Review Article | Published:

Review Article

Total synthesis of architecturally complex indole terpenoids: strategic and tactical evolution

The Journal of Antibiotics volume 71, pages 185204 (2018) | Download Citation

Abstract

Indole terpenes have attracted the interests of synthetic chemists due to their complex architectures and potent biological activities. Examples of total syntheses of several indole terpenes were reviewed in this article to honor Professor KC Nicolaou.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , , & Simple indole alkaloids and those with a non-rearranged monoterpenoid unit. Nat. Prod. Rep. 30, 694–752 (2013).

  2. 2.

    , , , & Sesquiterpenyl indoles. Nat. Prod. Rep. 30, 1509–1526 (2013).

  3. 3.

    Prenylated indole derivatives from fungi: structure diversity, biological activities, biosynthesis and chemoenzymatic synthesis. Nat. Prod. Rep. 27, 57–78 (2010).

  4. 4.

    , , & Simple indole alkaloids and those with a nonrearranged monoterpenoid unit. Nat. Prod. Rep. 32, 1389–1471 (2015).

  5. 5.

    & Simple indole alkaloids and those with a nonrearranged monoterpenoid unit. Nat. Prod. Rep. 26, 803–852 (2009).

  6. 6.

    & Simple indole alkaloids and those with a nonrearranged monoterpenoid unit. Nat. Prod. Rep. 24, 843–868 (2007).

  7. 7.

    , , , & Indole-diterpenes and ergot alkaloids in cynodon dactylon (bermuda grass) infected with claviceps cynodontis from an outbreak of tremors in cattle. J. Agric. Food Chem. 57, 11112–11119 (2009).

  8. 8.

    & Tremorgenic and nontremorgenic 2,3-fused indole diterpenoids. Alkaloids Chem. Biol. 60, 51–163 (2003).

  9. 9.

    , , , & Isolation and structure elucidation of lolilline, a possible biosynthetic precursor of the lolitrem family of tremorgenic mycotoxins. J. Agric. Food Chem. 45, 199–204 (1997).

  10. 10.

    , , , & Structure elucidation of lolitrem F, a naturally occurring stereoisomer of the tremorgenic mycotoxin lolitrem B, isolated from lolium perenne infected with acremonium lolii. J. Agric. Food Chem. 44, 2782–2788 (1996).

  11. 11.

    , & Isolation of lolicine A, lolicine B, lolitriol, and lolitrem N from lolium perenne infected with neotyphodium lolii and evidence for the natural occurrence of 31-epilolitrem N and 31-epilolitrem F. J. Agric. Food Chem. 46, 590–598 (1998).

  12. 12.

    , & Isolation of paspaline B, an indole-diterpenoid from Penicilium paxilli. Phytochemistry 41, 327–332 (1996).

  13. 13.

    Aspects of the chemistry and toxicology of indole-diterpenoid mycotoxins involved in tremorganic disorder of livestock. Mycotoxin Res. 13, 88 (1997).

  14. 14.

    & Die Isolierung zweier neuartiger Indol-Derivate aus dem Mycel von Claviceps paspali STEVENSet HALL. Helv. Chim. Acta 49, 1907–1910 (1966).

  15. 15.

    Eidgenossiche Technische Hochschule No. 4990 (Ph.D. Dissertation, Zürich, Switzerland, 1973)..

  16. 16.

    Eidgenossiche Technische Hochschule No. 5163 (Dissertation, Zürich, Switzerland, 1973)..

  17. 17.

    & An efficient approach to chiral, nonracemic trans-decahydro-5,8a-dimethyl-1,6-naphthalenedione derivatives. Total synthesis of (+)-pallescensin A. J. Org. Chem. 49, 3685–3689 (1984).

  18. 18.

    , & A total synthesis of aphidicolin. J. Am. Chem. Soc. 101, 1328–1330 (1979).

  19. 19.

    , , & General method for the synthesis of indoles. J. Am. Chem. Soc. 96, 5495–5508 (1974).

  20. 20.

