Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Lanostane triterpenoids from fruiting bodies of basidiomycete Stereum sp., structures and biological activities

Abstract

Twelve new lanostane triterpenoids, sterenoids A–L (112) have been isolated from fruiting bodies of the basidiomycete Stereum sp. Compounds 112 are rare 14(13→12)abeo-lanostane triterpenoids featuring remarkable 13R configurations that discriminate from the previously covered counterparts. Their structures and absolute configurations are assigned on the basis of in-depth one- and two-dimensional NMR spectroscopic analysis, as well as unbiased quantum chemical NMR and electronic CD calculations. All isolates are evaluated for their in vitro cytotoxicity against five human tumor cell lines. Compound 5 exhibits potent cytotoxic activities against tumor cell lines HL-60 and SMMC-7721 with IC50 values of 4.7 and 7.6 μM, respectively.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1
Figure 2
Figure 3

References

  1. 1

    Feng, T. et al. Phellibarin D with an unprecedented triterpenoid skeleton isolated from the mushroom Phellinus rhabarbarinus. Tetrahedron Lett. 57, 3544–3546 (2016).

    CAS  Article  Google Scholar 

  2. 2

    Newman, D. J. & Cragg, G. M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 79, 629–661 (2016).

    CAS  Article  Google Scholar 

  3. 3

    Xiao, H. & Zhong, J.-J. Production of useful terpenoids by higher-fungus cell factory and synthetic biology approaches. Trends Biotechnol. 34, 242–255 (2016).

    CAS  Article  PubMed  Google Scholar 

  4. 4

    Xie, J., Li, L. & Dai, Z. Isolation and identification of two new metabolites from silver leaf fungus Stereum purpureum. J. Org. Chem. 57, 2313–2316 (1992).

    CAS  Article  Google Scholar 

  5. 5

    Li, G.-H. et al. Stereumin A-E, sesquiterpenoids from the fungus Stereum sp CCTCC AF 207024. Phytochemistry 69, 1439–1445 (2008).

    CAS  Article  PubMed  Google Scholar 

  6. 6

    Li, G., Liu, F., Shen, L., Zhu, H. & Zhang, K. Stereumins H-J, stereumane-type sesquiterpenes from the fungus Stereum sp. J. Nat. Prod. 74, 296–299 (2011).

    CAS  Article  PubMed  Google Scholar 

  7. 7

    Isaka, M., Srisanoh, U., Sappan, M., Supothina, S. & Boonpratuang, T. Sterostreins F–O, illudalanes and norilludalanes from cultures of the Basidiomycete Stereum ostrea BCC 22955. Phytochemistry 79, 116–120 (2012).

    CAS  Article  PubMed  Google Scholar 

  8. 8

    Li, J.-F., Qin, Y.-K., Tian, M.-Q., Zhang, K.-Q. & Li, G.-H. Two new sesquiterpenes from the fungus Stereum sp NN048997. Phytochem. Lett. 10, 32–34 (2014).

    CAS  Article  Google Scholar 

  9. 9

    Isaka, M., Srisanoh, U., Choowong, W. & Boonpratuang, T. Sterostreins A-E, new terpenoids from cultures of the Basidiomycete Stereum ostrea BCC 22955. Org. Lett. 13, 4886–4889 (2011).

    CAS  Article  PubMed  Google Scholar 

  10. 10

    Qi, Q.-Y. et al. Sterhirsutins A and B, two new heterodimeric sesquiterpenes with a new skeleton from the culture of Stereum hirsutum collected in Tibet Plateau. Org. Lett. 16, 5092–5095 (2014).

    CAS  Article  PubMed  Google Scholar 

  11. 11

    Qi, Q. Y. et al. Stucturally diverse sesquiterpenes produced by a Chinese Tibet fungus Stereum hirsutum and their cytotoxic and immunosuppressant activities. Org. Lett. 17, 3098–3101 (2015).

    CAS  Article  PubMed  Google Scholar 

  12. 12

    Ito-Kobayashi, M. et al. Sterenin A, B, C and D, novel 11 beta-hydroxysteroid dehydrogenase type 1 inhibitors from Stereum sp SANK 21205. J. Antibiot. (Tokyo) 61, 128–135 (2008).

