REVIEW ARTICLE

The master regulator PhoP coordinates phosphate and nitrogen metabolism, respiration, cell differentiation and antibiotic biosynthesis: comparison in *Streptomyces coelicolor* and *Streptomyces avermitilis*

Juan F Martín¹, Antonio Rodríguez-García^{1,2} and Paloma Liras¹

Phosphate limitation is important for production of antibiotics and other secondary metabolites in *Streptomyces*. Phosphate control is mediated by the two-component system PhoR-PhoP. Following phosphate depletion, PhoP stimulates expression of genes involved in scavenging, transport and mobilization of phosphate, and represses the utilization of nitrogen sources. PhoP reduces expression of genes for aerobic respiration and activates nitrate respiration genes. PhoP activates genes for teichuronic acid formation and reduces expression of genes for phosphate-rich teichoic acid biosynthesis. In *Streptomyces coelicolor*, PhoP repressed several differentiation and pleiotropic regulatory genes, which affects development and indirectly antibiotic biosynthesis. A new bioinformatics analysis of the putative PhoP-binding sequences in *Streptomyces avermitilis* was made. Many sequences in *S. avermitilis* genome showed high weight values and were classified according to the available genetic information. These genes encode phosphate scavenging proteins, phosphate transporters and nitrogen metabolism genes. Among of the genes highlighted in the new studies was *aveR*, located in the avermectin gene cluster, encoding a LAL-type regulator, and *afsS*, which is regulated by PhoP and AfsR. The sequence logo for *S. avermitilis* PHO boxes is similar to that of *S. coelicolor*, with differences in the weight value for specific nucleotides in the sequence. *The Journal of Antibiotics* (2017) **70**, 534–541; doi:10.1038/ja.2017.19; published online 15 March 2017

INTRODUCTION

Phosphate is one of the essential nutrients of all living beings. In early studies, Martín and Demain¹ reported that, following phosphate starvation, there is a change in the metabolism of the antibiotic producing strains, which causes the slowdown of primary metabolism and triggers production of secondary metabolites. This early hypothesis has been largely confirmed by the research developed in the last few decades and is discussed in more detail below taking into account recent developments in the coordination of secondary metabolism. The aim of this article is to present an up-to-date integrative view of the PhoP regulation of metabolism in *Streptomyces*.

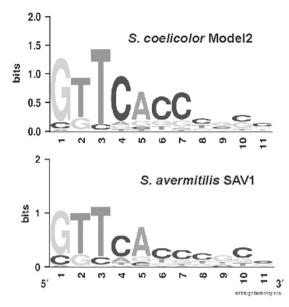
Genetic basis of phosphate control of metabolism

In 2003, Sola-Landa *et al.*² reported that the two-component system PhoR-PhoP controls not only primary metabolism but also the biosynthesis of the pigmented antibiotics actinorhodin and undecylprodigiosin in *Streptomyces lividans.*^{2,3} The two-component PhoR-PhoP study was later extended to *S. coelicolor,*^{4,5} *Streptomyces natalensis,*⁶ *Streptomyces clavuligerus*⁷ and some other *Streptomyces* species, including recently *S. avermitilis.*⁸

The *Streptomyces* PhoR-PhoP system belongs to classIIIA of two-component systems.^{9–11} PhoR is a membrane sensor kinase of

426 amino acids (45.3 kDa), with a single transmembrane domain and a stretch of hydrophobic amino acids for membrane interaction. PhoP is a 223 amino acids protein (24.7 kDa), member of the OmpR family of DNA-binding response regulators.¹²

Under Pi starvation conditions, the PhoR sensor kinase selfphosphorylates, and then transfers its phosphate group to PhoP.¹³ In all the text, we refer to the phosphorylated form of PhoP (PhoP-P) as regulator, but for the sake of simplicity we will use the term PhoP. The phosphorylated PhoP binds specific sequences named PHO boxes and activates or, in some cases, represses the expression of genes under direct control of PhoP, which forms the *pho* regulon.¹⁴


The *Streptomyces* PHO boxes are formed by direct repeat units (DRus) of 11 nucleotides, seven nucleotides being well conserved; other characteristics of the PHO boxes have been described previously.^{15,16} In *S. coelicolor*, the most conserved sequence is GTTCACC, obtained from the alignment of the PhoP-binding sites of the best studied PhoP-regulated genes.^{5,16,17} The sequence logo representing the PhoP-binding DRus is shown in Figure 1. Two DRus are required for binding of PhoP to DNA; one DRu is not sufficient.⁵ Using theory-based model,¹⁸ it was possible to calculate a Ri value, (the information content) for each PHO box. The Ri values reflect the sequence conservation; key nucleotides for binding tend to be more conserved.

¹Microbiology Area, Department of Molecular Biology, University of León, León, Spain and ²Instituto de Biotecnología de León, INBIOTEC, León, Spain

Dedicated to Prof Satoshi Omura for his friendship.

Correspondence: Professor JF Martín, Microbiology Area, Department of Molecular Biology, University of León, Campus de Vegazana s/n, León 24007, Spain. E-mail: jf.martin@unileon.es

Received 11 October 2016; revised 16 January 2017; accepted 26 January 2017; published online 15 March 2017

Figure 1 Comparative logos of a DRu in the Pho boxes of *S. coelicolor* (upper panel) and *S. avermitilis* (lower panel). The frequency of a nucleotide in each position is represented by the height of the letter at that position. A full color version of this figure is available at *Journal of Antibiotics* online.

On the basis of their Ri values and their arrangement, the DRus in the binding sites were classified in several types: core DRus are those well conserved, showing positive Ri values and non-core DRus (so-called extension units) deviate to some degree from the consensus sequences. Allenby *et al.*¹⁹ reported the presence of a 9 nucleotides motif in 150 out of 333 PhoP-ChIP enriched sequences. This motif appear to correspond to core DRus.

Initially, PhoP was found to be a positive regulator that was involved in activation of phosphate metabolism genes (see below), but more recent evidence indicates that is also able to repress some genes involved in primary metabolism and in the biosynthesis of secondary metabolites. In fact, when PhoP binds to the -35 region of the promoters of PhoP-regulated genes, it acts as an activator by recruiting RNA polymerase to the promoter regions, whereas when it binds to the -10 regions, or inside the open reading frame, usually it works as a repressor by preventing transcription.^{19–21}

THE pho REGULON: PhoP-REGULATED GENES

Transcriptomic studies, footprinting assays and *in vivo* expression studies with reporter genes allowed the initial identification of about 50 genes, which are regulated by PhoP and form the core of the *pho* regulon.¹⁷ A list of relevant genes regulated by PhoP is shown in Table 1 and a summary of downregulated and upregulated genes is shown in Figure 2. New approaches using chromatin immunoprecipitation (ChIP-on-chip) have enlarged the scope of these studies.¹⁹

Phosphate scavenging, transport, storage and mobilization

Rodríguez-García *et al.*,⁴ in phosphate shift-down experiments using transcriptomic and proteomic analysis, discovered that the primary response to *phoP* deletion in *S. coelicolor* was the increase in expression of many genes that are involved in phosphate scavenging, transport, storage and mobilization. The primary targets of PhoP regulation were genes encoding phosphatases, including *phoA*, *phoC*, the phospholipase *phoD*¹⁵ and the phytase-encoding gene, *phyA*.²² The *S. coelicolor* and *S. lividans phyA* expression is regulated by phosphate, its transcription is PhoP-dependent and there is a PHO box in the promoter region of the *phyA* gene.^{4,22}

Two major phosphate transport systems are present in *Streptomyces* species, the high-affinity *pstSCAB* (phosphate specific transport) and the low-affinity *pit* (inorganic phosphate transport). The main phosphate transport system, *pstSCAB*, is a clear target for PhoP. Indeed, *pstS* is the most highly induced gene in *S. coelicolor* following inorganic phosphate depletion, up to 240-fold expression increase. PHO boxes have been identified in the promoter region of the *pstSCAB* cluster⁵ and an internal PHO box has been proposed.¹⁹ In addition, one of the *pit* genes, *pitH2*, which encodes a low-affinity phosphate transport system, is also upregulated by PhoP.¹⁶

Another enzyme involved in phosphate storage and mobilization that is upregulated by PhoP after phosphate depletion is the polyphosphate kinase encoded by the *ppk* gene.²³ This protein has three enzyme activities: polyphosphate synthase, polyphosphate hydrolase and phospholipase.^{24,25}

Oxidative phosphorylation and nitrate respiration genes

Another important class of genes regulated by inorganic phosphate, whose expression is mediated by PhoP, are the oxidative phosphorylation genes, including several cytocrome C and B oxidase complexes, NADH dehydrogenase complex, succinate dehydrogenase and genes for nitrate respiration (Table 1). Several of these genes are also regulated by the redox response regulator Rex.²⁶ Most of the oxidative phosphorylation genes have a profile that indicates that they are repressed by PhoP following phosphate depletion, whereas the nitrate reductase genes are activated.^{4,19} These results suggest that depletion of phosphate results in a switch from aerobic respiration to nitrate respiration.

