Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Determinants of polycyclic aromatic hydrocarbon levels in house dust

Abstract

Estimation of human exposures to polycyclic aromatic hydrocarbons (PAHs) is often desired for the epidemiological studies of cancer. One way to obtain information about indoor levels of PAHs is to measure these chemicals in house dust. In this study, we evaluated the predictive value of self-reported and geographic data for estimating measured levels of nine PAHs in house dust from 583 households in the Northern California Childhood Leukemia Study (NCCLS). Using multivariable linear regression models, we evaluated the effects on house-dust PAH concentrations from the following covariates: residential heating sources, smoking habits, house characteristics, and outdoor emission sources. House dust was collected from 2001 to 2007, using both high-volume surface samplers and household vacuum cleaners, and was analyzed for nine PAHs using gas chromatography-mass spectrometry. All nine PAHs were detected in more than 93% of dust samples, with median concentrations ranging from 14 to 94 ng/g dust. Statistically significant effects on PAH concentrations in house dust were found for gas heating, outdoor PAH concentrations, and residence age. Yet, the optimal regression model only explained 15% of the variation in PAH levels in house dust. As self-reported data and outdoor PAH sources were only marginally predictive of observed PAH levels, we recommend that PAH concentrations be measured directly in dust samples for use in epidemiological studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  • Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile For Polycyclic Aromatic Hydrocarbons (PAHs). US Department of Health and Human Services, Public Health Service, Atlanta, GA, 1995.

  • Beyea J., Hatch M., Stellman S.D., Santella R.M., Teitelbaum S.L., and Prokopczyk B., et al. Validation and calibration of a model used to reconstruct historical exposure to polycyclic aromatic hydrocarbons for use in epidemiologic studies. Environ Health Perspect 2006: 114 (7): 1053–1058.

    Article  CAS  Google Scholar 

  • Boffetta P., Jourenkova N., and Gustavsson P. Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons. Cancer Causes Control 1997: 8 (3): 444–472.

    Article  CAS  Google Scholar 

  • Burstyn I., Kromhout H., Kauppinen T., Heikkila P., and Boffetta P. Statistical modelling of the determinants of historical exposure to bitumen and polycyclic aromatic hydrocarbons among paving workers. Ann Occup Hyg 2000: 44 (1): 43–56.

    Article  CAS  Google Scholar 

  • Chang J.S., Selvin S., Metayer C., Crouse V., Golembesky A., and Buffler P.A. Parental smoking and the risk of childhood leukemia. Am J Epidemiol 2006: 163 (12): 1091–1100.

    Article  Google Scholar 

  • Choi H., Rauh V., Garfinkel R., Tu Y., and Perera FP. Prenatal exposure to airborne polycyclic aromatic hydrocarbons and risk of intrauterine growth restriction. Environ Health Perspect 2008: 116 (5): 658–665.

    Article  CAS  Google Scholar 

  • Chuang J.C., Callahan P.J., Lyu C.W., and Wilson N.K. Polycyclic aromatic hydrocarbon exposures of children in low-income families. J Expo Anal Environ Epidemiol 1999: 9 (2): 85–98.

    Article  CAS  Google Scholar 

  • Chuang J.C., Callahan P.J., Menton R.G., Gordon S.M., Lewis R.G., and Wilson N.K. Monitoring methods for polycylic aromatic hydrocarbons and their distribution in house dust and track-in soil. Environ Sci Technol 1995: 29: 494–500.

    Article  CAS  Google Scholar 

  • Collins L.M., Schafer J.L., and Kam C.M. A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychol Methods 2001: 6 (4): 330–351.

    Article  CAS  Google Scholar 

  • Colt J.S., Gunier R.B., Metayer C., Nishioka M.G., Bell E.M., and Reynolds P., et al. Household vacuum cleaners vs. the high-volume surface sampler for collection of carpet dust samples in epidemiologic studies of children. Environ Health 2008: 7: 6.

    Article  Google Scholar 

  • Dai Y.F., Leng S.G., Pan Z.F., Rappaport S.M., and Zheng Y.X. Preliminary study on naphthalene-metabolites-albumin adduct as an exposure biomarker for coke oven workers. Zhonghua Yu Fang Yi Xue Za Zhi 2004: 38 (6): 392–395.

    CAS  PubMed  Google Scholar 

  • Gevao B., Al-Bahloul M., Zafar J., Al-Matrouk K., and Helaleh M. Polycyclic aromatic hydrocarbons in indoor air and dust in Kuwait: Implications for sources and nondietary human exposure. Arch Environ Contam Toxicol 2007: 53 (4): 503–512.

    Article  CAS  Google Scholar 

  • Gunier R.B., Reynolds P., Hurley S.E., Yerabati S., Hertz A., and Strickland P., et al. Estimating exposure to polycyclic aromatic hydrocarbons: A comparison of survey, biological monitoring, and geographic information system-based methods. Cancer Epidemiol Biomarkers Prev 2006: 15 (7): 1376–1381.