    & Total synthesis of (−)-paspaline. J. Am. Chem. Soc. 107, 1769–1771 (1985).

  21. 21.

    , & Indole diterpene synthetic studies. 2. 1st-generation total synthesis of (−)-paspaline. J. Org. Chem. 54, 3449–3462 (1989).

  22. 22.

    , , & Efficient syntheses of (.+-.)-.beta.-cuparenone. Conjugate addition of organozinc reagents. J. Org. Chem. 49, 931–932 (1984).

  23. 23.

    , , & Ultrasound in organic synthesis. 4. A simplified preparation of diarylzinc reagents and their conjugate addition to α-enones. J. Org. Chem. 48, 3837–3839 (1983).

  24. 24.

    & Indole diterpene synthetic studies. 5. Development of a unified synthetic strategy; a stereocontrolled, second-generation synthesis of (−)-paspaline. J. Am. Chem. Soc. 111, 5761–5768 (1989).

  25. 25.

    & Indole-diterpene synthetic studies. 4. A stereocontrolled, 2nd-generation synthesis of (−)-paspaline. Tetrahedron Lett. 29, 2791–2792 (1988).

  26. 26.

    & Monoalkylation of α,β-unsaturated ketones via metalloenamines. J. Am. Chem. Soc. 93, 5938–5939 (1971).

  27. 27.

    & The synthesis of nucleoside-5" Aldehydes. J. Am. Chem. Soc. 85, 3027–3027 (1963).

  28. 28.

    & Synthesis of (.+-.)-frullanolide: an application of radical closure. J. Org. Chem. 55, 1096–1098 (1990).

  29. 29.

    , , & Remote double bond migration via rhodium catalysis: a novel enone transposition. J. Am. Chem. Soc. 98, 7102–7104 (1976).

  30. 30.

    , , & Total syntheses of (+)-paspalicine and (+)-paspalinine. J. Am. Chem. Soc. 112, 8197–8198 (1990).

  31. 31.

    , , , & Indole diterpene synthetic studies. 8. The total synthesis of (+)-paspalicine and (+)-paspalinine. J. Am. Chem. Soc. 114, 1438–1449 (1992).

  32. 32.

    & Avermectin-milbemycin studies. 4. An expedient two-step preparation of p-hydroxybenzoates. Tetrahedron Lett. 26, 4419–4422 (1985).

  33. 33.

    & Avermectin-milbemycin studies. 3. Synthesis of a milbemycin-avermectin hybrid. Tetrahedron Lett. 26, 4283–4286 (1985).

  34. 34.

    , , , & Total synthesis of (+)-jatropholone A and B. J. Org. Chem. 50, 3239–3241 (1985).

  35. 35.

    & An expedient synthesis of substituted indoles. Tetrahedron Lett. 26, 3757–3760 (1985).

  36. 36.

    , , & Organometallic reagents in synthesis: A new protocol for construction of the indole nucleus. Tetrahedron 42, 2957–2969 (1986).

  37. 37.

    & Asymmetric induction. 3. Enantioselective deprotonation by chiral lithium amide bases. J. Org. Chem. 45, 755–756 (1980).

  38. 38.

    & Steroid analogs lacking ring c. I. The synthesis of 6-cyclohexyl-δ1-9-octalone-2 by the robinson—mannich base method. J. Am. Chem. Soc. 71, 3946–3950 (1949).

  39. 39.

    , , , & The total synthesis of steroids 1. J. Am. Chem. Soc. 74, 4223–4251 (1952).

  40. 40.

    Ueber die umwandlung des tanacetoxims in das Cymidin. Ber. Dtsch. Chem. Ges. 25, 3352–3354 (1892).

  41. 41.

    Condensationsproducte der tetronsäure. Justus Liebigs Ann. Chem. 322, 351–391 (1902).

  42. 42.

    , , & Total synthesis of (−)-penitrem D. J. Am. Chem. Soc. 122, 11254–11255 (2000).