    CAS  Article  Google Scholar 

  13. 13

    Wang, B. T. et al. Depside alpha-glucosidase inhibitors from a culture of the mushroom Stereum hirsutum. Plant. Med. 80, 918–924 (2014).

    CAS  Article  Google Scholar 

  14. 14

    Liu, D. Z. et al. Vibralactone: a lipase inhibitor with an unusual fused beta-lactone produced by cultures of the basidiomycete Boreostereum vibrans. Org. Lett. 8, 5749–5752 (2006).

    CAS  Article  PubMed  Google Scholar 

  15. 15

    Jiang, M.-Y. et al. Derivatives of vibralactone from cultures of the basidiomycete Boreostereum vibrans. Chem. Pharm. Bull. (Tokyo). 56, 1286–1288 (2008).

    CAS  Article  PubMed  Google Scholar 

  16. 16

    Jiang, M.-Y. et al. Vibralactones D-F from cultures of the basidiomycete Boreostereum vibrans. Chem. Pharm. Bull. (Tokyo). 58, 113–116 (2010).

    CAS  Article  PubMed  Google Scholar 

  17. 17

    Chen, H. P. et al. Novel natural oximes and oxime esters with a vibralactone backbone from the basidiomycete Boreostereum vibrans. Chemistryopen 5, 142–149 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18

    Kang, H.-S. & Kim, J.-P. Ostalactones A–C, β- and ɛ-lactones with lipase inhibitory activity from the cultured basidiomycete Stereum ostrea. J. Nat. Prod. 79, 3148–3151 (2016).

    CAS  Article  PubMed  Google Scholar 

  19. 19

    Zhou, Q. & Snider, B. B. Synthesis of (+/−)- and (-)-vibralactone and vibralactone C. J. Org. Chem. 73, 8049–8056 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20

    Yuan, C., Jiao, L. & Yu, Z.-X. Formal total synthesis of (±)-hirsutic acid C using the tandem Rh(I)-catalyzed [(5+2)+1] cycloaddition/aldol reaction. Tetrahedron Lett. 51, 5674–5676 (2010).

    CAS  Article  Google Scholar 

  21. 21

    Lan, P., Banwell, M. G. & Willis, A. C. Chemoenzymatic synthesis of the enantiomer of 4,12-dihydroxysterpurene, the structure assigned to a metabolite isolated from the culture broth of Stereum purpureum. Org. Lett. 17, 166–169 (2015).

    CAS  Article  PubMed  Google Scholar 

  22. 22

    Leeder, A. J., Heap, R. J., Brown, L. J., Franck, X. & Brown, R. C. D. A short diastereoselective total synthesis of (+/−)-vibralactone. Org. Lett. 18, 5971–5973 (2016).

    CAS  Article  PubMed  Google Scholar 

  23. 23

    Zhao, P.-J., Yang, Y.-L., Du, L., Liu, J.-K. & Zeng, Y. Elucidating the biosynthetic pathway for vibralactone: a pancreatic lipase inhibitor with a fused bicyclic beta-lactone. Angew. Chem. Int. Ed. 52, 2298–2302 (2013).

    CAS  Article  Google Scholar 

  24. 24

    Yang, Y.-L. et al. A monooxygenase from Boreostereum vibrans catalyzes oxidative decarboxylation in a divergent vibralactone biosynthesis pathway. Angew. Chem. Int. Ed. 55, 5463–5466 (2016).

    CAS  Article  Google Scholar 

  25. 25

    Hu, Z.-X. et al. Rearranged 6/6/5/6-fused triterpenoid acids from the stems of Kadsura coccinea. J. Nat. Prod. 79, 2590–2598 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26

    Kangouri, K. et al. Isolation and structure elucidation of neokadsuranic acid A, the first triterpenoid with the 14 (13→12) abeo Lanostane Skeleton, and (24Z)-3-Oxo-lanosta-8,24-dien-26-oic acid. Plant. Med. 55, 297–299 (1989).

