Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intercity transferability of land use regression models for estimating ambient concentrations of nitrogen dioxide

Abstract

Land use regression (LUR) is a method for predicting the spatial distribution of traffic-related air pollution. To facilitate risk and exposure assessment, and the design of future monitoring networks and sampling campaigns, we sought to determine the extent to which LUR can be used to predict spatial patterns in air pollution in the absence of dedicated measurements. We evaluate the transferability of one LUR model to two other geographically comparable areas with similar climates and pollution types. The source model, developed in 2003 to estimate ambient nitrogen dioxide (NO2) concentrations in Vancouver (BC, Canada) was applied to Victoria (BC, Canada) and Seattle (WA, USA). Model estimates were compared with measurements made with Ogawa® passive samplers in both cities. As part of this study, 42 locations were sampled in Victoria for a 2-week period in June 2006. Data obtained for Seattle were collected for a different project at 26 locations in March 2005. We used simple linear regression to evaluate the fit of the source model under three scenarios: (1) using the same variables and coefficients as the source model; (2) using the same variables as the source model, but calculating new coefficients for local calibration; and (3) developing site-specific equations with new variables and coefficients. In Scenario 1, we found that the source model had a better fit in Victoria (R2=0.51) than in Seattle (R2=0.33). Scenario 2 produced improved R2-values in both cities (Victoria=0.58, Seattle=0.65), with further improvement achieved under Scenario 3 (Victoria=0.61, Seattle=0.72). Although it is possible to transfer LUR models between geographically similar cities, success may depend on the between-city consistency of the input data. Modest field sampling campaigns for location-specific model calibration can help to produce transfer models that are equally as predictive as their sources.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Brauer M., Hoek G., Smit H.A., de Jongste J.C., Gerritsen J., Postma D.S., Kerkhof M., and Brunekreef B. Air Pollution and the development of asthma, allergy and infections in a birth cohort. Eur Respir J 2007: 29: 879–888.

    Article  CAS  PubMed  Google Scholar 

  • Brauer M., Hoek G., van Vliet P., Meliefste K., Fischer P., Gehring U., Heinrich J., Cyrys J., Bellander T., Lewne M., and Brunekreef B. Estimating long-term average particulate air pollution concentrations: application of traffic indicators and geographic information systems. Epidemiology 2003: 14 (2): 228–239.

    PubMed  Google Scholar 

  • Brauer M., Hoek G., Van Vliet P., Meliefste K., Fischer P.H., Wijga A., Koopman L.P., Neijens H.J., Gerritsen J., Kerkhof M., Heinrich J., Bellander T., and Brunekreef B. Air pollution from traffic and the development of respiratory infections and asthmatic and allergic symptoms in children. Am J Respir Crit Care Med 2002: 166 (8): 1092–1098.

    Article  PubMed  Google Scholar 

  • Briggs D., Collins S., Elliott P., Fischer P., Kingham S., Lebret E., Pryl K., Reeuwijk H.V., and Smallbone K. Mapping urban air pollution using GIS: a regression-based approach. Int J Geogr Inf Sci 1997: 11: 669–718.

    Article  Google Scholar 

  • Briggs D., de Hoogh C., Gulliver J., Wills J., Elliott P., Kingham S., and Smallbone K. A regression-based method for mapping traffic-related air pollution: application and testing in four contrasting urban environments. Sci Total Environ 2000: 253: 151–167.

    Article  CAS  PubMed  Google Scholar 

  • Brunekreef B., and Holgate S.T. Air pollution and health. Lancet 2002: 360 (9341): 1233–1242.

    Article  CAS  PubMed  Google Scholar 

  • Cohen M., Allen R., Gould T., Adar S., Hardie D., Kaufman J., Larson T., and Hinckley-Stukovsky K. Multi-Ethnic Study of Atherosclerosis—Air Pollution (MESA Air Pollution): Exposure Assessment Methodology. In press, spring, 2007.

    Google Scholar 

  • Cyrys J., Hochadel M., Gehring U., Hoek G., Diegmann V., Brunekreef B., and Heinrich J. GIS-based estimation of exposure to particulate matter and NO2 in an urban area: stochastic versus dispersion modeling. Environ Health Perspect 2005: 113 (8): 987–992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gauderman W., Avol E., Lurmann F., Kuenzli N., Gilliland F., Peters J., and McConnel R. Childhood asthma and exposure to traffic and nitrogen dioxide. Epidemiology 2005: 16 (6): 737–743.