  43. 43.

    et al. Tremorgenic indole alkaloids. The total synthesis of (−)-penitrem D. J. Am. Chem. Soc. 125, 8228–8237 (2003).

  44. 44.

    , , & Antiinsectan alkaloids: Shearinines A-C and a new paxilline derivative from the ascostromata of eupenicillium shearii. Tetrahedron 51, 3959–3968 (1995).

  45. 45.

    et al. Metal promoted cyclization. 18. Novel cyclialkylation reactions of (.omega.-halo-1-alkenyl)metal derivatives. Synthetic scope and mechanism. J. Am. Chem. Soc. 110, 5383–5396 (1988).

  46. 46.

    & Total synthesis of (−)-21-isopentenylpaxilline. Org. Lett. 5, 587–590 (2003).

  47. 47.

    & Indole-diterpene synthetic studies: Total synthesis of (−)-21-isopentenylpaxilline. Helv. Chim. Acta 86, 3908–3938 (2003).

  48. 48.

    et al. Nodulisporic acid A, a novel and potent insecticide from a nodulisporium sp. Isolation, structure determination, and chemical transformations. J. Am. Chem. Soc. 119, 8809–8816 (1997).

  49. 49.

    , , , & Isolation and structure of nodulisporic acid A1 and A2, novel insecticides from a Nodulisporium sp. Tetrahedron Lett. 40, 5455–5458 (1999).

  50. 50.

    et al. Nodulisporic acid B, B1, and B2: a series of 1’-deoxy-nodulisporic acids from Nodulisporium sp. Bioorg. Med. Chem. Lett. 12, 2941–2944 (2002).

  51. 51.

    et al. Nodulisporic acids C, C1, and C2: a series of D-ring-opened nodulisporic acids from the fungus Nodulisporium sp. J. Nat. Prod. 66, 121–124 (2003).

  52. 52.

    et al. Nodulisporic acids D−F:  Structure, biological activities, and biogenetic relationships. J. Nat. Prod. 67, 1496–1506 (2004).

  53. 53.

    Lanthanide trifluoromethanesulfonates as stable lewis-acids in aqueous-media—Yb(OTf)3 catalyzed hydroxymethylation reaction of silyl enol ethers with commercial formal-dehyde solution. Chem. Lett. 20, 2187–2190 (1991).

  54. 54.

    Rare-earth-metal trifluoromethanesulfonates as water-tolerant lewis-acid catalysts in organic-synthesis. Synlett 689–701 (1994).

  55. 55.

    & Reactions of sodium borohydride in acidic media. Selective reduction of aldehydes with sodium triacetoxyborohydride. J. Chem. Soc. Chem. Commun. 535–536 (1975).

  56. 56.

    & Recent studies on veratrum alkaloids: a new reaction of sodium triacetoxyborohydride [NaBH(OAc)3]. Tetrahedron Lett. 24, 273–276 (1983).

  57. 57.

    & The directed reduction of β-hydroxy ketones employing Me4NHB(OAc)3. Tetrahedron Lett. 27, 5939–5942 (1986).

  58. 58.

    , & Palladium-catalyzed coupling of vinyl triflates with organostannanes. A short synthesis of pleraplysillin-1. J. Am. Chem. Soc. 106, 4630–4632 (1984).

  59. 59.

    , & Stereoselective reactions. I. A highly efficient asymmetric synthesis of β-substituted aldehydes via 1, 4-addition of Grignard reagents to optically active α, β-unsaturated aldimines. Chem. Pharm. Bull. 27, 771–782 (1979).

  60. 60.

    , , & Diastereoselective and enantioselective synthesis of 1,2-disubstituted cycloalkanecarboxaldehydes. Tetrahedron 37, 3951–3956 (1981).

  61. 61.

    , & Oxidation of α,β-unsaturated aldehydes. Tetrahedron 37, 2091–2096 (1981).

  62. 62.

    , , & Development of a scalable synthesis of a common eastern tricyclic lactone for construction of the nodulisporic acids. Org. Process Res. Dev. 11, 19–24 (2007).