Interestingly, a set of genes that forms the F_oF_1 -ATP synthase cluster (*atpBFHAGD*) shows the same transcription decrease, both in the wild-type strain and the $\Delta phoP$ mutant, following phosphate starvation. This indicates that the ATP syntase components are not regulated directly by PhoP, although they respond to phosphate limitation. However, ChIP-on-chip experiments have shown that PhoP binds to the ATP synthase promoter.¹⁹

Genes involved in protein synthesis and RNA polymerase subunits formation

Most of the 62 genes in this class, largely integrated in 11 clusters,⁴ decrease clearly their expression following phosphate starvation, indicating that primary metabolism is switched off upon inorganic phosphate depletion. Most of the genes involved in protein synthesis and amino acid metabolism are not regulated directly by PhoP, but some others, respond to PhoP by activating their expression. Important amino acid related genes, downregulated by PhoP, are the glutamine synthetase genes (see below).

Genes for teichuronic and teichoic acid synthesis

Cell wall teichuronic acids are phosphate free, but teoichoic acids are phosphate rich and, when the cell is deprived of inorganic phosphate, teichoic acids may serve as phosphate reserve material. A set of genes, tentatively encoding enzymes for teichuronic acid biosynthesis,²⁷ are activated by PhoP following phosphate starvation and contain PhoP-binding sites in their promoter regions, and some genes, presumably involved in teichoic acid biosynthesis, are repressed by phosphate depletion.^{4,19}

Genes for iron metabolism and oxidative stress

In several bacteria, it is well known that phosphate limitation triggers oxidative stress. This is likely due to changes in the iron metabolism, since excess of iron in the cell causes the Fenton effect that results in

Function	Gene Down-regulated in the wild type	Gene Up-regulated in the wild type
Amino acid biosynthesis	hisC2, aspC, SC00992, SC03792	gluABCD, ask, sahH, trpE
Protein synthesis: Ribosomal proteins,	TU-1, ts, fusA	rpmF
Translational factors, aa-tRNA synthesis, protein	aspS	rpIBCDMNOPQRSTVWX, rpsCJEHKMNQS rpmDCI
maturation, rRNA modification,Transcription	serS	fusA, rpoA, rpoB, rpoC, ssb, moA
Nucleotides metabolism	pyrR, purEFM	purQ purH purL pyrH
Respiration	qcrA, qcrC, cox1, cydB,	narK2, G2, H2, G3, I3, H, G; SC00212,
	SC03965 to SC03968	SC00922 to SC00924
	SCO4562-SCO4575 (NADH DH),	
	SC02148, SC02151 and SC02155-SC02166 (Cytochrome	
	C and B complexes), SCO4855-SCO4858 (Succinate DH)	
	SC05366-5374 (F-type ATPase)	
Cell envelope biosynthesis	SC06021-SC06025 (partially)	SCO4873-SCO4881 (including neuAB)
Oxidative Stress and Iron metabolim	cchFEB, trxC, ahpC, rsrA	<i>cpeB,</i> SC02114, SC00380
Nitrogen metabolism	gInA, gInII, amtB, gInK, SCO2197, SCO2199	
Phosphate metabolism	phoH, SCO2533	pstSCAB, phoU, phoRP, phyA, phoA, phoC, phoD, pitH2 SC01565, SC01968, SC07697
Morphological differentiation	chpC, wblA, wblC, SC05189, SC05191, SC07251,	sigU
	SCO7252, bldA, bldC, bldD, bldK, bldM, cdgA, cdgB	
Secondary metabolism	cdaR, scbR-scbA	redDGHKMNPQYX ^b
	redDGHKMNPQYX ^a	cpkAIJK ^b
	cpkAIJK ^a	

Table 1 Genes up-regulated and down-regulated by PhoP under phosphate limiting conditions in S. coelicolor

^aThis data are based on shift-down experiments of Rodríguez-García et al.⁴.

^bThis data are based on batch cultures studies of Allenby et al.¹

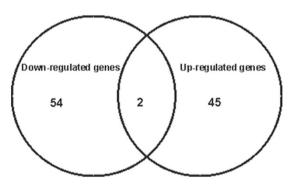


Figure 2 Summary of genes (or gene clusters, considered as a unit) that are downregulated or upregulated, respectively, by PhoP. Two genes clusters are transiently downregulated following phosphate starvation⁴ and upregulated by PhoP at later times in batch cultures.¹⁹

the formation of reactive oxygen species (ROS). The oxidative effect is reflected in the increase expression of the catalase/peroxidase gene cpeB. Indeed, following phosphate starvation expression of cpeB increases in the wild type but not in the $\Delta phoP$ mutant, indicating that cpeB expression is PhoP dependent.⁴ However, no conserved PHO boxes have been identified in its promoter, and their promoter was not enriched in the PhoP-ChIP experiment.¹⁹ Three genes involved in the biosynthesis of the siderophore coelichelin (cchBEF), which are known to be regulated by iron²⁸ appeared to be PhoPrepressed according to their profile in the parental strain and the mutant, although no evidence of PhoP binding has been reported.

CROSS REGULATION OF NITROGEN METABOLISM AND PhoP

Phosphate and the nitrogen sources control microbial growth in an interconnected manner. The central role in nitrogen metabolism is played by the glutamine synthetase (GS). S. coelicolor has five genes encoding GS-like proteins; two of them have been biochemically characterized and correspond to proteins that possess GS activity. They are glnA, which encodes a type I bacterial GS, and glnII, for an eukarvotic type GS. Nitrogen metabolism depends on the operon amtB-glnK-glnD coding for an ammonium transporter, a signal transmiter protein (PII) involved in the adenylation/deadenylation of the GS and a nucleotidyl transferase that modifies PII by adenylation, respectively.²⁹ Two regulatory genes, named glnR and glnRII, control expression of nitrogen metabolism genes. GlnR is an OmpR-family orphan response regulator with an HTH motif at the C-terminal end, which binds to GlnR-boxes located in the glnA, glnII, amtB and other nitrogen metabolism genes. The GlnR boxes are 22 nucleotide sequences with a conserved consensus TnAc-n6-GaAAc-n6 motif.³⁰ This motif has been updated by Sola-Landa et al.³¹ The binding site of the second regulator, GlnRII, is not well known.³² PhoP binds the glnR promoter, the promoters of glnA and glnII and the promoter region of the amtB-glnK-glnD operon. No binding of PhoP to the glnRII promoter was found under identical experimental conditions, both in S. coelicolor and S. avermitilis;^{4,8} however, Allenby et al.¹⁹ proposed, based on transcriptomic and ChIP-on-chip studies, that PhoP regulated also glnRII expression.

PhoP and GlnR compete to bind the same region of the glnA promoter, although GlnR shows higher affinity than PhoP. Binding experiments showed that PhoP binds not only the glnA promoter

region but also the promoters of *ureA*, *amtB*, *glnR* and other nitrogen regulated genes.³¹ In summary, PhoP controls nitrogen metabolism at two different levels: (1) repressing the general regulator encoding *glnR* gene and (2) repressing specific genes of nitrogen metabolism.

The biological function of this control is to coordinate the metabolism of phosphate and nitrogen sources to get a balance of the utilization of these nutrients for the growth of *Streptomyces*.