    Article  PubMed  Google Scholar 

  • Gilbert N., Goldberg M., Beckerman B., Brook J., and Jerrett M. Assessing spatial variability of ambient nitrogen dioxide in Montréal, Canada, with a land-use regression model. J Air Waste Manag Assoc 2005: 55: 1059–1063.

    Article  CAS  PubMed  Google Scholar 

  • Gonzales M., Qualls C., Hudgens E., and Neas L. Characterization of a spatial gradient of nitrogen dioxide across a United States-Mexico border city during winter. Sci Total Environ 2005: 337 (1–3): 163–173.

    Article  CAS  PubMed  Google Scholar 

  • Henderson S.B., Beckerman B., Jerrett M., and Brauer M. Application of land use regression to estimate long-term concentrations of traffic-related nitrogen oxides and fine particulate matter. Environ Sci Technol 2007: 41: 2422–2428.

    Article  CAS  PubMed  Google Scholar 

  • Hochadel M., Heinrich J., Gehring U., Morgenstern V., Kuhlbusch T., Link E., Wichmann H., and Krämer U. Predicting long-term average concentrations of traffic-related air pollutants using GIS-based information. Atmos Environ 2006: 40: 542–553.

    Article  CAS  Google Scholar 

  • Hoek G., Brunekreef B., Goldbohm S., Fischer P., and van den Brandt P.A. Association between mortality and indicators of traffic-related air pollution in the Netherlands: a cohort study. Lancet 2002a: 360 (9341): 1203–1209.

    Article  PubMed  Google Scholar 

  • Hoek G., Meliefste K., Cyrys J., Lewné Brauer M., Fischer P., Gehring U., van Vliet P., Heinrich J., Bellander T., and Brunekreef B. Spatial variability of fine particle concentrations in three European countries. Atmos Environ 2002b: 36: 4077–4088.

    Article  CAS  Google Scholar 

  • Jenness J. Random point generator (randpts.avx) extension for ArcView 3.x, v 1.3. Jenness Enterprises, 2005 Available at: http://www.jennessent.com/arcview/random_points.htm.

  • Jerrett M., Arain A., Kanaroglou P., Beckerman B., Crouse D., Gilbert N., Brook J., Finkelstein N., and Finkelstein M. Modeling the intraurban variability of ambient traffic pollution in Toronto, Canada. J Toxicol Environ Health A 2007: 70: 200–212.

    Article  CAS  PubMed  Google Scholar 

  • Jerrett M., Arain A., Kanaroglou P., Beckerman B., Potoglou D., Sahsuvaroglou T., Morrison J., and Giovis C. A review and evaluation of intraurban air pollution exposure models. J Expo Anal Environ Epidemiol 2005: 15: 185–204.

    Article  CAS  PubMed  Google Scholar 

  • Kanaroglou P., Jerrett M., Morrison J., Beckerman B., Arain M.A., Gilbert N., and Brook J. Establishing an air pollution monitoring network for intra-urban population exposure assessment; a location-allocation approach. Atmos Environ 2005: 39: 2399–2409.

    Article  CAS  Google Scholar 

  • Krzyzanowski M., Kuna-Dibbert B., and Schneider J., (eds) Health effect of transport related air pollution. Report. World Health Organization 2005.

  • Künzli N., Kaiser R., Medina S., Studnicka M., Chanel O., Filliger P., Herry M., Horak Jr F., Puybonnieux-Texier V., Quénel P., Schneider J., Seethaler R., Vergnaud J.-C., and Sommer H. Public-health impact of outdoor and traffic-related air pollution: a European assessment. Lancet 2000: 356 (9232): 795–801.

    Article  PubMed  Google Scholar 

  • Larssen S., Tonnesen D., Clenchaas J., Aarnes M.J., and Arnesen K. A model for car exhaust exposure calculations to investigate health-effects of air-pollution. Sci Total Environ 1993: 134: 51–60.