  63. 63.

    & Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev. 95, 2457–2483 (1995).

  64. 64.

    , & Indole diterpenoid synthetic studies. The total synthesis of (+)-nodulisporic acid F. Org. Lett. 8, 1665–1668 (2006).

  65. 65.

    et al. Indole diterpene synthetic studies. Total synthesis of (+)-nodulisporic acid F and construction of the heptacyclic cores of (+)-nodulisporic acids A and B and (−)-nodulisporic acid D. J. Org. Chem. 72, 4596–4610 (2007).

  66. 66.

    et al. Design, synthesis, and validation of an effective, reusable silicon-based transfer agent for room-temperature pd-catalyzed cross-coupling reactions of aryl and heteroaryl chlorides with readily available aryl lithium reagents. J. Am. Chem. Soc. 138, 1836–1839 (2016).

  67. 67.

    & Recyclable polystyrene-supported siloxane-transfer agent for palladium-catalyzed cross-coupling reactions. Org. Lett. 16, 2070–2073 (2014).

  68. 68.

    & Copper-catalyzed electrophilic amination of organolithiums mediated by recoverable siloxane transfer agents. Org. Lett. 15, 4872–4875 (2013).

  69. 69.

    & Polymer-supported siloxane transfer agents for pd-catalyzed cross-coupling reactions. Org. Lett. 15, 4258–4261 (2013).

  70. 70.

    , , & The design, synthesis and validation of recoverable and readily reusable siloxane transfer agents for pd-catalyzed cross-coupling reactions. Org. Lett. 15, 2454–2457 (2013).

  71. 71.

    , , , & Unification of anion relay chemistry with the Takeda and Hiyama cross-coupling reactions: identification of an effective silicon-based transfer agent. J. Am. Chem. Soc. 134, 4533–4536 (2012).

  72. 72.

    & Palladium catalyzed alkenyl amination: from enamines to heterocyclic synthesis. Chem. Commun. 4891–4901 (2005).

  73. 73.

    , , & Cascade alkenyl amination/Heck reaction promoted by a bifunctional palladium catalyst: a novel one-pot synthesis of indoles from o-haloanilines and alkenyl halides. Chem. Eur. J 11, 2276–2283 (2005).

  74. 74.

    , , & Enantioselective synthesis of 2-alkyl-2-cyanocycloalkanones with a quaternary stereogenic center. Synthesis 1993, 725–728 (1993).

  75. 75.

    , & Intramolecular biaryl coupling: Asymmetric synthesis of the chiral b-ring diol unit of pradimicinone. Tetrahedron Lett. 31, 161–164 (1990).

  76. 76.

    , & Palladium-catalyzed cross coupling of allyl halides with organotin reagents: a method of joining highly functionalized partners regioselectively and stereospecifically. J. Am. Chem. Soc. 106, 4833–4840 (1984).

  77. 77.

    , , & Reactions of organic halides with R3 MMR3 compounds (M=Si, Ge, Sn) in the presence of tetrakis(triarylphosphine)palladium. J. Organomet. Chem. 117, C55–C57 (1976).

  78. 78.

    & Equilibrium ring-closing metathesis. Chem. Rev. 109, 3783–3816 (2009).

  79. 79.

    & Synthesis of oxygen- and nitrogen-containing heterocycles by ring-closing metathesis. Chem. Rev. 104, 2199–2238 (2004).

  80. 80.

    Catalytic ring-closing metathesis: a new, powerful technique for carbon–carbon coupling in organic synthesis. Angew Chem. Int. Ed. 34, 1833–1836 (1995).

  81. 81.

    , , , & Nonproductive events in ring-closing metathesis using ruthenium catalysts. J. Am. Chem. Soc. 132, 8534–8535 (2010).

  82. 82.

    , & Design and preparation of new palladium precatalysts for C-C and C-N cross-coupling reactions. Chem. Sci. 4, 916–920 (2013).

  83. 83.