PhoP CONTROL OF ANTIBIOTIC AND OTHER SECONDARY METABOLITES BIOSYNTHESIS: INTERPLAY WITH OTHER REGULATORY FACTORS

As indicated above, the biosynthesis of antibiotics and other secondary metabolites has been known for many years to be negatively regulated by high concentrations of inorganic phosphate in the culture medium. However, the possibility that this control is exerted directly by PhoP has been a subject of debate.³³ Not all effects of inorganic phosphate are mediated by PhoP. Inorganic phosphate regulates secondary metabolism also at the translational/posttranslation levels and through the formation of biosynthetic precursors and intermediates. Phosphate shift-down experiments⁴ showed that some antibiotic gene clusters were regulated by PhoP. These include the undecylprodigiosin cluster (red) and to a lesser extend the actinorhodin (act) gene cluster. Ten genes of the *red* cluster show a transcriptional profile that indicates that they are activated by phosphate starvation and this activation is partially mediated by PhoP. In other words, these genes are not expressed during rapid growth phase and are induced following phosphate depletion, but the activation is higher in the S. coelicolor phoP mutant, suggesting that there is a transient repression exerted by PhoP. Allenby et al.¹⁹ in batch cultures of S. coelicolor confirmed this transient repression of pigmented antibiotics at the time of phosphate depletion.

On the other hand, in the shift-down experiments, some secondary metabolite genes were activated soon after (before 7.5 h) phosphate starvation. These include, a type III polyketide synthetase gene (SCO7221) involved in germicidin biosynthesis³⁴ activated following phosphate starvation, although PhoP has a limited effect. The same occurs to several cpk genes,^{4,9} involved in biosynthesis of the polyketide coelimycin P1,35 which includes an oxoacyl acyl carrier protein synthetase. Expression of the cpk cluster for coelimycin P1 biosynthesis is dependent of the phoP gene,¹⁹ although Rodríguez-García et al.4 found that the cpk genes are transiently downregulated by PhoP. An important observation is that PhoP binds massively to three sites internal to the cpk cluster that corresponds to cpkB and cpkC. The role of this large amount of PhoP bound to the cpk cluster region is not clear. Allenby et al.¹⁹ suggests that the binding of PhoP to this region may favour expression of the cluster by interacting with other regulatory proteins.

The first direct connection of the PhoP regulator with the control of antibiotic biosynthesis was made by Santos-Beneit *et al.*³⁶ when they proved that PhoP binds the same sequence in the *afsS* promoter as the cognate-regulator AfsR. AfsS is a small protein (63 amino acid) that activates expression of *actII-orf4* and *redD*, the cluster situated regulators of the actinorhodin and undecylprodigiosine biosynthetic clusters. PhoP was found to bind a PHO box overlapping with the sequence recognized by AfsR.^{36,37} Both PhoP and AfsR are positive regulators and compete for this sequence. Indeed, the affinity of AfsR for this PHO box is higher than that of PhoP, and therefore, PhoP interferes with optimal AfsR-mediated *afsS* expression. Therefore, PhoP mediates actinorhodin and undecylprodigiosine formation through the intermediation of AfsS. Additionally, PhoP interacts with other regulatory factors (see below) and therefore there is an interplay

of several regulators in the control of secondary metabolites biosynthesis.

Close to the *cpk* cluster are the divergently transcribed *scbR-scbA* genes whose intergenic region is a target for PhoP. ScbR has an important role in expression of γ -butyrolactone controlled genes, particularly the γ -butyrolactone synthase encoding gene *scbA*, and *cpkO*, encoding a pathway-specific regulator situated gene in the *cpk* cluster that is controlled by the γ -butyrolactone system. The *scbA* gene is downregulated by PhoP¹⁹ and therefore, PhoP indirectly affects formation of γ -butyrolactones and the coelymicin P1 regulator CpkO.

PhoP controls directly other cluster situated regulatory genes, as *cdaR*. This gene is located in the cluster for the calcium-dependent antibiotic, CDA, and has been observed to be repressed by PhoP. This is the first example of a gene located in an antibiotic gene cluster regulated directly by PhoP. In contrast, a transport gene (SCP3216) in this same cluster is activated by PhoP, suggesting that there is a complex balance in the expression of the *cda* biosynthesis and secretion genes.

In summary, the transcriptomic information available indicates that some clusters for secondary metabolites formation are PhoP activated following phosphate starvation, while others are transiently repressed by PhoP.

CELLULAR DIFFERENTIATION

The *phoP* mutant showed differential expression of some morphological differentiation and development genes. Eight genes involved in cellular differentiation were found to be regulated by phosphorylated PhoP.⁴ They include *sigU*,³⁸ encoding a sigma factor, and. the *chpC* gene for chaplin C, a protein involved in aerial mycelium formation.³⁹

Several developmental genes, which are involved in aerial mycelium formation and sporulation,⁴⁰ particularly *bldA*, *bldC*, *bldD*, *bldK* and *bldM* are PhoP regulated.⁴ PhoP binds to the promoters of these genes and repress their expression under conditions of phosphate limitation. This was confirmed also using ChIP-on-chip experiments.¹⁹ Furthermore, *bldA* encodes a tRNA^{leu} required for the expression of the rare TTA codon. The *bldA* gene is essential for the expression of *actII-orf4*, *redD* and several other regulatory genes that contains this codon, including some polyketide and non-ribosomal peptide biosynthetic genes. This observation indicates that PhoP controls indirectly antibiotic biosynthesis. In summary, PhoP in response to phosphate starvation represses many developmental genes and target regulatory genes, and therefore, indirectly, regulates antibiotic production in *S. coelicolor*.

BINDING OF TWO REGULATORY PROTEINS TO CLOSE POSITIONS IN THE PROMOTERS: CHROMATIN IMMUNOPRECIPITATION MAY TRAP PhoP WITH OTHER REGULATORY PROTEINS

Most of the initially characterized genes regulated by PhoP were related to the control of primary metabolism, particularly scavenging and assimilation of phosphate, and nitrogen sources transport and metabolism. More recently, Allenby *et al.*¹⁹ have studied the PhoP binding *in vivo* by using the ChIP-on-chip technology. This technology which uses immunoprecipitation of DNA and associated proteins allows the identification of DNA regions that bind PhoP. Using ChIP-on-chip these authors identified a large number of sequences putatively regulated by PhoP, confirming most of the genes previously described¹⁷ (Table 1).

As indicated above there is increasing evidence that some DNA regions contain sequences closely located to each other, for the binding of two or more different regulatory proteins, for example,

the genes for nitrogen metabolism frequently contain binding sequences for GlnR and PhoP, and the sequence-binding AfsR overlaps with a PhoP-binding site. Moreover, the oxidative phosphorylation genes contain sequences that are recognized by both, PhoP and the Rex regulator.²⁶ Similarly, in chitin metabolism, a regulatory protein, DasR, binds to promoter regions involved in N-acetylglucosamine metabolism that are also regulated by PhoP.⁴¹ The interaction of regulatory proteins may estabilize the binding of PhoP to weakly conserved PHO boxes and explains why there are so many PhoPbinding regions detected in the DNA by the ChIP-on-chip technique.

AVERMECTIN AND THE AVERMECTIN GENE CLUSTER IN Streptomyces avermitilis

Avermectin is a 16-membered pentacyclic lactone type I polyketide antibiotic discovered by the group led by Prof. Satoshi Omura.⁴² This compound is a very potent antihelmintic agent, active against nematode and arthropod parasites, with few side effects for the host.⁴³

The avermectin producing strain, S. avermitilis, has a genome of 9.0 Mb that includes gene clusters for several secondary metabolites.44 Genes for avermectin biosynthesis (ave) are clustered in a 90 kb DNA region. This region includes: (1) four large ORFs encoding the avermectin multifunctional polyketide synthase, required to synthesize the avermectin aglycon, (2) several genes for aglycon modifications (ketoreductases, SAM-dependent methyltransferases) and (3) seven genes for dTDP-oleandrose biosynthesis and transfer to the aglycon.⁴⁵ A cluster situated LAL-type regulatory gene, *aveR*, encodes a positive regulator essential for transcription of all ave genes, including the postpolyketide modification genes.46 Deletion of aveR or the AveR C-terminal HTH domain, results in lack of avermectin production, but this mutant overproduces the unrelated macrolide oligomycin. ChIP-on-chip experiments and promoter activity assays showed that the ave genes, for avermectin, and the olm genes, for oligomycin biosynthesis, were targets of AveR, leading to positive and negative regulation of these clusters, respectively.47

THE phoRP-phoU GENE CLUSTER IN S. avermitilis

The arrangement of the *phoRP-phoU* gene cluster in *S. avermitilis* is identical to that of *S. coelicolor*. Both *phoRP* genes are transcribed divergently from *phoU*. The PhoR protein has 425 amino acids and a molecular weight of 45.4 kDa, whereas the response regulator PhoP is a small protein of 223 amino acids and a deduced molecular weight of 24.7 kDa.