    CAS  Article  Google Scholar 

  27. 27

    Edwad, O. Z. & Paryzek, Z. Lanostane-to-cucurbitane transformation. Can. J. Chem. 61, 1973–1980 (1983).

    Article  Google Scholar 

  28. 28

    Dang, N. Q., Hashimoto, T., Tanaka, M. & Asakawa, Y. Tyromycic acids F and G: two new triterpenoids from the mushroom Tyromyces fissilis. Chem. Pharm. Bull. (Tokyo) 51, 1441–1443 (2003).

    Article  Google Scholar 

  29. 29

    Quang, D. N., Hashimoto, T., Tanaka, M., Takaoka, S. & Asakawa, Y. Tyromycic acids B−E, new lanostane triterpenoids from the mushroom Tyromyces fissilis. J. Nat. Prod. 67, 148–151 (2004).

    CAS  Article  PubMed  Google Scholar 

  30. 30

    Zhao, Z.-Z. et al. Two new triterpenoids from fruiting bodies of fungus Ganoderma lucidum. J. Asian Nat. Prod. Res. 17, 750–755 (2015).

    CAS  Article  PubMed  Google Scholar 

  31. 31

    Hu, Z. X. et al. Kadcoccinones A-F, new biogenetically related lanostane-type triterpenoids with diverse skeletons from Kadsura coccinea. Org. Lett. 17, 4616–4619 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32

    Lian-Niang, L., Hong, X., Kangouri, K., Ikeda, A. & Omura, S. Triterpenoid acids from Kadsura longipedunculata. Neokadsuranic acids B and C: two novel triterpenoids with 14 (13→12)abeo-lanostane skeletons. Plant. Med. 55, 294–296 (1989).

    CAS  Article  Google Scholar 

  33. 33

    Hammann, P., Kluge, H. & Habermehl, G. γ-gauche Effects in the 1H and 13C NMR spectra of steroids. II. Magn. Reson. Chem. 29, 133–136 (1991).

    CAS  Article  Google Scholar 

  34. 34

    Suzuki, S., Horii, F. & Kurosu, H. Theoretical investigations of the gamma-gauche effect on the C-13 chemical shifts produced by oxygen atoms at the gamma position by quantum chemistry calculations. J. Mol. Struct. 919, 290–294 (2009).

    CAS  Article  Google Scholar 

  35. 35

    Zanardi, M. M., Suarez, A. G. & Sarotti, A. M. Determination of the relative configuration of terminal and spiroepoxides by computational methods. Advantages of the inclusion of unscaled data. J. Org. Chem. 82, 1873–1879 (2017).

    CAS  Article  PubMed  Google Scholar 

  36. 36

    Gorecki, M. et al. Practical method for the absolute configuration assignment of tert/tert 1,2-diols using their complexes with Mo2(OAc)4 . J. Org. Chem. 72, 2906–2916 (2007).

    CAS  Article  PubMed  Google Scholar 

  37. 37

    Cory, A. H., Owen, T. C., Barltrop, J. A. & Cory, J. G. Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Commun. 3, 207–212 (1991).

    CAS  Article  PubMed  Google Scholar 

  38. 38

    Reed, L. J. & Muench, H. A simple method of estimating fifty percent endpoints. Am. J. Epidemiol. 27, 493–497 (1938).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (81561148013 and 81373289) and the Key Projects of Technological Innovation of Hubei Province (number 2016ACA138). Computational resources used in this work were supported in part by HPC Center, Kunming Institute of Botany, CAS, China. We thank Professor Yu-Cheng Dai of Beijing Forestry University, for the identification of the mushroom. We wish to thank Dr Tian Lu (Beijing Kein Research Center for Natural Sciences) for his fruitful discussions in the quantum chemical calculations with Gaussian 09.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Tao Feng or Ji-Kai Liu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on The Journal of Antibiotics website

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yao, JN., Chen, L., Tang, Y. et al. Lanostane triterpenoids from fruiting bodies of basidiomycete Stereum sp., structures and biological activities. J Antibiot 70, 1104–1111 (2017). https://doi.org/10.1038/ja.2017.122

Download citation

Further reading

Search

Quick links