NOTE

Biochemical characterization of CTX-M-166, a new CTX-M β -lactamase produced by a commensal *Escherichia coli* isolate

Vera Manageiro^{1,2}, Rafael Graça¹, Eugénia Ferreira¹, Lurdes Clemente³, Richard Bonnet⁴ and Manuela Caniça¹

The Journal of Antibiotics (2017) 70, 809-810; doi:10.1038/ja.2017.42; published online 5 April 2017

Animals are potential reservoirs of antimicrobial-resistant bacteria.^{1,2} Studies have shown that different bacterial species of animal origin carry oxyimino- β -lactam resistance determinants, including CTX-M-type β -lactamases.^{3,4} Following the alarming emergence of these enzymes in veterinary isolates, the use of ceftiofur and cefquinome to treat animal infections has become compromised.

Ceftiofur is a third-generation cephalosporin, a critically important class of antibiotics to human health. Nevertheless, in cattle, ceftiofur is the most widely used antibiotic for the treatment of common diseases.⁵ Consequently, several studies demonstrated that ceftiofur treatment resulted in increases in resistance to β -lactams and multidrug resistance.^{6–8}

In this study, we biochemically characterized the new CTX-M-166 β -lactamase detected in a ceftiofur-resistant *Escherichia coli* recovered in May 2014 from a 6-week-old *Gallus gallus* broiler flock in an industrial poultry unit in the central region of Portugal.

E. coli INSLV13072 was non-susceptible to ampicillin (MIC>64 mg l⁻¹) and oxyimino cephalosporins (>32 mg l⁻¹ for ceftiofur, 8 mg l⁻¹ for ceftotaxime, 4 mg l⁻¹ for ceftopime and 1 mg l⁻¹ for ceftazidime) but susceptible to carbapenems and colistin. The MICs of ceftazidime and ceftotaxime were reduced by clavulanic acid (≤ 0.125 and ≤ 0.06 mg l⁻¹, respectively).

The *bla*_{CTX-M-166} gene differed from *bla*_{CTX-M-1} by one-point mutation, which led to the amino acid substitution Ala120Val. To our knowledge, this is the first recorded observation of this mutation.

The kinetic parameters of the purified CTX-M enzymes (purity rate $\ge 95\%$) (data not shown) and the concentrations of inhibitors required to inhibit enzyme activity by 50% (IC₅₀s) are shown in Table 1. CTX-M-166 had strong affinity to penicillin ($K_{\rm m}$, 14 to 8 µM), piperacillin ($K_{\rm m}$, 6 to 3 µM), cefotaxime ($K_{\rm m}$, 127 to 69 µM) and ceftiofur ($K_{\rm m}$, 46 to 15 µM). However, catalytic efficiency against these antibiotics was lower for CTX-M-166 than for CTX-M-1. Notably,

CTX-M-166 had the least decrease in catalytic efficiency against ceftiofur (30.2%) compared with that of CTX-M-1, whose value was set at 100% (Table 1). In contrast, the new enzyme had only 2.7% of catalytic efficiency for amoxicillin in comparison with the parental enzyme. No hydrolysis was detected against ceftazidime or imipenem. Inhibition studies, as measured by determination of the IC_{50s} , showed that CTX-M-1 and CTX-M-166 were both inhibited by clavulanic acid (0.031 and 0.030 μ M, respectively) and tazobactam (0.007 and 0.005 μ M, respectively).

The Ala120Val amino acid substitution, distant to the catalytic site, is located in an α -helix involved in the positioning of the loop harbouring the conserved element Ser-Asp-Asn, which has a major role in proton transfer during the catalytic pocket in class A enzymes.⁹ The Ala120 residue is highly conserved in all CTX-M groups, except for CTX-M-25-group, were it is replaced by a glycine.¹⁰ The alanine-to-valine substitution represents an alteration to a non-reactive amino acid that is often associated with binding/recognition of hydrophobic ligands such as lipids and thus involved in increasing the flexibility of protein.¹¹ The impact of this alteration could become more relevant with the accumulation of mutations affecting enzyme activity and resistance phenotype, which might arise due to antibiotic selection pressure.