The PhoR sensor kinase and the PhoP protein of *S. avermitilis* are 89 and 98% identical in amino acids, respectively, to those of *S. coelicolor*.^{2,44} The extremely high conservation of PhoR, and particularly of PhoP, and the identical organization of the *phoRP-phoU* genes in *S. avermitilis, S. coelicolor, S. lividans* and in the sequenced genomes of other *Streptomyces*, indicates that these gene clusters have a very important role controlling the metabolism in *Streptomyces*. To characterize the role of PhoP in *S. avermitilis*, Yang *et al.*⁸ obtained a *phoP*-deleted mutant and validated this mutant in complementation studies.

RT-PCR expression studies in *S. avermitilis* indicated that four key genes of the *pho* regulon, namely *phoR*, *phoP*, *phoU* and *pstS*, are clearly regulated by the phosphate availability in the culture medium. These genes are highly expressed in phosphate depleted medium but are poorly expressed in phosphate supplemented medium. Purified recombinant GST-PhoP protein was found to bind efficiently the promoters of *phoPR*, *phoU* and *pstS* genes. Footprinting studies performed with the *phoRP-phoU* bidirectional promoter region

revealed that there are four direct repeated units (DRus) that form two complete PHO boxes. This repeated region was protected by PhoP, and indeed, up to four shifted bands were observed in gel retardation assays. The formation of up to four shifting bands suggest that there is a cooperative binding of more PhoP subunits, perhaps to less conserved sequences in the proximity.

Electrophoretic mobility shift studies revealed that PhoP binds also to promoters of several genes involved in nitrogen metabolism in *S. avermitilis*. These include *glnR*, *glnA* and *glnII* but not the second regulatory gene *glnRII*. These finding fully agree with the observations reported in *S. coelicolor*⁴⁸ and confirm that PhoP coordinates phosphate and nitrogen metabolism in *S. avermitilis*. PhoP in *S. avermitilis* also regulates several differentiation genes, including *bldC*, *bldD* and *bldM* as also observed in *S. coelicolor*.⁸

NEW BIOINFORMATICS ANALYSIS OF THE pho REGULON IN S. avermitilis

In order to take advantage of the knowledge gained on the *S. coelicolor* PhoP regulation, we performed new bioinformatic studies to identify and analyze possible PhoP-binding sites in the genome of *S. avermitilis.*

The program matrix-scan49 (www.rsat.eu) and the version 2 of S. coelicolor PhoP-binding sites model³¹ were used to find candidate sites in the S. avermitilis genome. The model 2 was used as a count matrix of 22 nt of length corresponding to one PHO box (2 DRus). In our study, the most highly conserved PHO box located in the pstS promoter (there are two putative boxes in its promoter region) had a weight of 13.6, and the two boxes of the phoR-phoU intergenic region had weight values of 9.8 and 3.1, respectively (see Table 2). A large number of sequences (25667) showed a weight value higher than 1. In order to find possible PHO boxes, the weight data were evaluated together with the information on the location of the candidate sequences (strand, distance to the translation start site), the experimental results of Yang et al.8 and the published information for the orthologous genes (KEGG orthology data used) of S. coelicolor. The following five filtering steps were conducted: (1) sequences showing weight values equal or higher than 10, located in genes with known S. coelicolor orthologue, which have experimental determination of the PhoP binding site (for example, phoD); (2) the same criteria as the previous step, but binding evidence limited to ChIP-onchip results (only selected the sequence of terA); (3) the sequence of galE6 was selected based on its high weight, although the rest of sequences with weight value equal or higher than 10 did not have a known orthologue in S. coelicolor; (4) sequences with weight values lower than 10 but with an orthologue and experimental data of PhoP binding in S. coelicolor (for example, pitH2); (5) finally, the sequences not picked up in the previous steps, but with experimental results of PhoP binding in S. avermitilis.8

The SAV1 PhoP biding site of S. avermitilis

From the above filtering steps, 35 sequences of 22 nt (2 DRus) were selected, corresponding to 29 genes (Table 2). The 11 nt repeated sequences were aligned and using the *weblogo* server (http://weblogo. berkeley.edu/) a logo of *S. avermitilis* PhoP-binding site was obtained. As depicted in Figure 1, the sequence logos for the *S. coelicolor* and *S. avermitilis* PhoP-binding sites are similar. The consensus sequences are the same in both species. The conservation of the sequences at each nucleotide position is indicated by the height of the letter stack. Thus, there are only minor differences between the logos of both *Streptomyces* species.

