (2013). https://doi.org/10.1038/jes.2012.119

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jes.2012.119

Keywords

This article is cited by

Search

Quick links