Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Residential insecticide usage in northern California homes with young children

Abstract

Residential insecticide usage and actual application details were collected in a population-based sample of 477 households residing within 22 counties in northern California with at least one child of age 5 years between January 2006 and August 2008. Structured telephone interviews were conducted collecting information on residential use of insecticides, including outdoor sprays, indoor sprays, indoor foggers, applications by professionals, and pet flea/tick control during the previous year. Interviews also covered post-treatment behaviors, which influence post-application exposure levels. Altogether, 80% of the households applied some type of insecticide in the previous year, with half of this population using two or more application methods. Of the households using insecticides, half reported applying insecticides relatively infrequently (<4 times per year), whereas 11–13% reported high frequency of use (>24 times per year). Application frequency was temperature dependent, with significantly more applications during the warmer months from May through October. Spot treatments appeared to be the most prevalent application pattern for sprays. For one out of three of the indoor applications, children played in the treated rooms on the day of the application, and for 40% of the outdoor applications, pets played in the treated area on the day of the application. These findings describing the intensity of insecticide use and accompanying behaviors in families with young children may inform future insecticide exposure modeling efforts, and ultimately, risk assessments.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2

References

  • Adgate J.L., Kukowski A., Stroebel C., Shubat P.J., Morrell S., Quackenboss J.J., Whitmore R.W., and Sexton K. Pesticide storage and use patterns in Minnesota households with children. J Expo Anal Env Epid 2000: 10 (2): 159–167.

    CAS  Article  Google Scholar 

  • Alavanja M.C.R., Hoppin J.A., and Kamel F. Health effects of chronic pesticide exposure: Cancer and neurotoxicity. Annu Rev Publ Health 2004: 25: 155–197.

    Article  Google Scholar 

  • Arbuckle T.E., and Sever L.E. Pesticide exposures and fetal death: a review of the epidemiologic literature. Crit Rev Toxicol 1998: 28 (3): 229–270.

    CAS  Article  Google Scholar 

  • Berger-Preiβ E., Preiβ A., Sielaff K., Raabe M., Ilgen B., and Levsen K. The behaviour of pyrethroids indoors: a Model Study. Indoor Air 1997: 7: 248–261.

    Article  Google Scholar 

  • Byrne S.L., Shurdut B.A., and Saunders D.G. Potential chlorpyrifos exposure to residents following standard crack and crevice treatment. Environ Health Persp 1998: 106 (11): 725–731.

    CAS  Article  Google Scholar 

  • Cohen-Hubal E.A., Sheldon L.S., Burke J.M., McCurdy T.R., Barry M.R., Rigas M.L., Zartarian V.G., and Freeman N.C.G. Children's exposure assessment: a review of factors influencing children's exposure, and the data available to characterize and assess that exposure. Environ Health Persp 2000: 108 (6): 475–486.

    CAS  Article  Google Scholar 

  • Colt J.S., Lubin J., Camann D., Davis S., Cerhan J., Severson R.K., Cozen W., and Hartge P. Comparison of pesticide levels in carpet dust and self-reported pest treatment practices in four US sites. J Expo Anal Env Epid 2004: 14 (1): 74–83.

    CAS  Article  Google Scholar 

  • Daniels J.L., Olshan A.F., and Savitz D.A. Pesticides and childhood cancers. Environ Health Persp 1997: 105 (10): 1068–1077.

    CAS  Article  Google Scholar 

  • Davis J.R., Brownson R.C., and Garcia R. Family pesticide use in the home, garden, orchard, and yard. Arch Environ Con Tox 1992: 22 (3): 260–266.

    CAS  Article  Google Scholar 

  • Flint M.L. Residential pesticide use in California: a report of surveys taken in the Sacramento (Arcade Creek), Stockton (Five-Mile Slough) and San Francisco bay areas with comparisons to the San Diego Creek Watershed of Orange County, California. University of California Statewide IPM Program 2003: CA DPR contract 01-0219C.

  • Freeman N.C.G., Hore P., Black K., Jimenez M., Sheldon L., Tulve N., and Lioy P.J. Contributions of children's activities to pesticide hand loadings following residential pesticide application. J Expo Anal Env Epid 2005: 15 (1): 81–88.

    CAS  Article  Google Scholar 

  • Grossman J. Whats hiding under the sink — dangers of household pesticides. Environ Health Persp 1995: 103 (6): 550–554.

    CAS  Article  Google Scholar 

  • Gurunathan S., Robson M., Freeman N., Buckley B., Roy A., Meyer R., Bukowski J., and Lioy P.J. Accumulation of chlorpyrifos on residential surfaces and toys accessible to children. Environ Health Persp 1998: 106 (1): 9–16.

    CAS  Article  Google Scholar 

  • Hertz-Picciotto I., Cassady D., Lee K., Bennett D.H., Ritz B., and Vogt R. Study of use of products and exposure-related behaviors (SUPERB): study design, methods, and preliminary results. Environ Health 2010 (in press).

  • Hore P., Robson M., Freeman N., Zhang J., Wartenberg D., Ozkaynak H., Tulve N., Sheldon L., Needham L., Barr D., and Lioy P.J. Chlorpyrifos accumulation patterns for child-accessible surfaces and objects and urinary metabolite excretion by children for 2 weeks after crack-and-crevice application. Environ Health Persp 2005: 113 (2): 211–219.

    CAS  Article  Google Scholar 

  • Korkeila K., Suominen S., Ahvenainen J., Ojanlatva A., Rautava P., Helenius H., and Koskenvuo M. Non-response and related factors in a nation-wide health survey. Eur J Epidemiol 2001: 17 (11): 991–999.