Phosphate metabolism PhoU Phosphate transport regulator phoU* SN3931 SC04228 phoU Phosphate transport regulator phoU* SN5915 SC02286 phoA Alkaline phosphatese phoD1 SN5931 SC03288 phoA Alkaline phosphatese phoD1 SN5915 SC02286 phoA Alkaline phosphatese phoD1 SN5913 SC00288 phoC Alkaline phosphatese phoD1 SN6419 SC01845 phtP Low-affinity phosphatese phoD1 SN44072 SC04142 Sc03790 Secreted phosphatese SAV_4405 SO03790 Soco1845 Secreted phosphatese Predicate phosphatese SAV_4405 SO03790 Soco1842 Soco1842 Soco1842 SAV_4405 SO03790 Soco184 Soco442 Soco442 SAV_4405 SO03790 Soco184 Soco444 Soco444 SAV_4405 SO03790 Socreted phosphatese Predicate phosphatese SAV_4405 SO0379 Soco184	d D D D D D D D D D D D D D D D D D D D	- 164						
SAV5915 SC02286 PhoA SAV5971 SC00828 PhoC SAV6139 SC02068 PhoC SAV6139 SC021845 phoD SAV6139 SC01845 phoD SAV4072 SC04142 pstS SAV405 SC03790 ghn2 SAV405 SC03790 ghn2 SAV405 SC04142 pstS SAV405 SC03790 ghn2 SAV405 SC03790 ghn4 SAV405 SC04159 ghn4 SAV406 SC04159 ghn4 SAV5093 SC04159 ghn4 SAV104 SC01236 ghn4 SAV104 SC01236 ghn4 SAV104 SC01236 ghn4 SAV505 SC04425 afSS SAV6861 SC04425 afSS SAV6861 SC01020 bhd0 SAV6861 SC01426 bhd0 SAV1662 SAV1662 SAV1662 SAV1662 SAV			t – 143	9.6	∞	CGTCGCCCAGAGTTCACCTGGG	abd	abcd
SAV5915 SC02286 phod SAV6139 SC02068 phod SAV6139 SC02068 phod SAV6139 SC02068 phod SAV6139 SC02068 phod SAV613 SC02068 phod SAV4072 SC01845 pstS SAV4072 SC014142 pstS SAV4072 SC014142 pstS SAV4072 SC014142 pstS SAV4042 SC014142 pstS SAV4042 SC011565 ghod Ametabolism SC01236 ghod metabolism SC01236 grod Ametabolism SC01236 ghod Ametabolism SC01236 grod Ametabolism SC01425 afsS Ametabolism SC01426 ghod Ametabolism SC04426 bhod Ametabolism SC04426 afsS Ametabolism SC04426 bhod Ametabolism SC04426 bhod		- 142			3.4	AGCTAGTAATGGTTCATTTGGG	abd	abcd
SAV5971 SC00828 phoc SAV6139 SC02068 phoc SAV6139 SC02068 phoc SAV4072 SC01845 pstS SAV4072 SC03790 pstS SAV4072 SC014142 pstS SAV4072 SC014142 pstS SAV4072 SC03790 gtnH2 SAV4072 SC011565 gtpC1 SAV4072 SC011565 gtpC1 SAV4042 SC01565 gtpC1 SAV1042 SC01565 gtpC1 SAV1042 SC01565 gtpC1 SAV1042 SC01536 gtpC1 SAV1042 SC01236 gtpC1 SAV104 SC01236 gtpC1 SAV104 SC01236 gtpC1 SAV1305 SC04405 gtpC1 SAV1427 SC01426 gtpC1 SAV1428 SC01426 btpC1 SAV1427 SC01426 btpC1 SAV1426 SC01426 btpC1 SAV1		- 185	5 -164	4	4.8	GTCTGCATGGCATTCATGGGCC		abd
SAV6139 SCO2068 phob SAV4072 SC01845 pitH2 SAV4072 SC01142 pstS SAV4072 SC01142 pstA SAV4072 SC011565 glpQ1 sAV2651 SC01565 glpQ1 sAV2651 SC01565 glpQ1 sAV1042 SC01558 amtB sAV1042 SC01558 amtB sAV1042 SC01259 ureA sAV1042 SC01236 ureA sAV104 SC01236 ureA sAV3805 SC04425 afSS sAV1661 SC01426 bldU sAV1661 SC05752 bldU sAV1662 SAV1662 NA sAV1662 SAV1662 SAV1662 sAV1662 SAV1662 SAV1665 SAV1662		-114		10.8	11.6	GTTCACCAGGTCTTCATCCATC		
SAV6419 SC01845 <i>pitH2</i> 5* SAV4072 SC04142 <i>pst5</i> 5* SAV4075 SC04142 <i>pst6</i> 5* SAV4075 SC04142 <i>pst6</i> 5* SAV4075 SC04142 <i>pst7</i> SAV4075 SC04156 <i>pst7</i> SAV4042 SC01565 <i>gln1</i> * SAV4042 SC01598 <i>gln4</i> * SAV4042 SC04159 <i>gln4</i> * SAV4095 SC04425 <i>afSS</i> * SAV4096 SC04426 <i>bld0</i> * SAV4998 SC04426 <i>bldC</i> * SAV4998 SC04768 <i>bldC</i> * SAV1661 SC0102020		-46	- 25	10	11.4	GTTCACCCGCTCTTCGCTCATA		abd
419 SCO1845 <i>pitH2</i> 072 SCO3790 <i>pstS</i> 405 SCO3750 <i>pstA</i> 784 SCO1565 <i>glpQ1</i> 997 SCO4159 <i>glnA</i> 997 SCO5108 <i>glnA</i> 104 SC01236 <i>glnA</i> 104 SC01236 <i>glnA</i> 104 SC01236 <i>glnA</i> 103 SC04129 <i>glnA</i> 104 SC01236 <i>ureA</i> 865 SC04425 <i>afSS</i> 861 SC014291 <i>bldC</i> 9861 SC044268 <i>bldA</i> 861 SC044263 <i>afSS</i> 861 SC044263 <i>bldA</i> 861 SC044263 <i>bldA</i> 861 SC04768 <i>bldA</i> 861 SC047691 <i>bldA</i> 935 SC044763 <i>bldA</i> 936 SC047691 <i>bldA</i> 937 SC04170 <i>afSA</i> 935 SC04879 <i>bldA</i> 935 SC04879 <i>bldA</i>								
419 SCO1845 <i>pitH2</i> 072 SCO3790 <i>pstS</i> 405 SCO3790 <i>pstA</i> 784 SCO1565 <i>glpQ1</i> 997 SCO5583 <i>amtB</i> 997 SCO5108 <i>glnA</i> 104 SCO1236 <i>glnA</i> 104 SCO1236 <i>ureA</i> 785 SCO4425 <i>afsS</i> 998 SCO4768 <i>bldM</i> 861 SCO4768 <i>bldM</i> 998 SCO4768 <i>bldM</i> 861 SCO4768 <i>bldM</i> 998 SCO4768 <i>bldM</i> 861 SCO4768 <i>bldM</i> 998 SC		- 76	- 55	6.7	6	GTTCGCCCGCTCTTCGTTCGTC		abd
419 SCO1845 <i>pitH2</i> 072 SCO3790 <i>pstS</i> 405 SCO3790 <i>pstA</i> 784 SCO1565 <i>glpQ1</i> 997 SCO4159 <i>glnA</i> 997 SCO4159 <i>glnA</i> 104 SCO1236 <i>glnA</i> 104 SCO1236 <i>glnA</i> 104 SCO1236 <i>glnA</i> 104 SCO1236 <i>glnA</i> 105 SCO4129 <i>glnA</i> 104 SCO1236 <i>ureA</i> 1035 SCO41236 <i>ureA</i> 805 SCO41236 <i>ureA</i> 805 SCO41236 <i>ureA</i> 861 SCO10200 <i>bldC</i> 998 SCO4768 <i>bldC</i> 998 SCO4768 <i>bldC</i> 998 SCO47691 <i>bldC</i> 998 SCO47691 <i>bldC</i> 998 SCO47691 <i>bldC</i> 998 SCO47768 <i>bldC</i> 998 SCO47768 <i>bldC</i> <								
072 SCO04142 <i>psts</i> 405 SCO03790 <i>glpQ1</i> 784 SCO1565 <i>glpQ1</i> 651 SCO5583 <i>amtB</i> 997 SCO5583 <i>amtB</i> 997 SCO5109 <i>glnA</i> 104 SCO1236 <i>glnA</i> 104 SCO1236 <i>ureA</i> 104 SCO1236 <i>glnA</i> 104 SCO1236 <i>ureA</i> 105 SCO2108 <i>glnA</i> 104 SCO1236 <i>ureA</i> 103 SCO1236 <i>ureA</i> 861 SCO1236 <i>ureA</i> 861 SCO1236 <i>bldM</i> 861 SCO1489 <i>bldC</i> 98 SCO4768 <i>bldC</i> 661 SCO6752 <i>662</i> 662 NA SCO4879 662 SCO4879 <i>bldC</i> 755 SCO4879 <i>bldC</i>					14.1	GTTCATCTTCCGTTCACCCAGG		abcd
405 SC03790 784 SC01565 g/pQ1 651 SC05583 amtB 042 SC04159 g/nR 997 SC04159 g/nR 005 SC02210 g/n/I 005 SC02198 g/nA 104 SC01236 ureA m (SM) 935 NA 935 NA afsS 935 SC04091 b/dC 938 SC04425 afsS 861 SC01489 b/dM 861 SC014091 b/dC 938 SC044051 b/dC 938 SC044051 b/dC 938 SC044255 afsS 662 NA SC01020 662 SC01020 b/dC 069 SC04170 SC04879 375 SC04879 b/dC	rotein D	'			14.8	GTTCACCTTCCGTTCACTCTCG	Ø	abd
784 SCO1565 g/pQ1 651 SCO5583 amtB 042 SCO4159 g/nR 997 SCO2109 g/n/R 005 SCO21036 g/n/R 104 SCO1236 ureA 105 SCO2108 g/n/R 935 NA g/n/R 935 NA g/n/R 935 SCO44255 af5S 805 SCO44268 b/n/M 936 SCO44255 af5S 861 SCO10200 661 662 NA b/n/D 662 SCO6752 662 855 SCO4879 b/n/D 755 SCO4879 b/n/D		- 93	- 72	14.8	14.9	GTTCACCCTCCGTTCAGCCGCA		abcd