    , & A new palladium precatalyst allows for the fast suzuki−miyaura coupling reactions of unstable polyfluorophenyl and 2-heteroaryl boronic acids. J. Am. Chem. Soc. 132, 14073–14075 (2010).

  84. 84.

    , & A new class of easily activated palladium precatalysts for facile c−n cross-coupling reactions and the low temperature oxidative addition of aryl chlorides. J. Am. Chem. Soc. 130, 6686–6687 (2008).

  85. 85.

    , & Phosphororganische verbindungen, xii. Phosphinoxyde als olefinierungsreagenzien. Chem. Ber. 91, 61–63 (1958).

  86. 86.

    & The utility of phosphonate carbanions in olefin synthesis. J. Am. Chem. Soc. 83, 1733–1738 (1961).

  87. 87.

    , , , & Total synthesis of (−)-nodulisporic acid d. J. Am. Chem. Soc. 137, 7095–7098 (2015).

  88. 88.

    , & Total synthesis of the tremorgenic indole diterpene paspalinine. Angew. Chem. Int. Ed. 51, 12833–12836 (2012).

  89. 89.

    , & Cuprous chloride accelerated stille reactions. A general and effective coupling system for sterically congested substrates and for enantioselective synthesis. J. Am. Chem. Soc. 121, 7600–7605 (1999).

  90. 90.

    , & Palladium-catalyzed allylation of ketones and aldehydes via allyl enol carbonates. Tetrahedron Lett. 24, 1793–1796 (1983).

  91. 91.

    et al. Total syntheses of anominine and tubingensin A. J. Am. Chem. Soc. 134, 8078–8081 (2012).

  92. 92.

    et al. New type indole diterpene, eujindoles, from eupenicillium javanicum. Heterocycles 83, 351–356 (2011).

  93. 93.

    , & Two new eujindoles from eupenicillium javanicum. Heterocycles 83, 1867–1871 (2011).

  94. 94.

    , , & Nominine: A new insecticidal indole diterpene from the sclerotia of aspergillus nomius. J. Org. Chem. 54, 2530–2532 (1989).

  95. 95.

    , , & Tubingensin a: An antiviral carbazole alkaloid from the sclerotia of aspergillus tubingensis. J. Org. Chem. 54, 4743–4746 (1989).

  96. 96.

    , , , & Homolytic carbocyclization by use of a heterogeneous supported organotin catalyst. A new synthetic route to 2-alkoxytetrahydrofurans and γ-butyrolactones. J. Am. Chem. Soc. 104, 5564–5566 (1982).

  97. 97.

    , , , & General synthetic route to γ-butyrolactones via stereoselective radical cyclization by organotin species. J. Chem. Soc. Perkin Trans. 1, 1351–1356 (1986).

  98. 98.

    , , & Free-radical cyclization of bromo acetals. Use in the construction of bicyclic acetals and lactones. J. Am. Chem. Soc. 105, 3741–3742 (1983).

  99. 99.

    , & Facile palladium-catalyzed decarboxylation reaction of allylic β-keto esters. J. Org. Chem. 50, 3416–3417 (1985).

Download references

Acknowledgements

It is a pleasure to acknowledge the long-term support of the above investigations in our laboratory to the National Institute of Health (National Institute of Neurology, Communicative Disorders and Stroke and National Institute of General Medical Science) through Grants 18254 and 29028, respectively, and to the Merck Research Laboratory and to Bristol-Myers Squibb Pharmaceutical Research Institute.

Author information

Affiliations

  1. Department of Chemistry, Laboratory for Research on the Structure of Matter, and Monell Chemical Senses Center, University of Pennsylvania, Philadelphia, PA, USA

    • Yike Zou
    •  & Amos B Smith III

Authors

  1. Search for Yike Zou in:

  2. Search for Amos B Smith in:

Competing interests

The authors declare no conflict of interest.

Corresponding author

Correspondence to Amos B Smith III.

About this article

Publication history

Received

Revised

Accepted

Published

DOI

https://doi.org/10.1038/ja.2017.94