    Article  CAS  Google Scholar 

  • Hein H.O., Suadicani P., Skov P., and Gyntelberg F. Indoor dust exposure: An unnoticed aspect of involuntary smoking. Arch Environ Health 1991: 46 (2): 98–101.

    Article  CAS  Google Scholar 

  • Hopke P.K., Liu C., and Rubin D.B. Multiple imputation for multivariate data with missing and below-threshold measurements: Time-series concentrations of pollutants in the arctic. Biometrics 2001: 57 (1): 22–33.

    Article  CAS  Google Scholar 

  • Jacob J., and Seidel A. Biomonitoring of polycyclic aromatic hydrocarbons in human urine. J Chromatogr B Analyt Technol Biomed Life Sci 2002: 778 (1–2): 31–47.

    Article  CAS  Google Scholar 

  • Jedrychowski W., Galas A., Pac A., Flak E., Camman D., and Rauh V., et al. Prenatal ambient air exposure to polycyclic aromatic hydrocarbons and the occurrence of respiratory symptoms over the first year of life. Eur J Epidemiol 2005: 20 (9): 775–782.

    Article  CAS  Google Scholar 

  • Kriek E., Rojas M., Alexandrov K., and Bartsch H. Polycyclic aromatic hydrocarbon-DNA adducts in humans: Relevance as biomarkers for exposure and cancer risk. Mutat Res 1998: 400 (1–2): 215–231.

    Article  CAS  Google Scholar 

  • Lewis R.G., Fortune C.R., Willis R.D., Camann D.E., and Antley J.T. Distribution of pesticides and polycyclic aromatic hydrocarbons in house dust as a function of particle size. Environ Health Perspect 1999: 107 (9): 721–726.

    Article  CAS  Google Scholar 

  • Lubin J.H., Colt J.S., Camann D., Davis S., Cerhan J.R., and Severson R.K., et al. Epidemiologic evaluation of measurement data in the presence of detection limits. Environ Health Perspect 2004: 112 (17): 1691–1696.

    Article  CAS  Google Scholar 

  • Maertens R.M., Bailey J., and White P.A. The mutagenic hazards of settled house dust: A review. Mutat Res 2004: 567 (2–3): 401–425.

    Article  CAS  Google Scholar 

  • Maertens R.M., Yang X., Zhu J., Gagne R.W., Douglas G.R., and White P.A. Mutagenic and carcinogenic hazards of settled house dust. I: Polycyclic aromatic hydrocarbon content and excess lifetime cancer risk from preschool exposure. Environ Sci Technol 2008: 42 (5): 1747–1753.

    Article  CAS  Google Scholar 

  • Miller RL., Garfinkel R., Horton M., Camann D., Perera FP., and Whyatt RM., et al. Polycyclic aromatic hydrocarbons, environmental tobacco smoke, and respiratory symptoms in an inner-city birth cohort. Chest 2004: 126 (4): 1071–1078.

    Article  CAS  Google Scholar 

  • Murkerjee S., Ellenson W.D., Lewis R.G., Stevens R.K., Sommerville M.C., and Shadwick D.S., et al. An environmental scoping study in the lower rio grande valley of texas – III. residential microenvironmental monitoring for air, house dust, and soil. Environ Int 1997: 23 (5): 657–673.

    Article  Google Scholar 

  • Onyemauwa F., Rappaport S.M., Sobus J.R., Gajdosova D., Wu R., and Waidyanatha S. Using liquid chromatography-tandem mass spectrometry to quantify monohydroxylated metabolites of polycyclic aromatic hydrocarbons in urine. J Chromatogr B Analyt Technol Biomed Life Sci 2009: 877 (11–12): 1117–1125.

    Article  CAS  Google Scholar 

  • Perera FP., Li Z., Whyatt R., Hoepner L., Wang S., and Camann D., et al. Prenatal airborne polycyclic aromatic hydrocarbon exposure and child IQ at age 5 years. Pediatrics 2009: 124 (2): e195–e202.

    Article  Google Scholar 

  • Perera FP., Mooney LA., Stampfer M., Phillips DH., Bell DA., and Rundle A., et al. Associations between carcinogen-DNA damage, glutathione S-transferase genotypes, and risk of lung cancer in the prospective physicians′ health cohort study. Carcinogenesis 2002: 23 (10): 1641–1646.

    Article  CAS  Google Scholar 

  • Perera FP., Rauh V., Whyatt RM., Tsai WY., Tang D., and Diaz D., et al. Effect of prenatal exposure to airborne polycyclic aromatic hydrocarbons on neurodevelopment in the first 3 years of life among inner-city children. Environ Health Perspect 2006: 114 (8): 1287–1292.

    Article  CAS  Google Scholar 

  • Pleil J.D., Vette A.F., and Rappaport S.M. Assaying particle-bound polycyclic aromatic hydrocarbons from archived PM2.5 filters. J Chromatogr A 2004: 1033 (1): 9–17.

    Article  CAS  Google Scholar 

  • Roberts J.W., Clifford W.S., Glass G., and Hummer P.G. Reducing dust, lead, dust mites, bacteria, and fungi in carpets by vacuuming. Arch Environ Contam Toxicol 1999: 36 (4): 477–484.