    CAS  Article  Google Scholar 

  • Landrigan P.J., Claudio L., Markowitz S.B., Berkowitz G.S., Brenner B.L., Romero H., Wetmur J.G., Matte T.D., Gore A.C., Godbold J.H., and Wolff M.S. Pesticides and inner-city children: exposures, risks, and prevention. Environ Health Persp 1999: 107: 431–437.

    CAS  Article  Google Scholar 

  • Nishioka M.G., Lewis R.G., Brinkman M.C., Burkholder H.M., Hines C.E., and Menkedick J.R. Distribution of 2,4-D in air and on surfaces inside residences after lawn applications: Comparing exposure estimates from various media for young children. Environ Health Persp 2001: 109 (11): 1185–1191.

    CAS  Article  Google Scholar 

  • Powell S. New challenges: Residential pesticide exposure assessment in the California Department of Pesticide Regulation, USA. Ann Occup Hyg 2001: 45: S119–S123.

    CAS  Article  Google Scholar 

  • Price P.S., Young J.S., and Chaisson C.F. Assessing aggregate and cumulative pesticide risks using a probabilistic model. Ann Occup Hyg 2001: 45: S131–S142.

    CAS  Article  Google Scholar 

  • Reynolds P., Von Behren J., Gunier R.B., Goldberg D.E., Hertz A., and Harnly M.E. Childhood cancer and agricultural pesticide use: an ecologic study in California. Environ Health Persp 2002: 110 (3): 319–324.

    Article  Google Scholar 

  • Rosas L.G., and Eskenazi B. Pesticides and child neurodevelopment. Curr Opin Pediatr 2008: 20 (2): 191–197.

    Article  Google Scholar 

  • Sanborn M., Kerr K.J., Sanin L.H., Cole D.C., Bassil K.L., and Vakil C. Non-cancer health effects of pesticides — systematic review and implications for family doctors. Can Fam Physician 2007: 53: 1713–1720.

    Google Scholar 

  • Savage E.P., Keefe T.J., Wheeler H.W., Mounce L., Helwic L., Applehans F., Goes E., Goes T., Mihlan G., Rench J., and Taylor D.K. Household pesticide usage in the United States. Arch Environ Health 1981: 36 (6): 304–309.

    CAS  Article  Google Scholar 

  • Shafer T.J., Meyer D.A., and Crofton K.M. Developmental neurotoxicity of pyrethroid insecticides: critical review and future research needs. Environ Health Persp 2005: 113 (2): 123–136.

    CAS  Article  Google Scholar 

  • Stout D.M., and Mason M.A. The distribution of chlorpyrifos following a crack and crevice type application in the US EPA Indoor Air Quality Research House. Atmos Environ 2003: 37 (39-40): 5539–5549.

    CAS  Article  Google Scholar 

  • Teitelbaum S.L. Questionnaire assessment of nonoccupational pesticide exposure in epidemiologic studies of cancer. J Expo Anal Env Epid 2002: 12 (5): 373–380.

    CAS  Article  Google Scholar 

  • USEPA. General principles for performing aggregate exposure and risk assessments. US Environmental Protection Agency, Office of Pesticide Programs 2001.

  • van der Jagt K.E. Residential exposure should be considered in appropriate terms — summary of discussions. Ann Occup Hyg 2001: 45: S167–S170.

    Article  Google Scholar 

  • Van Veen M.P., Van Engelen J.G.M., and Van Raaij M.T.M. Crossing the river stone by stone: approaches for residential risk assessment for consumers. Ann Occup Hyg 2001: 45: S107–S118.

    CAS  Article  Google Scholar 

  • Vonderheide A.P., Bernard C.E., Hieber T.E., Kauffman P.E., Morgan J.N., and Melnyk L.J. Surface-to-food pesticide transfer as a function of moisture and fat content. J Expo Sci Env Epid 2009: 19 (1): 97–106.

    CAS  Article  Google Scholar 

  • Whitmore R.W., Immerman F.W., Camann D.E., Bond A.E., Lewis R.G., and Schaum J.L. Non-occupational exposures to pesticides for residents of 2 US cities. Arch Environ Con Tox 1994: 26 (1): 47–59.

    CAS  Article  Google Scholar 

  • Whyatt R.M., Rauh V., Barr D.B., Camann D.E., Andrews H.F., Garfinkel R., Hoepner L.A., Diaz D., Dietrich J., Reyes A., Tang D.L., Kinney P.L., and Perera F.P. Prenatal insecticide exposures and birth weight and length among an urban minority cohort. Environ Health Persp 2004: 112: 1125–1132.

    CAS  Article  Google Scholar 

  • Wright C.G., Leidy R.B., and Dupree Jr H.E. Cypermethrin in the ambient air and on surfaces of rooms treated for cockroaches. Bull Environ Contam Toxicol 1993: 51: 356–360.

    CAS  Article  Google Scholar 

  • Zartarian V.G., Ozkaynak H., Burke J.M., Zufall M.J., Rigas M.L., and Furtaw E.J. A modeling framework for estimating children's residential exposure and dose to chlorpyrifos via dermal residue contact and nondietary ingestion. Environ Health Persp 2000: 108 (6): 505–514.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The project was supported by the United States Environmental Protection Agency (Grant# RD-83154001-0). Special thanks to the Project Managers Nyla Logsden-Sackett and Erin Horgan, and all the SUPERB staff and participants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah H Bennett.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Journal of Exposure Science and Environmental Epidemiology website

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wu, X., Bennett, D., Ritz, B. et al. Residential insecticide usage in northern California homes with young children. J Expo Sci Environ Epidemiol 21, 427–436 (2011). https://doi.org/10.1038/jes.2010.36

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jes.2010.36

Keywords

  • insecticide
  • residential exposure
  • exposure-related behavior
  • application frequency
  • children
  • pesticide

Further reading

Search

Quick links