784 SCO1565 glpQ1 651 SCO5583 amtB 042 SCO4159 glnR 997 SCO2109 glnI 005 SCO21036 glnA 104 SCO1236 ureA m (SM) 935 NA 935 NA afs2 805 SCO44255 afs5 805 SCO44268 bldM 9861 SCO1230 df4 861 SCO1489 bldM 861 SCO12020 df5 661 SCO6752 df6 662 SCO61702 df6 855 SCO4879 bldD								
651 SC05583 amtB 042 SC04159 glnR 997 SC02100 glnII 005 SC021036 glnA 104 SC01236 ureA 35 NA arss 935 NA arss 935 SC04425 arss 805 SC04426 bldM 9861 SC01020 bldM 861 SC01420 bldM 355 SC044768 bldM 9661 SC01020 arss 375 SC04879 bldD 375 SC04879 bldD	rr phosphodiesterase D			3.7	3.5	GTCACCCGTGTGTTCTGCCGCA		abd
651 SC05583 amtB 042 SC04159 gInR 997 SC02109 gInI 005 SC02198 gInA 104 SC01236 ureA 104 SC01236 ureA 1104 SC01236 ureA 935 NA arss 935 NA bidM 935 NA bidM 935 SC04425 arss 935 SC04425 arss 936 SC04426 bidM 937 SC04091 bidM 938 SC04426 bidM 938 SC04426 arss 937 SC04091 bidM 938 SC04476 bidM 938 SC04768 bidM 938 SC047702 bidM 9375 SC04879 bidM 9375 SC04879 bidM		-81	- 60	4.9	3.9	GGTCTCCCCTCCGTCACTCGAG		abd
651 SC05583 amt8 042 SC04159 glnR 997 SC02210 glnH 005 SC02198 glnA 104 SC01236 ureA 104 SC01236 ureA 105 SC01236 ureA 104 SC01236 ureA 105 SC04091 bldM 935 NA afss 861 SC01425 afss 861 SC014291 bldC 938 SC04425 afss 9427 SC01489 bldM 962 SC04752 662 662 NA 375 375 SC04879 sc0470								
SAV1695 SC04159 gIntl SAV4042 SC04159 gIntl SAV5997 SC02210 gIntl SAV5095 SC02198 gIntl SAV7104 SC01236 ured SAV7104 SC01236 ured SAV7104 SC01235 ured SAV1104 SC01235 ured SAV1305 SC04091 bldM SAV1305 SC04425 afs SAV4998 SC04426 bldM SAV4998 SC044261 bldM SAV1427 SC01020 sfs SAV1661 SC01020 sav1427 SAV1662 NA sav1427 SAV1662 SC04770 sav1662 SAV1662 SC04770 sav1427	L	170	150	u	0 2			40
SAV1042 SU04159 gint SAV5997 SC02109 gint SAV6005 SC02198 gind SAV7104 SC01236 ured SAV7104 SC01236 ured SAV3805 SC04425 af5S SAV3805 SC04425 af5S SAV3805 SC044269 bidM SAV1427 SC01020 SAV1427 SC01020 SAV1662 NA SAV1662 NA SAV1662 NA SAV1662 SC06170 SAV1662 NA					0. 0			anu -
SAV5997 SC02210 gIn/l SAV6005 SC02198 gIn/l SAV7104 SC01236 ureA tabolism (SM) SC01235 ureA SAV3805 SC04425 afss SAV4130 SC04426 bldC SAV4130 SC04426 bldC SAV498 SC04468 bldM SAV4120 SC04426 bldC SAV46861 SC01420 bldD SAV1427 SC01420 bldD SAV1662 NA SAV1427 SAV1662 SC06752 SAV1662 SAV3375 SC04879 SC04170				3.4	4.9	CALAACGICIGGIICCICCICG		abd
SAV5997 SC02210 gInit SAV7104 SC01236 ured SAV7104 SC01236 ured SAV7104 SC01236 ured SAV104 SC01236 ured SAV104 SC01236 ured SAV105 SC01236 ured SAV0935 NA stas SAV0935 SC04425 afs SAV4130 SC04426 bldM SAV4998 SC04768 bldM SAV1427 SC01020 sts SAV1661 SC05752 stav1662 SAV1662 NA stav SAV1662 SC06752 stav SAV3375 SC04879 bldD	æ				7.6	GGTCGTGCACGGTTCGCTCGCC		abd
SAV6005 SC02198 gInd SAV7104 SC01236 ured tabolism (SM) sav3805 SC04425 afss SAV3805 SC04425 afss bidd SAV4130 SC04426 bidd bidd SAV4998 SC04468 bidd bidd SAV48661 SC01489 bidd bidd SAV16861 SC01020 sav1427 SC01020 sav1427 SAV1662 NA sav1662 SC04770 sav1662 sav16861 SC04768 bidd		- 139	9 -118	9.5	10	GGTAACACGGGGGTTCACATTCG	a	abcd
SAV7104 SC01236 ureA tabolism (SM) SAV0935 NA SAV0935 NA savs SAV1305 SC04425 afs SAV130 SC041268 bldM SAV1427 SC014299 bldD SAV1427 SC01020 savs SAV1661 SC06752 savs SAV1662 NA savs SAV3375 SC04879 savs	2	- 144	t -123	00	7.8	GTTTCGCCGAAGTTAACCGGCT	ŋ	abcd
tabolism (SM) SAV0935 NA SAV0935 NA SAV0935 NA SAV130 SC04425 afss SAV4130 SC04426 bldK SAV4998 SC04768 bldK SAV1427 SC01489 bldD SAV1427 SC01020 SAV1661 SC06752 SAV1662 NA SAV1662 NA SAV3375 SC04879	Я	- 194	t -173	10.8	10.9	GTTAACCAGCCCTTGATCCACT		abd
tabolism (SM) SAV0935 NA SAV0935 NA SAV0935 NA SAV0935 NA SAV0935 SC04425 af5S SAV4130 SC04091 bldC SAV4998 SC04768 bldM SAV1427 SC01489 bldD SAV1427 SC01020 SAV1661 SC06752 SAV1662 NA SAV1662 SC06170 SAV3375 SC04879								
SAV0935 NA SAV3805 SC04425 afss SAV4130 SC044091 bldC SAV4998 SC04768 bldM SAV4998 SC01489 bldM SAV1427 SC01489 bldM SAV1661 SC01020 sav1662 SAV1662 NA sav1662 SAV1375 SC0170 sav1662								
SAV3805 SC04425 afss SAV4130 SC044091 bldc SAV4130 SC04768 bldm SAV498 SC04768 bldm SAV6861 SC01489 bldm SAV1427 SC01200 sav1427 SAV1661 SC06752 sav1662 SAV1662 N sav1662 SAV3375 SC04879 sav2	ator R	- 100	0 - 79	2.1	3.3	GTGCGGGCTGGGTTGATCAGCA	ab	
SAV4130 SC04091 <i>bldC</i> SAV4998 SC04768 <i>bldM</i> SAV6861 SC01489 <i>bldD</i> SAV1427 SC01020 SAV1461 SC06752 SAV1662 NA SAV3375 SC04879		-200) –179	10.2	9.6	GTTCATCGTTCGTTTATCGCGG	ŋ	abcd
SAV4130 SCO4091 bldC SAV4998 SCO4768 bldM SAV6861 SCO1489 bldM SAV1427 SCO1489 bldD SAV1661 SCO152 sav1427 sco1489 SAV1661 SCO1702 sav1662 NA SAV1662 NA sav155 sav1662 SAV1375 SCO4879 Sco170 sav1662								
SAV4130 SC04091 bldC SAV4998 SC04768 bldM SAV6861 SC01489 bldD SAV1427 SC01020 SAV1427 SC01020 SAV1661 SC06752 SAV1662 NA SAV2069 SC06170 SAV3375 SC04879								
SAV4998 SC04768 bldM SAV6861 SC01489 bldD SAV1427 SC01020 SAV1427 SC01020 SAV1661 SC06752 SAV1662 NA SAV2069 SC06170 SAV2059 SC04879 SAV3375 SC04879	8				6.4	CTACACCATCCGTCCAGCCGCG	a	
SAV6861 SC01489 <i>bldD</i> SAV1427 SC01020 SAV14661 SC06752 SAV1662 NA SAV2069 SC06170 SAV2069 SC04879		- 174	t -153	5.2	5.2	GCTCACCGCCCCGTAACTCTTT	a	
SAV1427 SCO1020 SAV1661 SCO6752 SAV1662 NA SAV2069 SCO6170 SAV205 SCO4879		- 60	- 39	8.2	8.2	GGTTACGCAGCGTTACTCTTCC	ກ	
SAV1427 SC01020 SAV1661 SC06752 SAV1662 NA SAV2069 SC06170 SAV3375 SC04879								
661 SAV1661 SC06752 SAV1661 SC06752 SAV1662 NA 069 SAV2069 SC06170 375 SAV3375 SC04879		- 187	7 – 166	10.7	11.5	GGTCAACCGCCGGGTAACCCGCC		C
2000 2000 2000 2000 2000 2000 2000 200	: ~				12.7	GTTCACCGGCCGTTCACGGCCC		m (
069 SAV2069 SC06170 375 SAV3375 SC04879					10.7			2
SAV2089 SC04879 SAV3375 SC04879					, . 7 L			
SAV3375 SC04879				17.8	L3	al I catataci al I cacacaa		abcd
		I		7.4	8.1	GGCGATGTGCTGTTAACCCGTT		abcd
	Ω	- 53	- 32	1.5	2.4	GTTGCATTCCGGTTGGGCCGCG		
	C				c L			
376 SAV3376 SC04878				7	5.9	GTTCACGGCTTCGCCACGCGTC		abcd
sig47* SAV5679 SC02465 hrdA RNA polymerase sigma factor		- 181	l – 160	4	5.5	CTCCACACTGGGTTCCGGTGCC		abcd