EXPERIMENTAL PROCEDURE

Antibiotic susceptibility and molecular characterization

MICs of the clinical *E. coli* INSLV13072 isolate were determined by both agar dilution and microdilution methods to: ampicillin, cefotaxime, ceftazidime, cefotaxime/clavulanate, ceftazidime/clavulanate, cefepime, imipenem, meropenem, ertapenem, ciprofloxacin, gentamicin, chloramphenicol, trimethoprim, colistin and tigecycline. The interpretation of susceptibility results was performed

E-mail: manuela.canica@insa.min-saude.pt

¹National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal; ²Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, Oporto, Portugal; ³INIAV— Instituto Nacional de Investigação Agrária e Veterinária, Oeiras, Portugal and ⁴Clermont Université, Université d'Auvergne, Evolution des Bactéries Pathogènes et Susceptibilité de l'Hôte, Clermont-Ferrand, France

Correspondence: Professor M Caniça, National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Av. Padre Cruz, Lisbon 1649-016, Portugal.

Received 20 December 2016; revised 20 February 2017; accepted 28 February 2017; published online 5 April 2017

Table 1 Kinetic parameters of CTX-M-166 and CTX-M-1 β-lactamases

Substrate	CTX-M-1ª			CTX-M-166ª			
	k_{cat} (s ⁻¹)	K _m (μM)	$k_{cat}/K_m \ (\mu M^{-1} \ s^{-1})$	k_{cat} (s ⁻¹)	K _m (μM)	$k_{cat}/K_m \ (\mu M^{-1} \ s^{-1})$	Efficiency ^b (%)
Penicillin G	87.7±1.8	14 ± 0.5	6.453	8.2±0.2	8±0.03	0.996	15.4
Amoxicillin	31.4 ± 0.6	10 ± 0.3	3.097	3.1 ± 0.1	37 ± 0.6	0.084	2.7
Ticarcillin	7.3 ± 0.4	21 ± 0.1	0.354	0.5 ± 0.002	21 ± 0.03	0.024	6.8
Piperacillin	32.7 ± 1.2	6 ± 0.5	5.512	2.4 ± 0.01	3 ± 0.2	0.685	12.4
Cephalothin	598.4 ± 95.1	57 ± 3.0	10.683	81.1 ± 1.4	85 ± 2.3	0.954	8.9
Cefuroxime	77.6 ± 2.7	17 ± 0.5	4.543	8.0 ± 0.7	36 ± 0.5	0.225	5.0
Cefotaxime	129.9 ± 0.6	127 ± 1.9	1.021	8.3 ± 0.3	69 ± 1.8	0.124	12.2
Ceftazidime	< 0.01	170 ± 2.5	0.000	< 0.01	ND	ND	ND
Ceftiofur	5.5 ± 0.4	46 ± 1.1	0.120	0.6 ± 0.004	15 ± 0.3	0.036	30.2
Cefepime	2.3 ± 0.6	26 ± 0.6	0.089	1.6 ± 0.2	102 ± 3.0	0.015	17.3
Aztreonam	2.1 ± 0.006	29 ± 0.7	0.073	0.2 ± 0.005	41 ± 0.1	0.005	7.0
Imipenem	< 0.01	107 ± 8.7	< 0.001	< 0.01	ND	ND	ND

Abbreviation: ND, not determinable because the hydrolysis rates were too low.

^aValues are means±s.d. ^bEfficiency of CTX-M-166 compared with that of CTX-M-1, which was set at 100%.

according to the epidemiological cut-off values of the European Committee on Antimicrobial Susceptibility Testing.¹²

 $\beta\text{-Lactamase-encoding genes were identified by PCR and confirmed by sequencing, as previously described.^{13}$

Cloning experiments

For comparison, CTX-M-166 (from INSLV13072) and CTX-M-1 (from INSLV21400) were expressed in an isogenic background. The Zero Blunt PCR Cloning Kit (Invitrogen, Carlsbad, CA, USA) was used to clone CTX-M-type PCR fragments into plasmid *pCR-Blunt*. Recombinant pCR-CTX-M-type plasmids were transformed by heat-shock transformation of chemically competent *E. coli* One Shot TOP10 cells. *E. coli* transformants were selected on MacConkey agar supplemented with $30 \text{ mg} \text{ l}^{-1}$ of kanamycin and $2 \text{ mg} \text{ l}^{-1}$ of cefotaxime. The presence and orientation of the inserted genes was confirmed by PCR as above described.