    CAS  PubMed  Google Scholar 

  • Roberts J.W., Glass G., and Mickelson L. A pilot study of the measurement and control of deep dust, surface dust, and lead in 10 old carpets using the 3-spot test while vacuuming. Arch Environ Contam Toxicol 2005: 48 (1): 16–23.

    Article  CAS  Google Scholar 

  • Roberts J.W., Wallace L.A., Camann D.E., Dickey P., Gilbert S.G., and Lewis R.G., et al. Monitoring and reducing exposure of infants to pollutants in house dust. Rev Environ Contam Toxicol 2009: 201: 1–39.

    CAS  PubMed  Google Scholar 

  • Rudel R.A., Camann D.E., Spengler J.D., Korn L.R., and Brody J.G. Phthalates, alkylphenols, pesticides, polybrominated diphenyl ethers, and other endocrine-disrupting compounds in indoor air and dust. Environ Sci Technol 2003: 37 (20): 4543–4553.

    Article  CAS  Google Scholar 

  • Sinisi S.E., and van der Laan M.J. Loss-based cross-validated deletion/substitution/addition algorithms in estimation, 2004. Report No.: Working Paper 143.

  • Sobus J.R., Waidyanatha S., McClean M.D., Herrick R.F., Smith T.J., and Garshick E., et al. Urinary naphthalene and phenanthrene as biomarkers of occupational exposure to polycyclic aromatic hydrocarbons. Occup Environ Med 2009: 66 (2): 99–104.

    Article  CAS  Google Scholar 

  • Tjoe Ny E., Heederik D., Kromhout H., and Jongeneelen F. The relationship between polycyclic aromatic hydrocarbons in air and in urine of workers in a soderberg potroom. Am Ind Hyg Assoc J 1993: 54 (6): 277–284.

    Article  CAS  Google Scholar 

  • US Census Bureau. 2000 Census Of Population And Housing. US Department of Commerce, Economics and Statistics Administration, USA.

  • US Environmental Protection Agency. 2002 National-Scale Air Toxics Assessment. United States Environmental Protection Agency, USA, 2009.

  • Uh H.W., Hartgers F.C., Yazdanbakhsh M., and Houwing-Duistermaat J.J. Evaluation of regression methods when immunological measurements are constrained by detection limits. BMC Immunol 2008: 9: 59.

    Article  Google Scholar 

  • United States Department of Transportation, Office of Highway Policy Information. Highway Performance and Monitoring System for 2000. United States Department of Transportation, Office of Highway Policy Information, Washington, DC, 2003.

  • van der Laan M.J., Dudoit S., and van der Vaart A.W. The cross-validated adaptive epsilon-net estimator, 2004. Report No.: Working Paper 142.

  • van der Laan M.J., and Dudoit S. Unified cross-validation methodology for selection among estimators and a general cross-validated adaptive epsilon-net estimator: Finite sample oracle inequalities and examples, 2003. Report No.: Working Paper 130.

  • Whitehead T., Metayer C., Ward M.H., Nishioka M.G., Gunier R., and Colt J.S., et al. Is house-dust nicotine a good surrogate for household smoking? Am J Epidemiol 2009: 169 (9): 1113–1123.

    Article  Google Scholar 

  • Wilson N.K., Chuang J.C., Lyu C., Menton R., and Morgan M.K. Aggregate exposures of nine preschool children to persistent organic pollutants at day care and at home. J Expo Anal Environ Epidemiol 2003: 13 (3): 187–202.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Environmental Health Sciences (Grant numbers R01ES009137 and P42ES0470518); the Intramural Research Program of the National Cancer Institute, National Institute of Health (subcontracts 7590-S-04 and 7590-S-01); the National Cancer Institute (contract N02-CP-11015) and the Berkeley Fellowship for Graduate Study. We thank the families for their participation. We also thank the clinical investigators at the following collaborating hospitals for help in recruiting patients: University of California Davis Medical Center (Dr. Jonathan Ducore), University of California San Francisco (Dr. Mignon Loh and Dr. Katherine Matthay), Children's Hospital of Central California (Dr. Vonda Crouse), Lucile Packard Children's Hospital (Dr. Gary Dahl), Children's Hospital Oakland (Dr. James Feusner), Kaiser Permanente Roseville (Dr. Kent Jolly and Dr. Vincent Kiley), Kaiser Permanente Santa Clara (Dr. Alan Wong and Dr. Carolyn Russo), Kaiser Permanente San Francisco (Dr. Kenneth Leung) and Kaiser Permanente Oakland (Dr. Daniel Kronish and Dr. Stacy Month). Finally, we acknowledge the entire Northern California Childhood Leukemia Study staff and the UCB Survey Research Center for their effort and dedication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd Whitehead.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whitehead, T., Metayer, C., Gunier, R. et al. Determinants of polycyclic aromatic hydrocarbon levels in house dust. J Expo Sci Environ Epidemiol 21, 123–132 (2011). https://doi.org/10.1038/jes.2009.68

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jes.2009.68

Keywords

This article is cited by

Search

Quick links