The Journal of Antibiotics

PhoP coordinates phosphate and nitrogen metabolism JF Martín *et al*

539

Gene	Orthologous	Product	Strand	Start Er	Strand Start End Weight (scoe) Weight (save)	Weight (save)	Sequence	Evidence Save7859 Evidence Scoe
SAV_6349 SAV6349 SC01906	SC01906	Putative secreted protein	D	- 96 - 75	75 12	13.2	GTTCAACTGCCGTTCAGGCGCG	abcd
SAV_6969 SAV6969 SC01394	SC01394	Putative glycosyl hydrolase	Я	-64 -43	13.7	14.1	GTTCAACTGTCGTTCACCCGTG	abcd
SAV7142	SAV7142 SC01196	Secreted protein	- D	-292 -271	71 3.6	3.4	GGGAACACCCGGTCCACCTCTA	abd
SAV_7142*								
<i>SAV_7310</i> SAV7310 SC00921	SC00921	Conserved protein	D	-145 -124	24 10.4	10.2	GGTCACGCGCCGGTCAGCCGGC	a
The upstream sequences of th model 2 count matrix, a seque An asterik (for example, <i>ure</i> *) <i>chol I</i> and <i>chol P</i>)	le genes, from position ence identical to the c means that in the pro	The upstream sequences of the genes, from position -300 to $+2$ relative to the translation start site, were scanned. The defined 2 count matrix, a sequence identical to the consensus would have a value of 15.1. An asterik (for example, ue^{*}) means that in the promoter region are PHO sequences close to the selected one and the hold.	The matrix he binding	-scan algori site might u	thm and the count ma use alternative sequen	ttrix model 2 (Scc ces. A gene with	e) or the SAV1 matrix (Save) scores e two Pho boxes is indicated with single	start site, were scanned. The matrix-scan algorithm and the count matrix model 2 (Scoe) or the SAV1 matrix (Saw) scores each sequence as a weight value. Using the to the selected one and the binding site might use alternative sequences. A gene with two Pho boxes is indicated with single or double quotation marks (for example,

for experimental data in S. avermitivils (Evidence Save) or S. coelicolor (Evidence Scoe): a) gel shift, b) footprinting, c) ChIP-on-chip, d) differential expression between the wild-type strain and the mutant

PhoP REGULATION OF AVERMECTIN BIOSYNTHESIS

One of the more interesting observations of Yang et al.8 is that phoP mutants overproduce avermectin but not oligomycin. This finding clearly indicates that PhoP exerts a negative effect on avermectin biosynthesis as occurs with some antibiotics in S. lividans and to some extent in S. coelicolor.2,5

The PhoP regulation of avermectin biosynthesis is mediated by the AveR regulator

As indicated above in the avermectin gene cluster there is a LAL-type regulatory gene, named aveR, that is known to control the avermectin biosynthetic genes. RT-PCR comparative studies between the wildtype strain and the S. avermitilis $\Delta phoP$ mutant indicated that expression of *aveR* is clearly higher in the mutant than in the parental strain at two days of incubation, although the differences were lower at 6 days. This indicates that PhoP represses the expression of the regulatory gene aveR at early times in the fermentation, when the transcripts for aveR and other ave genes are being formed. The PhoP regulation of aveR expression was confirmed by gel retardation studies and footprinting analysis. These studies revealed a clear single shifted band when PhoP was added to a 477 nucleotides DNA fragment corresponding to the promoter and upstream region of aveR gene. The footprinting revealed a 25 nucleotides protected region that includes two DRus of 11 nucleotides each, one of which is clearly conserved with respect to the consensus sequence and the other (an extension DRu) is less conserved.8

The PHO boxes are situated in positions +21 to +43 downstream of the transcription start site of aveR. This finding indicates that binding of PhoP to the promoter region prevents reading by the RNA polymerase.²¹

The afsS gene, which is well known to be recognized by PhoP in S. coelicolor, affects avermectin biosynthesis in S. avermitilis⁸ and this suggests that one of the indirect targets of PhoP that controls avermectin biosynthesis is the PhoP regulation of afsS. Indeed, the new bioinformatic analysis (Table 2) reveals that there is a well conserved PHO box in the S. avermitilis afsS promoter that overlaps with the AfsR binding site.

CONCLUSIONS

In summary, the regulation of primary metabolism and also avermectin biosynthesis in S. avermitilis follows a similar pattern to that described in detail in *S. coelicolor*.^{17,19} But, on the other hand, there are some differences in the pleiotropic regulatory genes that affect avermectin biosynthesis in S. avermitilis as compared to those that affect pigmented antibiotics in S. coelicolor. One of the most important observations is the finding that expression of the cluster situated regulatory gene aveR is directly regulated by binding of PhoP. Although very little information is available in clusters encoding antibiotics in other Streptomyces species, it is likely that other cluster situated regulators, and perhaps other types of pleiotropic regulators, are directly recognized by PhoP, as occurs in S. avermitilis.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

This article was supported by CICYT Grants BIO2010-16094 and ERA-IB PIM2010EEI-00677 of the Ministry of Economy and Competitivity, Madrid, Spain.

- Martín, J. F. & Demain, A. L. Control of antibiotic synthesis. *Microbiol. Rev.* 44, 230–251 (1980).
- 2 Sola-Landa, A., Moura, R. S. & Martín, J. F. The two component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in *Streptomyces lividans. Proc. Natl Acad. Sci. USA* **100**, 6133–6138 (2003).
- 3 Ghorbel, S., Kormanec, J., Artus, A. & Virolle, M. J. Transcriptional studies and regulatory interactions between the *phoR-phoP* operon and the *phoU*, *mtpA*, and *ppk* genes of *Streptomyces lividans* TK24. J. Bacteriol. **188**, 677–686 (2006).
- 4 Rodríguez-García, A., Barreiro, C., Santos-Beneit, F., Sola-Landa, A. & Martín, J. F. Genome-wide transcriptomic and proteomic analysis of the primary response to phosphate limitation in *Streptomyces coelicolor* M145 and in a Δ*phoP* mutant. *Proteomics* 7, 2410–2429 (2007).
- 5 Sola-Landa, A., Rodríguez-García, A., Franco-Domínguez, E. & Martín, J. F. Binding of PhoP to promoters of phosphate regulated genes in *Streptomyces coelicolor*. Identification of PHO boxes. *Mol. Microbiol.* **56**, 1373–1385 (2005).
- 6 Mendes, M. V. et al. The two-component phoR-phoP system of Streptomyces natalensis: inactivation or deletion of phoP reduces the negative phosphate regulation of pimaricin biosynthesis. Metab. Eng. 9, 217–227 (2007).
- 7 Salehghamari, E. et al. Prediction of the pho regulon in Streptomyces clavuligerus DSM 738. New Microbiol. 35, 447–457 (2012).
- 8 Yang, R. et al. The PhoP transcription factor negatively regulates avermectin biosynthesis in Streptomyces avermitilis. Appl. Microbiol. Biotechnol. 99, 1047–1057 (2015).
- 9 Fabret, C., Feher, V. A. & Hoch, J. A. Two-component signal transduction in *Bacillus subtilis*: how one organism sees its world. *J. Bacteriol.* 181, 1975–1983 (1999).
- 10 Hutchings, M. I., Hoskisson, P. A., Chandra, G. & Buttner, M. J. Sensing and responding to diverse extracellular signals? Analysis of the sensor kinases and response regulators of *Streptomyces coelicolor* A3(2). *Microbiology* **150**, 2795–2806 (2004).
- 11 Martín, J. F., Sola-Landa, A., Rodríguez-García, A. in *Two component systems in bacteria* (eds Gross R. & Beier D.) 315–331 (Caister Academic., Würzburg, Germany, 2012a).
- 12 Galperin, M. Y. Diversity of structure and function of response regulator output domains. *Curr. Opin. Microbiol.* **13**, 150–159 (2010).
- 13 Fernández-Martínez, L. T., Santos-Beneit, F. & Martín, J. F. Is PhoR-PhoP partner fidelity strict? PhoR is required for the activation of the *pho* regulon in *Streptomyces coelicolor. Mol. Genet. Genomics* 287, 565–573 (2012).
- 14 Santos-Beneit, F. The Pho regulan: a huge regulatory network in bacteria. Front. Microbiol. 6, 402-414 (2015).
- 15 Santos-Beneit, F., Rodríguez-García, A., Franco-Domínguez, E. & Martín, J. F. Phosphate-dependent regulation of the low- and high-affinity transport systems in the model actinomycete *Streptomyces coelicolor. Microbiology* **154**, 2356–2370 (2008).
- 16 Martín, J. F. et al. Transcriptomic studies of phosphate control of primary and secondary metabolism in Streptomyces coelicolor. Appl. Microbiol. Biotechnol. 95, 61–75 (2012).
- 17 Apel, A. K., Sola-Landa, A., Rodríguez-García, A. & Martín, J. F. Phosphate control of phoA, phoC and phoD gene expression in Streptomyces coelicolor reveals significant differences in binding of PhoP to their promoter regions. *Microbiology* **153**, 3527–3537 (2007).
- 18 Schneider, T. D. Information content of individual genetic sequences. J. Theor. Biol. 189, 427–441 (1997).
- 19 Allenby, N. E. E., Laing, E., Bucca, G., Kierzek, A. M. & Collin, C. P. Diverse control of metabolism and other cellular processes in Streptomyces coelicolor by the PhoP transcription factor: genome-wide identification of *in vivo* targets. *Nucleic Acid. Res.* 40, 9543–9556 (2012).
- 20 Blanco, A. G., Canals, A. & Coll, M. PhoB transcriptional activator binds hierarchically to *pho* box promoters. *Biol. Chem.* **393**, 1165–1171 (2012).
- 21 Santos-Beneit, F. et al. The RNA polymerase omega factor RpoZ is regulated by PhoP and has an important role in antibiotic biosynthesis and morphological differentiation in Streptomyces coelicolor. Appl. Environ. Microbiol. 77, 7586–7594 (2011).
- 22 Boukhris, I., Dulermo, T., Chouayekh, H. & Virolle, M. J. Evidence for the negative regulation of phytase gene expression in *Streptomyces lividans* and *Streptomyces coelicolor. J. Basic Microbiol.* **56**, 59–66 (2016).
- 23 Ghorbel, S. et al. Regulation of ppk expression and in vivo function of Ppk in Streptomyces lividans TK24. J. Bacteriol. 188, 6269–6276 (2006).
- 24 Smirnov, A., Esnault, C., Prigent, M., Holland, I. B. & Virolle, M. J. Phosphate Homeostasis in Conditions of Phosphate Proficiency and Limitation in the Wild Type and the *phoP* Mutant of *Streptomyces lividans. PLoS ONE* **10**, e0126221 (2015).
- 25 Esnault, C., Leiber, D., Toffano-Nioche, C., Tanfin, Z. & Virolle, M. J. Another example of enzymatic promiscuity: the polyphosphate kinase of *Streptomyces lividans* is endowed with phospholipase D activity. *Appl. Microbiol. Biotechnol.* **101**, 139–145 (2017).