Purification of β-lactamases

CTX-M-166 and CTX-M-1 β -lactamases were produced overnight, at 37 °C, from *E. coli* One Shot TOP10 in LB broth, supplemented with 2 mg l⁻¹ cefotaxime. Both enzymes were extracted by ultrasonic treatment and the clarified supernatant was purified by ion exchange and gel filtration chromatography as described elsewhere.¹⁴

Determination of β -lactamase kinetic constants

 $K_{\rm m}$ and catalytic activity ($k_{\rm cat}$) of CTX-M-1 and CTX-M-166, and the concentrations of the inhibitors (clavulanate and tazobactam) required to inhibit enzyme activity by 50% (IC₅₀) were determined by a computerized microacidimetric method, as described elsewhere.¹⁴ Specific activity and IC₅₀ were monitored with penicillin G (200 μ M) as the reporter substrate.

Nucleotide sequence accession number

The *bla*_{CTX-M-166} nucleotide sequence was submitted to DDBJ/EMBL/ GenBank with accession number NG_048951.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

We thank Fundação para a Ciência e a Tecnologia (FCT) for project grant PEst-OE/AGR/UI0211/2011–2014, Strategic Project UI211-2011-2014. VM was supported by FCT fellowship (grant SFRH/BPD/77486/2011), financed by the European Social Funds (COMPETE-FEDER) and national funds of the Portuguese Ministry of Education and Science (POPH-QREN).

- Caniça, M. et al. Current perspectives on the dynamics of antibiotic resistance in different reservoirs. Res. Microbiol. 166, 594–600 (2015).
- 2 EFSA/ECDC. The European Union Summary Report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2012. EFSA J. 12, 3590 (2014).
- 3 Nicolas-Chanoine, M.-H., Bertrand, X. & Madec, J.-Y. Escherichia coli ST131, an intriguing clonal group. *Clin. Microbiol. Rev.* 27, 543–574 (2014).
- 4 Trott, D. Beta-lactam resistance in gram-negative pathogens isolated from animals. *Curr. Pharm. Des.* **19**, 239–249 (2013).
- 5 Hornish, R. E. & Kotarski, S. F. Cephalosporins in veterinary medicine—ceftiofur use in food animals. *Curr. Top. Med. Chem.* 2, 717–731 (2002).
- 6 Chambers, L. *et al.* Metagenomic analysis of antibiotic resistance genes in dairy cow feces following therapeutic administration of third generation cephalosporin. *PLoS ONE* **10**, e0133764 (2015).
- 7 Donaldson, S. C. et al. Molecular epidemiology of ceftiofur-resistant Escherichia coli isolates from dairy calves. Appl. Environ. Microbiol. 72, 3940–3948 (2006).
- 8 Jiang, X., Yang, H., Dettman, B. & Doyle, M. P. Analysis of fecal microbial flora for antibiotic resistance in ceftiofur-treated calves. *Foodborne Pathog. Dis.* 3, 355–365 (2006).
- 9 Matagne, A., Lamotte-Brasseur, J. & Frere, J. M. Catalytic properties of class A beta-lactamases: efficiency and diversity. *Biochem. J.* 330, 581–598 (1998).
- 10 D'Andrea, M. M., Arena, F., Pallecchi, L. & Rossolini, G. M. CTX-M-type β -lactamases: a successful story of antibiotic resistance. *Int. J. Med. Microbiol.* **303**, 305–317 (2013).
- 11 Betts, M., Russell, R. in *Bioinformatics for geneticists: A bioinformatics primer for the analysis of genetic data* (ed. Barnes, M. R.) (John Wiley & Sons, Ltd., 2007).
- 12 EUCAST. MIC distributions and ECOFFs. http://mic.eucast.org/Eucast2/ (2016).
- 13 Clemente, L. et al. Occurrence of extended-spectrum β-lactamases among isolates of Salmonella enterica subsp. enterica from food-producing animals and food products, in Portugal. Int. J. Food Microbiol. 167, 221–228 (2013).
- 14 Manageiro, V. *et al.* Characterization of the inhibitor-resistant SHV β -lactamase SHV-107 in a clinical *Klebsiella pneumoniae* strain coproducing GES-7 enzyme. *Antimicrob. Agents Chemother.* **56**, 1042–1046 (2012).