    Article  CAS  PubMed  Google Scholar 

  • Lebret E., Briggs D., van Reeuwijk H., Fischer P., Smallbone K., Harssema H., Bohumir K., Gorynski P., and Elliott P. Small area variations in ambient NO2 concentrations in four European areas. Atmos Environ 2000: 34: 177–185.

    Article  CAS  Google Scholar 

  • Mukerjee S., Smith L., Norris G., Morandi M., Gonzales M., Noble C., Neas L., and Ozkaynak A. Field method comparison between passive air samplers and continuous monitors for volatile organic compounds and NO2 in El Paso, Texas, USA. J Air Waste Manag Assoc 2004: 54 (3): 307–319.

    Article  CAS  PubMed  Google Scholar 

  • Ross Z., English P., Scalf R., Gunier R., Smorodinsky S., Wall S., and Jerrett M. Nitrogen dioxide prediction in Southern California using land use regression modeling: potential for environmental health analyses. J Expo Sci Environ Epidemiol 2006: 16: 106–114.

    Article  CAS  PubMed  Google Scholar 

  • Ross Z., Jerrett M., Kazuhiko I., Tempalski B., and Thurston G. A land use regression for predicting fine particulate matter concentrations in the New York City region. Atmos Environ 2007: 41: 2255–2269.

    Article  CAS  Google Scholar 

  • Ryan P.H., LeMasters G.K., Biswas P., Levin L., Hu S., Lindsey M., Bernstein D.I., Lockey J., Villareal M., Hershey G.K., and Grinshpun S.A. A comparison of proximity and land use regression traffic exposure models and wheezing in infants. Environ Health Perspect 2007: 115: 278–284.

    Article  CAS  PubMed  Google Scholar 

  • Sahsuvaroglu T., Arain A., Kanaroglou P., Finkelstein N., Newbold B., Jerrett M., Beckerman B., Brook J., Finkelstein M., and Gilbert N. A land use regression model for predicting ambient concentration of nitrogen dioxide in Hamilton, Ontario, Canada. J Air Waste Manage Assoc 2006: 56: 1059–1069.

    Article  CAS  Google Scholar 

  • Sather M., Slonecker E., Johnson M., Daughtrey H., and Williams D. Evaluation of ogawa passive sampling devices as an alternative measurement method for the nitrogen dioxide annual standard in El Paso, Texas. Environ Monit Assess 2007: 124 (1–3): 211–221.

    Article  CAS  PubMed  Google Scholar 

  • Smith L., Mukerjee S., Gonzales M., Stallings C., Neas L., Norris G., and Özkaynak H. Use of GIS and ancillary variables to predict volatile organic compound and nitrogen dioxide levels at unmonitored locations. Atmos Environ 2006: 40: 3773–3787.

    Article  CAS  Google Scholar 

  • Statistics Canada. Population and Dwelling Counts for Canada, Provinces and Territories, Census Metropolitan Areas and Census Agglomerations, 2001 and 1996 Census- 100%; available on the Statistics Canada web site. http://www12.statcan.ca/english/census01/products/standard/popdwell/tables.cfm (accessed March 2008).

  • Wilhelm M., and Ritz B. Local variations in CO and particulate air pollution and adverse birth outcomes in Los Angeles County, California, USA. Environ Health Perspect 2005: 113 (9): 1212–1221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J., Lurmann F., Winer A., Lu R., Turco R., and Funk T. Development of an individual exposure model for application to the Southern California children's health study. Atmos Environ 2005: 39: 259–273.

    Article  CAS  Google Scholar 

  • Yamada E., Kimura M., Tomozawa K., and Fuse Y. Simple analysis of atmospheric NO2, SO2 and O3 in mountains by using passive samplers. Environ Sci Technol 1999: 33 (23): 4141–4145.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Steve Sakiyama and Warren McCormick from the BC Ministry of Environment for financial support as well as for providing data and access to monitoring locations; BC Hydro for the use of utility poles; and David Hardie for analyzing the Ogawa samplers collected in Seattle.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karla Poplawski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poplawski, K., Gould, T., Setton, E. et al. Intercity transferability of land use regression models for estimating ambient concentrations of nitrogen dioxide. J Expo Sci Environ Epidemiol 19, 107–117 (2009). https://doi.org/10.1038/jes.2008.15

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jes.2008.15

Keywords

This article is cited by

Search

Quick links