- 26 Ravcheev, D. A. *et al.* Transcriptional regulation of central carbon and energy metabolism in bacteria by redox-responsive repressor Rex. *J. Bacteriol.* **194**, 1145–1157 (2012).
- 27 Kleinschnitz, E. M. *et al.* Genetic analysis of SC02997, encoding a TagF homologue, indicates a role for wall teichoic acids in sporulation of *Streptomyces coelicolor* A3(2). *J. Bacteriol.* **193**, 6080–6085 (2011).
- 28 Flores, F. J. & Martín, J. F. Iron-regulatory proteins DmdR1 and DmdR2 of Streptomyces coelicolor form two different DNA-protein complexes with iron boxes. Biochem. J. 380, 497–503 (2004).
- 29 Hesketh, A. et al. The GInD and GInK homologues of Streptomyces coelicolor A3(2) are functionally dissimilar to their nitrogen regulatory system counterparts from enteric bacteria. Mol. Microbiol. 46, 319–330 (2002).
- 30 Tiffert, Y. et al. The Streptomyces coelicolor GlnR regulon: identification of new GlnR targets and evidence for a central role of GlnR in nitrogen metabolism in actinomycetes. Mol. Microbiol. 67, 861–880 (2008).
- 31 Sola-Landa, A., Rodríguez-García, A., Amin, R., Wohlleben, W. & Martín, J. F. Competition between the GInR and PhoP regulators for the *glnA* and *amtB* promoters in *Streptomyces coelicolor*. *Nucleic Acids Res.* **41**, 1767–1782 (2013).
- 32 Reuther, J. & Wohlleben, W. Nitrogen metabolism in *Streptomyces coelicolor*: Transcriptional and post-translational regulation. *J. Mol. Microbiol. Biotechnol.* 12, 139–146 (2007).
- 33 Martín, J. F. Phosphate control of the biosynthesis of antibiotics and other secondary metabolites is mediated by the PhoR-PhoP system: an unfinished story. J.Bacteriol. 186, 5197–5201 (2004).
- 34 Song, L. et al. Type III polyketide synthase beta-ketoacyl-ACP starter unit and ethylmalonyl-CoA extender unit selectivity discovered by Streptomyces coelicolor genome mining. J. Am. Chem. Soc. 128, 14754–14755 (2006).
- 35 Pawlik, K., Kotowska, M., Chater, K. F., Kuczek, K. & Takano, E. A cryptic type I polyketide synthase (*cpk*) gene cluster in *Streptomyces coelicolor* A3(2). *Arch. Microbiol.* **187**, 87–99 (2007).
- 36 Santos-Beneit, F., Rodríguez-García, A., Sola-Landa, A. & Martín, J. F. Crosstalk between two global regulators in *Streptomyces*: PhoP and AfsR interact in the control of *afsS*, *pstS* and *phoRP* transcription. *Mol. Microbiol.* **72**, 53–68 (2009).
- 37 Santos-Beneit, F., Rodríguez-García, A. & Martín, J. F. Complex transcriptional control of the antibiotic regulator afsS in Streptomyces: PhoP and AfsR are overlapping, competitive activators. J. Bacteriol. 193, 2242–2251 (2011).
- 38 Gehring, A. M., Yoo, N. J. & Losick, R. RNA polymerase sigma factor that blocks morphological differentiation by *Streptomyces coelicolor. J. Bacteriol.* 183, 5991–5996 (2001).
- 39 Elliot, M. A. et al. The chaplins: a family of hydrophobic cell-surface proteins involved in aerial mycelium formation in *Streptomyces coelicolor. Genes Dev.* 17, 1727–1740 (2003).
- 40 Flardh, K. & Buttner, M. J. Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat. Rev. Microbiol. 7, 36–49 (2009).
- 41 Świątek-Połatyńska, M. A. *et al.* Genome-wide analysis of *in vivo* binding of the master regulator DasR in *Streptomyces coelicolor* identifies novel non-canonical targets. *PLoS ONE* **10**, e0122479 (2015).
- 42 Burg, R. W. et al. Avermectins, new family of potent anthelmintic agents: producing organism and fermentation. Antimicrob. Agents Chemother. 15, 361–367 (1979).
- 43 Egerton, J. R. et al. Avermectins, new family of potent anthelmintic agents: efficacy of the B1a component. Antimicrob. Agents Chemother. 15, 372–378 (1979).
- 44 Omura, S. *et al.* Genome sequence of an industrial microorganism *Streptomyces avermitilis*: deducing the ability of producing secondary metabolites. *Proc. Natl Acad. Sci. USA* **98**, 12215–12220 (2001).
- 45 Ikeda, H., Nonomiya, T., Usami, M., Ohta, T. & Omura, S. Organization of the biosynthetic gene cluster for the polyketide anthelmintic macrolide avermectin in *Streptomyces avermitilis. Proc. Natl Acad. Sci. USA* **96**, 9509–9514 (1999).
- 46 Kitani, S., Ikeda, H., Sakamoto, T., Noguchi, S. & Nihira, T. Characterization of a regulatory gene, *aveR*, for the biosynthesis of avermectin in *Streptomyces avermitilis*. *Appl. Microbiol. Biotechnol.* 82, 1089–1096 (2009).
- 47 Guo, J. et al. The pathway-specific regulator AveR from Streptomyces avermitilis positively regulates avermectin production while it negatively affects oligomycin biosynthesis. Mol. Genet. Genomics 283, 123–133 (2010).
- 48 Rodríguez-García, A., Sola-Landa, A., Apel, K., Santos-Beneit, F. & Martín, J. F. Phosphate control over nitrogen metabolism in *Streptomyces coelicolor* direct and indirect negative control of *glnR*, *glnA*, *glnII* and *amtB* expression by the response regulator PhoP. *Nucleic Acid Res.* **37**, 3230–3242 (2009).
- 49 Turatsinze, J. V., Thomas-Chollier, M., Defrance, M. & van Helden, J. Using RSAT to scan genome sequences for transcription factor binding sites and cis-regulatory modules. *Nat. Protoc.* **3**, 1578–1588 (2008).